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Abstract

Hidden Markov models (HMM) are a widely used tool for sequence modelling. In the sequence classification case, the
standard approach consists of training one HMM for each class and then using a standard Bayesian classification rule. In this
paper, we introduce a novel classification scheme for sequences based on HMMs, which is obtained by extending the recently
proposed similarity-based classification paradigm to HMM-based classification. In this approach, each object is described by
the vector of its similarities with respect to a predetermined set of other objects, where these similarities are supported by
HMMs. A central problem is the high dimensionality of resulting space, and, to deal with it, three alternatives are investigated.
Synthetic and real experiments show that the similarity-based approach outperforms standard HMM classification schemes.
© 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction Hidden Markov model@HMMs) are commonly employed

) . ) i . . probabilistic models of sequential dgtf]. HMMs can be

The analysis of sequential data is an interesting and im- yjeyed as stochastic generalizations of finite-state automata,
portant research area. Probabilistic modelling and classifica- \yhen poth the transitions between states and the genera-
tion is intrinsically more difficult when each observation is  ion of output symbols are governed by probabilistic mech-
a sequence, compared to the standard scenario where eaclnisms[1]. Although the basic theory and inference tools
observation is a set (vector) of features. In fact, since the were developed in the late 196(%3], HMMs have only
length of the sequences may vary, it is not possible to di- peen extensively applied in the last decade. Speech recog-
rectly use standard pattern recognition technlgues. More- nition [1], DNA and protein modelling4,5], handwritten
over, sequence classification problems usually involve very .paracter recognitiof6], gesture recognitiofi7], and be-
large data sets. havior analysis and synthegB] are examples of problems
for which HMMs have been exploited.

The standard HMM-based approach to sequence classifi-
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is classified into the class whose model shows the highest substantial improvement in the classification performance,
probability (ikelihood) of having generated this sequence compared to standard HMM-based approaches. Moreover,

(this is the well-knowrmaximume-likelihoodML) classifi- with the use of HMMs and the similarity representation, the

cation rule). problem of classification of sequences is reduced to a more
In this paper, an alternative classification scheme is pro- standard classification task (where each object is described

posed, by extending the similarity-based paradjg§ri4]to by a fixed-length feature vector), for which arbitrarily so-

HMM-based classification. This paradigm, which has been phisticated techniques can be used, allowing to increase even
introduced recently, differs from typical pattern recognition more the classification performance.
approaches where objects to be classified are represented by The proposed approach was successfully tested on both
sets (vectors) of features. In the similarity-based paradigm, synthetic and real data, involving 2D shape recognition and
objects are described using pairwise (dis)similarities, i.e. face recognition problems. In comparison with the stan-
distances from other objects in the data set. In this way, ob- dard HMM-based ML classification approach, our method
jects are not constrained to be explicitly represented in a showed a significant performance improvement, confirm-
feature space, and all that is necessary is a way to computeing all the potential of the similarity-based classification
(dis)similarities between pairs of objects. The goal is then approach.
to learn a classifier only from these relational data. The main problem of the similarity-based approach, of
The literature on similarity-based classification is not vast particular relevance in practical applications, is the high di-
[9-14] (a brief review is given in Section 2.1). The general mensionality of the resulting similarity space. Actually, in
idea behind all these approaches is basically the same: giventhe basic approach, this dimensionality is equal to the car-
a set of pairwise dissimilarity values, a new representation dinality of the whole training data set, possibly leading to
space can be built, in which each object is described by these a huge computational burden. In the literature, two types of
values. In Ref[13], a simple synthetic experiment shows solutions of this problem could be identified, summarized in
that a complex problem in a 2D space (requiring a quadratic Section 2.2. In this paper, three methods to face this problem
classifier to achieve almost correct separation), becomes aare proposed. The first one aims at removing redundancy
linearly separable problem in a dissimilarity space. from the data by applying linear dimensionality reduction
In this paper, we extend this dissimilarity-based classi- techniques, such as Fisher discriminant analysis (HDRA)
fication paradigm to HMM-based sequences classification and principal component analysis (PCHAR]. The second
problems. We propose to build a similaﬂityspace, repre- proposed method is based on a greedy strategy known as
senting each object (sequence) by the vector of its similari- matching pursuif20], which selects a subset of represen-
ties with respect to a predetermined set of objects (this can tatives based on which the similarity values are computed.
be the whole data set, in the simplest approach), called the These two approaches are very general, and can be applied
representatives sethe classification is then performed in in all distance-based classification contexts. The third pro-
this new representation space. The similarities are derived posed approach is more specific to the HMM case, and is
by considering the likelihood®(O|4) as a measure of the  based on a simple adaptation of the similarity-based clas-
similarity between the sequen€ and the HMM specified sification approach to the standard HMM learning proce-
by the set of parametess This similarity measure was pre-  dure. All these approaches were experimentally evaluated,
viously used in sequence clustering applicatififs 16] confirming the discriminative power of the similarity space,
The similarity-based classification paradigm seems to be even when the dimensionality is reduced to more manage-
particularly well suited to HMMSs, as it can be seen as a nat- able numbers.
ural extension of the standard HMM classification scheme.  Summarizing, the main contribution of this paper is the
Specifically, the standard ML approach assigns an unknown introduction of the similarity-based recognition paradigm
sequenceD to the class whose model shows the highest in an HMM context, resulting in a significant perfor-
likelihood. To do so, the likelihoods @ with respect to the mance improvement with respect to standard HMM-based
HMMs of all classes are evaluated, each statifigedihood- classification. The mapping to the similarity space pro-
basedmeasure of the similarity between that class and the posed in this paper allows us to reduce complex prob-
observed sequence. In other words, HMMs are used to lems of sequence classification to a more standard point
computesimilarities between sequences and classes, with classification problem, for which arbitrarily sophisticated
each class being represented by a single HMM. Subse- techniques could be used. From the point of view of
quently, only the maximum of these values is used to take similarity-based recognition, we propose two different ap-
the classification decision. In the similarity-based approach, proaches for dealing with the high dimensionality of the
the classification decision is taken using thibole set of similarity space, which is one of the main problems of
similarities between each observed sequence and all thethe method. First, the potential of linear reduction tech-
other sequences. We will show that this strategy results in a niques, as PCA and FDA, is exploited, showing that they
are able to reduce the curse of dimensionality impact on
E— the classification process. Second, we address the choice
1 Note that we refer indifferently to similarity or dissimilarity. ~ of a set of appropriate representatives using the matching
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pursuit algorithm, which proves to be a robust and effective used in Ref[9]. Another recent example is presented in Ref.
approach. [22], where a reduction of the dimensionality of the dis-
The rest of the paper is organized as follows. In Section similarity space is obtained by a modified multidimensional
2, the state of the art related to the similarity-based classi- scaling scheme, able to reduce the computational burden
fication and to the dimensionality issue is summarized. In and to allow generalization to new data. The second type of
Section 3, HMMs are introduced, together with the standard solution works by directly choosing a small set of represen-

classification scheme. The proposed strategy is described intatives. An example of this type of solution can be found in

Section 4, and Section 5 reports the experiments and the re-

lated results are discussed. Finally, in Section 6, conclusions
are drawn and future perspectives are envisaged.

2. State of the art
2.1. Similarity-based classification

The literature on similarity-based classification is not vast.
The approach seems to have been firstly introduced by Jain
and Zongker[9], who have obtained a dissimilarity mea-
sure, based on deformable templates, for the hand-written
digit recognition problem. A multidimensional scaling ap-
proach was then used to project this dissimilarity space
onto a low-dimensional space, where a 1-nearest-neighbor
(1-NN) classifier was employed to classify new objects. In
Ref. [10], Graepel et al. investigate the problem of learn-
ing a classifier based on data represented in terms of their
pairwise proximities, using an approach based on Vapnik’s
structural risk minimizatioffi21]. Jacobs and Weinshdll1]
studied the use of distance-based classification with non-
metric distance functions (i.e. that do not satisfy the triangle
inequality). Duin and Pekalska are very active researchers in
this ared having recently produced several pagéts-14]
Motivation and basic features of similarity-based methods
were first described in Refl2]: it was shown, by experi-
ments in two real applications, that a Bayesian classifier (the
RLNC—regularized linear normal density-based classifier)
in the dissimilarity space outperforms the NN rule. These
aspects were more thoroughly investigated in R#&4],
where other classifiers in the dissimilarity space were stud-
ied, namely on digit recognition and bioinformatics prob-
lems. Finally, in Ref[13], a generalized kernel approach
was introduced, dealing with classification aspects of the
dissimilarity kernels.

2.2. The dimensionality issue
The main problem of the similarity-based approach, of

particular relevance in practical applications, is the high di-
mensionality of the resulting similarity space. Two types of

solutions have been proposed in order to address this prob-

lem. The first consists of building the similarity space using

all available patterns, and subsequently applying some stan-

dard dimensionality reduction technique. One example of
this kind of approach is the multidimensional scaling method

2 Seehttp:/ivww.ph.tn.tudelft.nl/Research/neurallindex. html

Ref.[14], where random selectiomost-dissimilarule and

the condensedNN (CNN) rule were employed. Other ex-
amples can also be found in R§E1], where a new type of
CNN method is proposed, or in a recent paf23], where

a greedy approach is proposed, able to find prototypes en-
coding the principal components of the similarity space.

3. Hidden Markov models

A discrete-time HMM is a probabilistic model that de-
scribes a random sequen®@e= 01, Oy, ..., O as being an
indirect observation of an underlying (hidden) random se-
quenceQ = Q1, Q2, ..., O, where this hidden process is
Markovian, even though the observed process may not be.
Due to lack of space, HMM theory will not be covered in
detail here; for a comprehensive tutorial, see REf. Ba-
sically, an HMM 1 is a 4-tupled = (S, A, =, B), whereS
is the set of stated is the transition matrix (representing
the probabilities of transition between states)s a vector
of initial state probabilities, an® is the emission model,
which describes the probability (density or mass) function
of symbol emission from each state. All HMMs used in
this paper are continuous value@;(e R), with the emis-
sion probability of each state assumed Gaussian. Training is
performed using the standard Baum—-Welch algorifr8],
initialized using a Gaussian mixture model (as in R24]).

As mentioned above, the typical HMM-based classifica-
tion approach adopts the ML criterion, where an unknown
sequenceD is assigned to the class showing the highest
likelihood, i.e.

Class(0) =arg maxP (O[4;), Q)

L
where4; is the HMM corresponding to thih class. This
requires trainingC HMMs for a C-class problem. In the
sequel, we will call this the Mgpc approach (withOPC
standing for “one per class”).

A somewhat different rule could also be considered. In-
stead of training one HMM for each class, we could train
one model for each training sequence, and assign an un-
known sequenc® to the class of the model showing the

highest likelihood. More formally, Ietgk) denote the HMM

model trained on sequen@al(k), which belongs to clask.
The classification rule under this approach is then

Clasg0O) = arg nzax(m_axP(OM(k))) . 2)

i
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We call this the Mlg pg approach (withOPSstanding for
“one per sequence”). Notice that this may be seen as 1-
NN classifier, with the proximity measure defined by the
likelihood function.

4. The similarity-based strategy
4.1. Introduction

The basic issue of a similarity-based strategy is how to
define similarities in an HMM framework. Recall that, given
an HMM 4 and a sequenc®, there is a standard method
(forward—backward procedurf2]) to computeP (O|4), i.e.
the probability (density) that sequenCewas generated by
modeli. This quantity is called the likelihood, and measures
how well the sequend® “fits” the modeli. A natural choice
is then to define the similarity;; = 2(0;, O;) between
two sequence®; andO; as

log P(O;4;)

Dij=@(oi,0j)= T
i

: @)

Wherelj is the HMM trained on sequende;, andT; is

the length of the sequen€®;. The 1/T; is a normalization
factor introduced to take into account sequences of different
length. Notice that this similarity is not symmetric.
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4.2. Formal definition

Formally, the proposed strategy is defined as follows.
Consider a classification problem wit classes; for each
classk € {1,2,...,C}, we have a set ofv; training se-

quences’ ;= {O(lk), O%‘g}; thus,N =}, Ny is the total

size of the training se? = |, 7.

Let # = {Pq,...,Pr} be a set ofR “reference” or
“representative” objects; these objects may belong to the
set of training sequences?(< 7) or may be otherwise
defined. Now, letZ4(O) be a function that returns the
vector of similarities between an arbitrary seque@cand
all the sequences i®, which is

2(0,Py)

Z(0) = e RR. (@)

(0, Pg)

We will designate the spad&® in which the dissimilarity
vector exists as the “similarity space” and denote i/gg,
where the subscrip# is used to emphasize the dependence
of the similarity space on the set. Once this similarity
space is defined, any standard classifier can, in principle, be
used.

Regarding the choice of, different approaches can be
adopted; the basic one, described in the next subsection, is to
chooseZ = .7, the whole training set. With this choice, the

The idea at the basis of the proposed approach is concep-dimensionality of¥» = 7 is equal toN, the cardinality

tually simple: to build a new representation space, using the
similarity values between sequences obtained via the HMMs
according to Eq. (3), and construct a classifier in that space.
One of the justifications for this approach lies in the fact that
similarity is high for similar objects/sequences, i.e. belong-
ing to the same class, and low for objects of different classes,
making discrimination possiblg3]. Therefore, we can in-
terpret the similarity measure(O, O;) between a sequence

O and another “reference” sequer@gas a “feature” of the
sequenc®. This fact suggests the construction of a feature
vector forO by taking the similarities betweed and a set

of reference sequences= {0}, so thatO is characterized

by apattern(i.e. a set of feature)z(O, O), Oy € %}.

This approach is well suited for HMMs. Given a sequence
O, the standard rule defined by Eg. (2) uses HMMs to com-
pute the similarities betweed and all the sequences in the
training set. It then looks for the most similar training se-
qguence, and classifig® as belonging to the class of this
sequence (exactly as in a 1-NN classifier). Therefore, this
process does not use all the information contained in the
complete set of similarities, as done in the similarity-based
approach. Notice that the fact that two sequencesQsand
O;, present similar degrees of similarity to several other se-

of the training setZ". This is obviously a problem, because

it makes the proposed method inapplicable in most cases;
nevertheless, it is interesting to investigate the discrimination
ability of this space.

Subsequently, the problem of reducing the dimensionality
of the space is addressed by three different approaches: in
the first, linear projection techniques are applied to the whole
similarity space? s ; in the second one, we will modify the
strategy used to compute of the distariee, -); finally, we
use a greedy strategy, based anatching pursuialgorithm,
in order to choose a “good” set of representatives.

4.3. Basic approach? = .7

When we take? =7, the dimensionality of/ is equal
to N, the cardinality of7". Notice that in this case we are
required to design a classifier on &hdimensional space
using onlyN training sequences; this is an extreme case of
the curse of dimensionality18], suggesting that some di-
mensionality reduction technique should be adopted. Lin-
ear transformations, such as PCA (see RE9]) or FDA
(see Ref[17]), were conceived as means of reducing the
dimensionality of a space while preserving almost all the

guences (e.g., they are both very similar to some sequences,‘relevant information” contained in a data set. The con-

and also both very dissimilar to some other sequences) en-

forces the hypothesis th&@; andO; belong to the same
class.

cept of “relevant information” is different in PCA and FDA.
In PCA, the information to be preserved is the variance
of the data, that is, PCA seeks a data projection of lower
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dimensionality that preserves most of its variance; it is thus linear combination of basis functions from a redundant dic-
an unsupervised learning technique since it does not usetionary[20]. It is a general, greedy, approximation scheme
the class labels of the training samples. In contrast, FDA that works by sequentially appending functions to an ini-
is a supervised technique that looks for a low-dimensional tially empty set. At each step, the basis function appended
projection that best preserves the class separability of the is the one that produces the largest decrease in the ap-

data. In FDA, several criteria can be adopted to quantify the proximation error. Recently, Vincent and Bend&6] used

concept of “class separability17]; in this paper, we adopt
the classical one proposed by Fisli2s]. The reduction of

the space dimensionality absorbs in some way the impact

of the curse of dimensionality; moreover, it could some-

MP to obtain kernel-based solutions to machine-learning
problems.
Formally, the MP algorithm is defined as:

times eliminate some redundancy present in the data (as e Set# = ¢ (the empty set);
shown in the experiments), leading to a better classification ¢ Until some stopping criterion is met, repeat:

performance.
4.4. Choice of the set of representativés

If we want to avoid the curse of dimensionality without
having to resort to PCA or FDA, smarter ways of choosing
2 have to be devised. Clearly, the choice %fis critical
as only if this set is adequately chosen, the discrimination
power of the space”y will be large. In this paper, we
propose two methods, namely, the OPC andrfeching
pursuit (MP) procedures.

4.4.1. The “OPC” approach
In this approach, which is similar to the Mjpc scheme
described in Section 3, instead of training one HMM for

o For each sequenc@lgk)gz,%, compute theleave
one out(LOO) classification error rate of the 1-NN

classifier using the feature vect@r{ﬁuo(_k)}(-). Let

us denote this error as_%(olfk)).
o The new representative set#s=2U {O?f*)}, where

min

k
Ez(0").
(i,k):0 ¢

(i*, k*)=arg

In the following, we denote the similarity space obtained
with this approach as/p. Note that, unlike the OPC ap-
proach, this scheme is very general, and can be used in all

each sequence, a model is trained for each class using allgther instances of similarity-based classification.

sequences of that class. Using these HMMs, the feature

vector of a sequenc® is a C-dimensional (for a C-class
problem) vector given by

log P(Ol41)

Yopc(0) = T : ,
log P(Olic)

(®)

whered; is the HMM estimated from the set of all training
sequences from clags and T is the length of sequence
O. In this case,Zopc(0) can be seen as containing the
similarities betweerD and each of the C classes. We can
imagine the se as containingC sequence$Pq, ..., Pc},
such thatP; is an (imaginary) sequence such that if we
applied the learning algorithm t#; we would still obtain
4j. In the following, we will denote the similarity space
obtained with this approach @ppc.

4.4.2. The MP approach

The MP approach is based on the following ideas: instead

5. Results and discussion

In this section, experimental results are reported, in order
to validate the proposed approach. Firstly, we investigate
the discriminative power of the spacéy, with # =7, i.e.
using as reference set the whole training®efl he standard
ML classification scheme and the proposed approach are
compared, with both synthetic and real data. The use of
PCA and FDA is investigated in this context, also with the
aim of visualizing the data. Secondly, experimental results
concerning the two different choices af (OPC and MP)
are reported. All the experiments are repeated 10 times and
the results are averaged, so as to decrease the dependence
of the results from the training of the HMMs.

5.1. Basic approachZ = 7~

of using all sequences of the training set, one can choose 5.1.1. Synthetic data

those that are more “useful” in classification, i.e. more dis-

We consider a 3-class synthetic problem, defined by the

criminant in some sense. This choice is made incrementally, parameters given ikig. 1 The training set is composed of

starting with an empty set, and adding at each step the ob-

ject that yields the largest “performance improvement”. The
process is stopped by some convergence criterion.
The MP algorithm was introduced in the signal process-

30 sequences (of length 400) from each of the three classes;
the dimensionality of the similarity spacéy is thusN =90.
Notice that this classification task is not easy, as the three
HMMs are very similar to each other, only differing slightly

ing community as an algorithm to decompose a signal into a in the variances of the emission densities.
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] Table 1
1/3|1/3(1/3 1/3 pm=1 |o?2=06 Classification accuracies using the basic approach on: (a) synthetic
(— data and (b) synthetic data projected using PCA and FDA
A=1/31/3)1/3) T =1/3] B=|u=3 |03 =06 Classifier Accuracy (%)
1/3[1/3|1/3 1/3 s =>5 |03 =0.6 @
- MLops 95.7
(a) 1-NN on -_(/,/j' 98.9
3-NN on %7 98.9
Dimensionality (%)
1/3|1/3|1/3 1/3 m=1 l62=05 2 3 4 5
] (b)
A=1301/301/3] m=|1/3| B=|u=3 |o2=05 1-NN on PCA space 98.9 98.9 98.9 98.9
— MC on PCA space 98.9 97.8 97.8 96.7
—= 2 =05 1-NN on FDA space 100 — — —
1/3]1/3|1/3 1/3 us =5 o3 =05 MC on FDA space 100 B B —
(b)
1/3|1/3|1/3 1/3 p=1 lo? =04 effective in separating the classes, and even PCA leads to a
i satisfactory result, even if it ignores the class labels. In both
A =1/301/311/3| *=|1/3] B=|u,=3 |02 =04 cases, the three classes in the training set would be easily
i separable, although generalization would clearly be better
1/3|1/3|1/3 1/3 ps =5 |02 =04 with the FDA projection.
— Classification accuracies were also obtained in these re-
© duced spaces, in order to investigate discrimination ability

of the similarity space. In this case, we use 1-NN and the
Mahalanobis classifier (MC), which classifies an unknown
observation as belonging to the class whose mean is nearest,
using a Mahalanobis distan¢3]. Accuracies (again com-
puted with the LOO procedure) are presentetlable Xb).
For FDA, the maximum dimensionality allowed ¢ — 1,

We compare the standard ML classification criterion with WhereC is the number of classg47]. In this case, there-
a simple classifier in the similarity spac€y, thek-nearest-  fore, the maximum dimensionality is two. Comparifeple
neighbor k-NN), for k =1 (1-NN) andk = 3 (3-NN), using 1(b) with Table Xa) we can conclude that the performances
Euclidean distance. This classical technique assigns a givenon the FDA reduced space is increased, reaching a per-
Objec’[o to the class ha\/ing the |arges’[ number of represen- fect classification rate (Wthh is not Surprising in view of
tatives in the set of th& objects in the training set that are ~ Fig. 2b)).
nearest tdD. This classifier is widely used, as it is simple,
fast and reasonably accurate. The major drawback of NN 5.1.2. Real data
classifiers is their sensitivity to noisy patterns on the training  The proposed approach has been tested on two real appli-

Fig. 1. Generative HMMs for synthetic data testind: is the
transition matrixst is the initial state probability anB contains the
parameters of the emission density (Gaussians with the indicated
means and variances).

set, and the need to store all the training samples. cations: a 2D shape recognition task, detailed in 2],
Accuracies were computed using the LOO procedure. and a face recognition problem, using HMMs as proposed

This means that the dissimilarity spa@gy is actually built in Ref. [27].

by using the representatives s@t consisting of 89 se- In the 2D shape experiment, each object is represented

guences, while one sequence is left out and used for test- by the sequence of the curvature coefficients, computed as
ing. The procedure is repeated until all sequences have beenfollows: first, the contours are extracted by using @snny
tested (i.e. 90 times), and results are averaged. Results ofedge detector; the boundary is then approximated by seg-
different classifiers are shownTable 1(a). We can observe  ments of approximately fixed lengify . The resulting se-
that there is an improvement when using the simple classi- quences show different lengths, ranging from 267 for the
fier in the similarity space. Recall that, as mentioned above, smallest object to 559 for the largest. Finally, the curvature
the three classes are very similar and the classification task value at pointx is computed as the angle between the two
is very difficult. consecutive segments intersectingcaFor a non-occluded

In order to get a better insight into the structure of our object, the initial point is the rightmost point lying on the
similarity space, we have applied PCA and FDA to the space horizontal line passing through the object centroid, follow-
Y4 . Plots of the 2D projections of the training set thus ing the boundary in a counterclockwise manner. If the ob-
obtained are shown iRig. 2 It is clear that FDA is really ject is occluded, the endpoint allowing the contour to be
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PCA Reduction Fisher Reduction
150 -104.95¢
+
» o -104.96F
100} taw ¥ Py N *
% o x
-104.97} f
50} . +
~ * N
< " ra * 5 -104.98f
O 0 + o+ . <
a + ; A T iT -104.99f +
+
50k * » 4?
+ * -105f +
+
-100+ + T *
R -105.01F
+ + * b
-150 -105.02 L L L L L L )
-1200 -1000 -800 -600 -400 -200 O 200 400 600 800 26.78 26.8 26.82 26.84 26.86 26.88 26.9 26.92
(@) PCA 1 (b) Fisher 1

Fig. 2. 2D projections of the synthetic training set using: (a) PCA and (b) FDA.

VAV AV AV AV AV N GV SV A A A S
Classification accuracies using the basic approach on real data: (a)
v (") ’ Ve Yy L") Y HYYV 2D shape recognition and (b) face recognition
r7T T Y TYTTYT?TEYYYYY Classifier Accuracy (%)
G bdbdbdéédbdisae @
ML()PS 80.9
— = & 0 B o & ¢ 80— o - - 1-NN on & 08.8
Sm S Fu 3~ 3 Jm 3. Fu = - — - 3NN on &7 932
— — 3 - T - - T — ~ — (b)
MLops 50.6
Fig. 3. Objects set used for testing. 1-NN on 7 72.1
3-NN on S &~ 60.5

followed in an counterclockwise way is considered as the ) ) o )

initial point. A thorough analysis of the HMMs' capabilities ~ IMages is obtained by sliding over the face image a square
in classifying 2D shapes is presented in R&#], where fixed size window, in a raster scan fashion, with a predefined
the standard ML approach was tested in cases of transla- °Verap. The window size and the overlap ratio were fixed
tion, rotation, noise, occlusions, shearing transformations {0 8% and 50%, respectively. Testing was performed using
and combination of the above perturbations, showing really the Bern face databasewhich consists of 30 subjects with
promising results. 10 face images each. For each subject, five faces were used

In this paper we compare our similarity-based approach for training and the others for testing. We have chosen to use
with a simplified version of the system described in Ref. this database, instead of the ORL used in fZf], because
[24]: unlike in that paper, we do not use here any model with that database HMMs are able to reach an almost perfect
selection technique, the number of states was fixed to three classification, so without any possibility of improvement.
for all experiments. Testing was performed on part of the 'The cla_ss!cal_ ML classification crlte'rlon was compared
object set used in Ref28], composed by seven classes, With the similarity-based approach, using&N rule (for
each containing 12 different shapes. As before, accuraciesk = 1 and 3) in the similarity space’s. Accuracies are
are computed using the LOO scheme. The database used ifresented iffable 2(a) and (b), for 2D shape recognition
shown inFig. 3. and for face classification tasks, respectively.

For the face recognition task, HMMs were used as pro- In the 2D shape case, the improvement in classification
posed in Ref[27], considering DCT coefficients as features. rates is very large, of about 18% for the 1-NN classifier and
Given a sequence of sub-images of the face image, the DCT of about 13% for the 3-NN. This shows that this similarity-
coefficients of each sub-image are computed, and vector- based feature space is very well suited for this real problem.
ized using a@ig-zagscan. The number of coefficients chosen
determines the dimensionality of the observation, and 10 3Downloadable  from ftp://iamftp.unibe.ch/pub/images/
coefficients are used in our experiment. The sequence of sub-Facelmages
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Fig. 4. Data set for 2D shape recognition experiment, reduced and plotted using: (a) PCA and (b) FDA.
Table 3 Table 4

LOO accuracies for the 2D shape recognition task after PCA and Classification accuracies on data set formed by occluded shapes,
FDA projections at different occlusion levels

Dimensionality (%) Occlusion level

2 3 4 5 10% 30% 50%
1-NN on PCA space 80.1 97.7 98.2 983 MLops 76.9% 71.5% 60.9%
MC on PCA space 81.2 92.9 91.7 93.3 NN on %7 91.5% 76.4% 64.2%
1-NN on FDA space 925 95.0 96.3 97.1 3-NN on %7 91.9% 73.0% 64.1%
MC on FDA space 86.5 92.6 90.1 91.3

Actually, using the standard ML approach, most of the errors dimensionality, this information is correctly recovered, and
occur in the “key” class: looking dig. 3, it is worth noting the performance returns to a very good level.

that the instances of this class represent the same object only To investigate the robustness of the approach, we have
semantically, but the related shapes are indeed very different. also tested the method behavior in the presence of shape
This aspect, which is negative in the ML scheme, is the key occlusions. Occlusion is one of the most severe limitations
feature of our approach: since there are many differences to the application of typical object recognition techniques.
among items in the same class, the use of all similarities Recently[24,29] it has been shown that HMMs are very ef-
between items may add a lot of discriminative power to the fective in dealing with object occlusions. Here we show that
method. The additional discriminative power increases more the approach proposed in RE4] can be further improved
when the differences among items of same class are larger.by using the similarity space representation.

Also in the face recognition case there is a noticeable
improvement in the accuracies of classification (about 12%
and 10% for the 1-NN and 3-NN, respectively), confirming
the wide applicability of this method to real cases.

FDA and PCA were also studied in the case of the 2D

Object occlusion is simulated by considering a fragment
of the object boundary, starting at a randomly chosen loca-
tion. Each object was occluded 5 times, resulting in 420 se-
quences. Occlusion percentages considered were 10%, 30%
and 50%. Notice that in the latter case, one half of the whole

shape recognition experiment. Plots of projected training set boundary is missing. An LOO scheme was again adopted,

are shown irFig. 4. As in the previous subsection, classifi-

which means that these results are obtained in a really com-

cation accuracies were calculated for different dimensional- plex task, as the left out sequence (the occluded one) was
ities, using the LOO procedure, and the results are reported not used for building the similarity space. This choice makes
in Table 3. In this case, the reduction of dimensionality to 2 all experiments uniform throughout the paper, even if it can
decreases the classification performance, which, in any case,be seen as somewhat strange, since typically to recognize an
is about equal or still better than the results obtained using occluded object, also the original shape is available (this ob-
the standard ML criterion. The similarity feature space is viously results in a great improvement in the performances,
complex in this case due to the presence of very dissimi- see Refs[24,29).

lar elements in the same class. For low dimensionality, part ~ Results for the different occlusion levels considered, us-
of this information is lost, but, by slightly increasing the ing 1-NN and 3-NN classifiers, are shownTable 4. We
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Table 5 _ ing the 2D shape recognition experiment, by comparing
Accuracies of the OPC and MP approaches in: (a) 2D shape exper- the performance of the Mypc method, with the standard
iment, with entire shapes; (b) 2D shape experiment, with occluded ML ps criterion, we can notice that the use of all se-

shapes, for different occlusion levels (OL) and (c) face recognition quences to learn each HMM enhances the accuracy of the

experiment standard ML classification. HMM is really suitable to be
Classifier Accuracy Dim. of/ trained using many sequences, as it is able to deal with their
(%) possible different lengths. Nevertheless, this could reduce
@) the expressivity of the resulting similarity space, especially
MLopc 893 — in some real cases, where items of the same class present
ML ops 80.9 — remarkable differences between each other. Fifable
1-NNon%7 98.8 84 5(b) we can also notice that when increasing too much the
1-NN on Yopc 97.4 7 occlusion level, the performances on reduced similarity
1-NNon Zyp 92.9 4.1 spaces (MP and OPC approaches) are lower than standard
ML classification level. This is probably due to the fact that
Classifier OL=10% OL=30% OL= 50% Dim. of ¥ when the percentage of occlusion increases, the HMMs are
(b) less accurately estimated. The obtained similarity space is
MLopc 83.0% 78.0%  69.2%  — thus noisy, and the 1-NN rule (that is the simplest classifier)
MLops 76.9% 71.5%  60.9%  — is not able to perform well in a such noisy space. To verify
1-NNon 77 91.5% 76.4%  64.2% 84 this explanation, we recompute the LOO classification ac-
im on ‘;OPC Sg;gﬁ’ gﬁf’ g;?gﬁ" 126 curacies on the experiment with the occluded shapes, with
onFmp ©9.9% 7 7 : occlusion level 50%. We used a carefully trained multilayer
Classifier Accuracy (%) Dim. off feed forward neural network on the MP reduced similarity

space: 1-NN accuracies were about 56% in that reduced
©) space. Accuracies obtained with neural network is around

mtgig gégg _ 88%, confirming the Iar.ge. pgtentialities of this approach:
1-NN on %y 721 150 the mapping onto the sm_wl_lan_ty space allc_)ws us to reduc_e
1-NN on yopc 69.4 30 complex sequence classification into easier standard point
1-NN on p 68.9 10.1 classification, for which one could use arbitrarily sophisti-

cated techniques.

In conclusion, the two approaches for the choice of rep-
resentatives se® are both effective. OPC seems to be more
observe a clear improvement in the classification accuracies interesting, as it results directly from the standard HMM

of the classifiers in the similarity space. training, without any need to postprocess the space. Never-
theless, the resulting dimensionality is equal to the number
5.2. Choice of representatives s#t of classes, reducing the usefulness of the approach in prob-

lems with many classes (e.g., face recognition). Moreover,

In this section, the two approaches for the choicezof the training of one HMM for each class can drastically re-
described in Section 4.4 are tested. These approaches weraluce the discrimination ability of the similarity space when
applied to the 2D shape recognition (using both the entire items of the same class are very different. On the other hand,
and occluded shapes) and to the face classification exper-the MP approach seems better at identifying the representa-
iments. Classification accuracies were calculated as in the tives that areeally useful for the similarity-based classifica-
previous section. We used 1-NN classifiers in the similarity tion purpose. The higher computational burden introduced
spacesYopc and Svp. with this approach is its major drawback.

A comparison between the proposed approaches and ML
classification is reported ifables 5(a)—(c), for the entire 5.3. Computational aspects
shapes, the occluded shapes and the face experiments, re-
spectively. For the sake of clarity, results for 1-NN &t~ The similarity-based technique introduced in this paper is
(entire similarity space) are also shown, in order to quan- more computational demanding than the ML scheme. More
tify the loss in classification accuracy determined by the re- specifically, with our approach, in order to build the simi-
duction. Moreover, the dimension of the resulting similarity larity space of the training sequences, in the learning phase
space? is included in the tables, in order to emphasize the all the training sequences should be evaluated, whereas this
amount of the reduction obtained. is not needed by the standard ML approach. The training

In summary, we can conclude that both approaches are phase, nevertheless, is performed only once, typically off-
able to preserve most of the performance of the basic ap- line, so the overall impact is minor. Regarding the testing
proach (classification on the whole similarity spaZe-), case, both schemes compute the likelihoods of the testing
while achieving a drastic dimensionality reduction. Regard- sequence for all the trained HMMs. Subsequently, the ML
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Table 6

Computational requirements (in seconds on a 800 MHz processor
with 256 MB of RAM) of the ML scheme and our approach (using
1-NN) in the 2D shape recognition experiment

Strategy Training time (s) Testing time (s)
MLops 62.01 2.23
ML opc 62.55 0.20
1-NN on %7 308.16 2.67
1-NN on %p 318.78 0.11
1-NN on %opc 83.57 0.23

scheme looks for the maximum, while our approach uses
the whole likelihood vector as feature pattern, using a stan-
dard fixed feature vector strategy for the classification. The
overhead introduced by our approach strictly depends on the
classification strategy chosen: the more complex this strat-
egy, the larger the computational burden which is added. If
needed (e.g., when using a neural network), an additional
training should be performed on the similarity space of the

M. Bicego et al. / Pattern Recognition 37 (2004) 2281—-2291

(HMM) with the similarity-based paradigm. This approach
creates a representation space for sequences in which stan-
dard feature-based classification techniques can be used.
We showed that a simple classifier in a such space out-
performs standard HMM-based classification schemes.
Three approaches to deal with the high dimensionality of
the resulting space were also considered and investigated,
showing that the similarity-based representation is still ef-
fective when its dimensionality is reduced in order to make
it more manageable.

Future directions consist in applying and investigating
more ad hoc similarity space classifiers, as those proposed in
Refs.[13,14] and in studying novel techniques for reducing
space dimensionality.
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