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Abstract—In this paper, Hidden Markov Models (HMMs) are investigated for the

purpose of classifying planar shapes represented by their curvature coefficients. In

the training phase, special attention is devoted to the initialization and model

selection issues, which make the learning phase particularly effective. The results

of tests on different data sets show that the proposed system is able to accurately

classify objects that were translated, rotated, occluded, or deformed by shearing,

also in the presence of noise.

Index Terms—Hidden Markov Models, 2D shape classification, model selection,

probabilistic learning.
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1 INTRODUCTION

OBJECT recognition, shape analysis, and classification constitute
important research areas in computer vision. Three-dimensional
(3D) object recognition has been faced by a large number of
approaches [1], many of which are based on the analysis of two-
dimensional (2D) aspects of objects. In this context, a basic issue is
surely the kind of object description to be used. In fact, shape
analysis methods can be classified considering this issue in terms of
boundary (or external) or global (or internal) algorithms. Typical
examples of the former class are constituted by methods coding the
object boundary like, for example, Fourier descriptors and chain
code, whereas examples of the latter class are algorithms based on
the medial axis extraction, or moment-based approaches [2]. In
particular, object contours proved to be very effective in many
applications, and different types of approaches have been proposed
in the past years, each with different characteristics like robustness
to noise and occlusions, invariance to translation, rotation and scale,
computational requirements, and accuracy [2], [3].

In this context, this paper aims at investigating the capabilities
of Hidden Markov Models (HMMs) [4] for 2D shape classification.
Shapes are represented by contours and described by their
curvature coefficients along the boundary [1]. Hidden Markov
Models are a widespread approach to probabilistic sequence
modeling and have been extensively employed in several applica-
tions in the last decade [4], [5], [6], [7], [8]. The use of HMMs for
shape analysis has not been widely addressed. To the best of our
knowledge, only a few papers have been found to exhibit some
similarities to our approach [9], [10], [11], [12]. He and Kundu [9]
were the first to employ HMMs for 2D shape classification. In their
approach, contours were represented by autoregressive coeffi-
cients computed on segments extracted from the shape boundary.
Results were quite interesting and presented as a function of the
number of HMM states ranging from 2 to 6, using both stationary
and nonstationary models. In [10], the 2D shape classification task
was addressed by use of circular HMMs: This particular HMM
topology allows one to achieve good classification accuracy despite
scaling and deformations, and also presents useful characteristics
for model training and testing. However, in both works, there is

not an explicit and quantitative analysis of the noise or affine object

transformations performances. Moreover, even if sensitivity to

small occlusions is analyzed, shapes are always constrained to be

closed contours. Another research study [11] addressed shape

recognition by comparing HMMs with a syntactic modeling

technique based on stochastic context-free grammars, but no

original solutions were proposed for HMM design. Recently, an

interesting approach was described in [12], in which Fourier

spectral features were used to classify 2D shapes. A particular

HMM topology was introduced in order to directly deal with these

features but, also in this case, shapes were constrained to be closed

and occluded and noisy views were not explicitly analyzed.
In this paper, we investigate the capabilities of HMMs in

recognizing planar objects, showing their performances in the

cases of translation, rotation, noise, occlusions, shearing transfor-

mations, and a combination of the above perturbations. It is worth

noting that our approach does not rely on any specific HMM

topology or a particular training algorithm; moreover, object

shapes are not constrained to be closed, or represented by using a

given number of symbols: our algorithm classifies any (closed or

open) symbol string. The focus is on assessing the HMM

potentialities in the case of shape analysis, not on presenting an

actual object recognition system; for this reason, the segmentation

issue is not considered in the paper. Special attention was instead

devoted to the training of the HMMs, in particular, to the

initialization of the learning session by using a Gaussian Mixture

Model clustering approach. The initialization issue is crucial to the

learning because of the local behavior of the standard procedure

used to estimate the HMM parameters. Another practical but

fundamental issue to be resolved when using HMMs is the

determination of their structure, namely, the topology and the

number of states. The choice of a good model structure is basic to

the effectiveness of the learning process, but unfortunately, this

issue is usually disregarded in the HMM literature. In our

approach, a fast and reasonable model selection technique is

applied in the initialization phase, following a Bayesian Inference

Criterion (BIC) [13] approach.
The proposed approach is tested using three different databases

in order to assess the robustness of the method to different object

transformations such as translation, rotation, occlusion, noise,

shearing, and combined perturbations. The resulting high perfor-

mances make the presented method an interesting alternative to

typical shape classification algorithms [2], [3].
The paper is organized as follows: A brief description of the

HMM is provided in Section 2. The global description of the

strategy used is presented in Section 3. Section 4 reports on

experimental procedures and results. Finally, conclusions are

drawn and future developments are envisaged in Section 5.

2 HIDDEN MARKOV MODEL

A discrete-time HMM is a probabilistic model that describes a

random sequence O ¼ O1; O2; . . . ; OT as the indirect observation of

an underlying (hidden) random sequence Q ¼ Q1; Q2; . . . ; QT ,

where this hidden process is Markovian, even though the observed

process may not be so. For lack of space, HMMs are not

exhaustively treated in this paper; we refer the reader to [4] for

more details.
In summary, a discrete-time HMM � is defined by the following

elements [4]: a set S ¼ fS1; S2; � � � ; Skg of (hidden) states; a

transition matrix A ¼ faijg, where aij � 0 represents the prob-

ability of going from state Si to state Sj; an emission matrix

B ¼ fbðojSjÞg, indicating the probability of emission of symbol o

from state Sj; an initial state probability distribution � ¼ f�ig,
representing the probability of the first state �i ¼ P ½Q1 ¼ Si�.
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Given a sequence O, there exists a well-established procedure

able to determine the HMM parameters maximizing the prob-

ability P ðOj�Þ. This technique, called the Baum-Welch reestimation

procedure [14], is an instance of the well-known Expectation-

Maximization (EM) algorithm [15] for Maximum Likelihood (ML)

estimation. For a sequence O and an HMM �, there is another

standard recursive procedure able to compute the probability

P ðOj�Þ, and is called the forward-backward procedure [16].
In the classification stage, given an unknown sequence O, the

probability P ðOj�iÞ is computed for each model �i, and O is

classified as belonging to the class whose model shows the highest

likelihood P ðOj�iÞ.

3 THE STRATEGY

In this section, the proposed strategy is explained. After describing

the object representation step, we detail the training and the

classification procedures, focusing on the initialization and model

selection issues.

3.1 Object Representation

Starting from a generic boundary point, each object is represented

by the sequence of the curvature coefficients [1] computed at the

contour points. This technique exhibits several attractive proper-

ties: First, the representation is invariant to object translation;

second, object rotation is equivalent to a phase shift in the

curvature signal. The scalar curvature value computed at each

boundary point is rotationally invariant, but the object rotation

implies a change in the initial point, so the curvature signal

generally turns out to be shifted. The third and most important

point lies in the fact that the curvature values can be computed for

open contours, thus allowing one to deal with object occlusions.

However, the main drawback of this method is sensitivity to

contour noise, like any derivative operation (the derivation

enhances the noise contribution). One possible solution is to apply

a wide (i.e., with a large variance) Gaussian filter to the (X, Y)

contour coordinates before curvature computation, reducing the

noise impact on the signal estimation. Moreover, the use of Hidden

Markov Models makes it possible to recover quite well from

certain noisy situations, as can be seen in the following sections.
In our approach, the curvature is computed as follows: First, the

contours are extracted by using the Canny edge detector (which

implies a preliminary Gaussian filtering); the boundary is then

approximated by segments of approximately fixed length dL.

Finally, the curvature value at point x is computed as the angle

between the two consecutive segments intersecting at x. For a not

occluded object, the initial point is the rightmost point lying on the

horizontal line passing through the object centroid, following the

boundary in a counterclockwise manner. If the object is occluded,

the endpoint allowing the contour to be followed in an counter-

clockwise way is considered as the initial point.

3.2 Training

The obtained curvature representation is then used to train a

continuous HMM, where the emission probability of each state is

represented by a one-dimensional Gaussian function. Training is

performed using the standard Baum-Welch reestimation method,

which is stopped at likelihood convergence. As described in

greater detail in the following, each HMM is carefully initialized

and the number of states is roughly estimated by using a BIC

(Bayesian Inference Criterion) approach linked to the initialization

step. At the end of the training phase, we have one HMM �i for

each object Oi.

3.2.1 Initialization of a Hidden Markov Model

The standard algorithm used to estimate the HMM parameters

(i.e., Baum Welch reestimation), starting from some initial

estimate, converges to the nearest local maximum of the likelihood

function. Therefore, the initialization process heavily affects the

resulting model estimate, as the likelihood function is highly

multimodal.
In this paper, a Gaussian Mixture Model (GMM) [17] clustering

is used to initialize the emission matrix of the HMM before

training. In greater detail, the initialization phase first considers the

sequence of curvature coefficients as a set of scalar values (no

matter in which order the coefficients appear); these values are

then grouped into k clusters by following a GMM clustering

approach, i.e., fitting the data by using k Gaussian distributions.

The parameter k is the number of states of the HMM, and the

Gaussian parameters are estimated by an EM-based [15], [18]

method. Finally, the mean and variance of each cluster are used to

initialize the Gaussian of each state, with a direct correspondence

between clusters and states.

3.2.2 Model Selection

A practical but fundamental issue to be resolved when using an

HMM is the determination of its structure, namely, the topology

and the number of states. Although some special-purpose

approaches have been proposed (e.g., [19], [20], [21], [22]), the

typical solution is the use of some heuristic or general-purpose

model selection methods, not adequately tuned for HMMs. The

latter class of methods performs several training phases, choosing

the HMM that maximizes a predefined criterion. In order to reduce

the computational load, in our approach, the model selection issue

is addressed in the initialization phase. In particular, the choice of

the model is determined by a model selection analysis of the GMM

clustering, i.e., the mixture that best fits the data is chosen. The

number of states of the HMM is therefore set as the number of

Gaussians of the best mixture: as a result, only one HMM training

session is needed. Let us call this approach BOI (BIC On

Initialization). It is worth noting that this model selection scheme

determines the model that best fits the unrolled sequence: in this

respect, this is a coarse model selection scheme as only the

curvature values are considered and not the order in which they

appear. Nevertheless, this is quite a reasonable assumption, which

considers a shape as being made up of approximating segments

with nearly similar curvatures, each group of segments being

assigned to a single state. The dynamics of the sequence, i.e., the

way in which these segments are ordered, is thus encoded into the

transition matrix. To choose the GMM model that best fits the data,

the Bayesian Inference Criterion (BIC) [13] is adopted, which is

defined as:

BICðMkÞ ¼ logP ðXjM̂MkÞ �
1

2
jM̂Mkj logðNÞ; ð1Þ

where X is the data set (of cardinality N) to be modeled,

fMkg ðkmin � k � kmaxÞ are the candidate models, M̂Mk is the

Maximum Likelihood estimate of the model Mk, and jM̂Mkj is the

number of free parameters of the model Mk. The strategy selects

the model Mk for which the BIC criterion (1) is maximized.
To sum up, in our approach, the structure of the HMM is

determined as follows: For kmin � k � kmax, the values of the

unrolled sequences are clustered by different GMM clusterings Gk,

each with k Gaussians, evaluating the BIC criterion BICðGkÞ for

each modeling. Then, the Gk̂k maximizing the criterion is chosen

and used to determine the number of HMM states (k̂k) and to

initialize it. The training process is then carried out by using the

standard Baum-Welch procedure.
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3.3 Classification

Given an unknown sequence O, the classification process is a
standard Maximum Likelihood rule that computes, for each model

�i, the probability P ðOj�iÞ. Then, the object O is assigned to the

class C‘ whose model shows the highest likelihood, i.e.,
‘ ¼ argmaxi P ðOj�iÞ.

4 RESULTS AND DISCUSSION

The proposed method was tested by using three sets of shapes. The
first data set, for which extensive testing was carried out, was

employed by He and Kundu in [9], and is shown in Fig. 1a.
Subsequently, the system was validated by using two other test

sets: part of the object set used by Sebastian et al. in [23] (six

classes, each containing 12 object instances—some examples are
given in Fig. 1b) and the set composed of the 21 letters of the Italian

alphabet (Helvetica font). One HMM for each object was trained,
following the strategy proposed in Section 3. It is worth noting that

each HMM is trained using the only object model present in the

data set (Fig. 1), so that the following results were obtained by
training a single shape. Invariance to rotation, occlusion, noise,

shearing, and a combination of these transformations were tested,
whereas invariance to translation was automatically managed by

the curvature representation. Invariance to scale could be

addressed by using the normalized curvature signal, which results
in an oversampled or subsampled signal. HMMs proved to be

robust also to this kind of degradation, as shown in [24]. Some
examples of perturbations are presented in Fig. 2; the system was

able to perfectly recognize the resulting deformed shapes.

4.1 Rotation

First of all, note that the rotation of an object causes only a shift in

the curvature signal as, even if the curvature is rotationally
invariant at each boundary point, the sequence of coefficients

depends on the starting point which, in general, changes when the
object is rotated. To test the invariance of our method, each object

was rotated 10 times by an angle randomly chosen from 0 to 2�.

The resulting classification accuracy was 100 percent, i.e., the

HMM was able to exactly recognize the rotated objects.

4.2 Occlusion

An object is occluded by considering only a fragment of the object

boundary, by removing an object part starting from a point

randomly chosen (see Fig. 2c). It should be noted that the random

choice of the initial point is important to assess the robustness of

the method to this type of deformation. Given an open part of the

contour, i.e., a fragment of the original one, the curvature is

calculated and results in a string that is actually a substring of the

original curvature signal. The trial was performed occluding each

object 100 times, per level of occlusion, so a large number of

possible object occlusions was considered and statistically sig-

nificant results were obtained. The occluded part differed each

time, starting from a randomly chosen initial point, and the degree

of occlusion varied from 5 percent to 50 percent (only one half of

the whole object was visible). The obtained accuracies were

considerably high: even when 35 percent of each object was

occluded, our technique was able to correctly classify all the

fragments, and with only an half of the object visible the

performances decreased to 95 percent (see Table 1a). These results

are particularly interesting, considering that occlusion is one of the

most severe problems in object recognition.

4.3 Noise

We tried to assess the robustness of our approach in noisy

situations. To this end, two synthetic noise schemes are proposed.

First, a Gaussian noise with zero mean and variance �2 ranging

from 1 to 5, is added to the ðX;Y Þ coordinates of an object. Shapes

are not much affected by this kind of noise, and the resulting

accuracy is 100 percent, especially owing to the Gaussian filter

applied before calculating the curvature, as it is able to remove

completely the effects of this kind of noise. The second type of

noise scheme is adopted to degrade the object shapes more heavily
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Fig. 1. Shapes used for the testing procedure: (a) the first set and (b) some shapes of the second data set.

Fig. 2. Some examples of perturbations of the boundary of a shape; the system’s recognition of these resulting shapes was perfect: (a) original, (b) rotated (90�),

(c) occluded (35 percent), (d) noisy (�2d ¼ 0:35), and (e) sheared shape (� ¼ 50�; � ¼ 40�).



(see Fig. 2d). It is obtained by adding Gaussian noise to the
differential signal, which results from computing, at each boundary

point, the difference between the coordinates of the point and
those of the following one. Subsequently, a zero-mean Gaussian

noise is added to this difference-code; finally, the coordinates’
values are recomputed starting from the prestored initial point.

The test set was obtained by adding noise to each object 10 times,

and the resulting accuracy values are presented in Table 1b, using
the noise level (variance �2d) as the varying parameter. As one can

notice, the results are quite satisfactory, showing that HMMs can
reduce the intrinsic curvature sensitivity to noise.

4.4 Combined Transformations

After assessing the robustness of the proposed method to single
degradations, some experiments were carried out to evaluate the

algorithm performances in the cases of combined transformations,
i.e., 1) rotation and occlusion and 2) rotation, occlusion, and added

noise. Occluded and rotated objects were obtained by rotating the
objects by a random angle (between 0 and 2�) and considering

fragments of their contours. From the results presented in Table 2a,
it can be noticed that the accuracies are very high also in this case.

A more difficult situation occurred when objects were first rotated

by a random angle, then occluded, and finally degraded by the
second type of noise described in Section 4.3. Results are given in

Table 2b. Also, in this case, the accuracy values are satisfactory, but
rapidly decreasing with increasing noise level.

4.5 Shearing

Finally, the robustness of our approach to shearing transforma-

tions was assessed. This experiment was characterized by a higher
degree of complexity than those of the previous tests in that it

involved actual strong deformations of the objects considered (see
Fig. 2e). The shearing transformation was obtained by considering
a 2D shape as a plane in a 3D space, and by varying its tilt and slant

angles. The tilt � of a planar surface is defined as the angle between
the surface normal projected on the image plane and the reference
x axis, whereas the slant � is the angle between the surface normal
and the line of sight [25]. The resulting transformed surface was
then orthonormally projected on the original (X, Y) plane to get the
usual fronto-parallel view (see Fig. 2e). The experiment was
performed by adding synthetic noise to the sheared shapes, using
the second type of noise described in Section 4.3, which degrades
the shapes more heavily. The applied noise level was �2

d ¼ 0:35, a
medium noise level, and each object was randomly affected by
noise 10 times. The averaged results are given in Table 3. From
these results, we can notice that sensitivity of our approach to tilt
and slant changes is very different. The variation in the slant angle
results in a severe distortion of the object appearance, whereas the
variation in the tilt angle could be roughly considered as a kind of
rotation of the slant-derived transformation. Our approach is very
robust to shape rotations, so the performance level is mostly driven
by slant variations. The results presented in Table 3 demonstrate
that our approach is truly robust against shearing: only for large
slant values, corresponding to severe distortions of the testing
objects, do the classification accuracies decrease significantly,
remaining more than two to three times above the random
classification level. This is more remarkable considering that the
sheared shapes are also affected by noise.

4.6 Results on Other Data Sets

To increase the statistical significance of the results, the method
was also tested on two other sets of shapes. The first was used in

284 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 2, FEBRUARY 2004

TABLE 1
Classification Accuracies Obtained in: (a) Occlusion Experiments at Different Occlusion Levels and (b) Noisy Experiments at Different Noise Levels

TABLE 2
Classification Accuracies for Combined Transformations: (a) Occluded and Rotated Objects at Different Occlusion Levels and

(b) Occluded, Rotated, and Noisy Objects at Different Occlusion and Noise Levels



[23], and was characterized by 12 deformed object instances for
each class (six in all). In this case, instead of training one HMM for
each shape class, one HMM was trained for each instance,
resulting in 72 HMMs. Accuracy was computed by using the
Leave One Out error scheme [26] and assigning an unclassified
object to the class of the object whose model showed the maximum
likelihood. The results were equal to 100 percent, thus confirming
that the proposed approach was robust and accurate also for this
set. Moreover, we evaluated the performances in the presence of
occlusions using the same procedure as described in Section 4.2;
the results are presented in Table 4. Also, these results are very
satisfactory, even though not so good as on the He and Kundu
database. In particular, as expected, the classification accuracies
increased as the occlusion level decreased. By analyzing the errors
on each specific class, we noted that the objects of the second class
(glasses) were near perfectly classified at all occlusion levels. The
class for which the results were worst was the sixth one (keys).
Nevertheless, it is also worth noting that the instances of this class
represented the same object only semantically, but the related
shapes were indeed very different. Yet, the method’s performances
did not degrade too much.

A final test was carried out using the 21 letters of the Italian
alphabet, Helvetica font (some letters fell into the same class: for
example, “p” and “d,” since the former is only a rotation of the
latter). Also, in this case, the system reached a 100 percent

classification accuracy, thus confirming the appropriateness of the
proposed approach.

4.7 Significance of the Classification Scheme

The typical HMM classification scheme is a Maximum Likelihood
approach, where one unknown object O is assigned to the class C‘

whose model shows the highest likelihood. This criterion is not
able per se to provide a reliability measure of the classification
decision: the “winning” class is represented by the maximum
value, neglecting how “far” the second classified is. Obviously, the
more distant the second one, the more reliable the decision. In this
paper, a reliability measure has been defined, that is based on the
log-likelihood distance between the first two choices of the
classifier. This distance has been computed and averaged over
the experiments regarding occlusion and noise degradation, and
the expected behavior has been confirmed. This distance decreases
the difficulty of the task increases (for example, when one increases
the occlusion level), yet it remains at a satisfactory level. Two
considerations can be derived from this analysis: the first is that
our approach is robust, but, as expected, its robustness decreases
with increasing task difficulty; the second is that it seems relatively
simple to obtain a rejection rule by merely thresholding the
likelihood difference between the first two choices of the
algorithm: if a classification is not sufficiently reliable, it can be
rejected.
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4.8 Discussion

In general, our approach proved to be very powerful in classifying

shapes with a large class of deformations, especially occlusions,

which constitute one of the hardest problems in object recognition.

Nevertheless, the proposed method presents some weaknesses and

limitations. First, like every contour-based method, it cannot

manage all possible shapes, e.g., it cannot be applied for objects

with holes. Second, since it deals with curvatures, it is sensitive to

noise, i.e., its performances may be affected by rugged contours.

This problem may indeed be attenuated by a proper use of the

Gaussian filter applied before curvature computation. A further

limitation of our approach is that it is not suited to distinguish very

similar objects with only slight differences between them. Actually,

the main characteristic and power of the Hidden Markov Modeling

methodology lies in its ability to ”generalize” well, i.e., to capture

the essential features of a shape so as to recognize an object even if

its aspect is not precisely the same of the model. Another problem

may rise in case of occlusions. Although our experiments have

demonstrated a certain resilience of the method, even in case of

large occlusions, lower performances may occur when a part of the

occluding object is part of the object contour to be classified. In this

case, the performances of our approach obviously depend on the

form and the extension of the part of the occluding object enclosed

in the considered contour. In principle, our approach could also

recognize the object, but with a lower likelihood. However, we

have not addressed such a case since this aspect is to be considered

as part of the segmentation process rather than a classification

issue, which is the core of the present paper.

5 CONCLUSIONS

In this paper, the HMM behavior in the classification of planar

shapes has been investigated. One HMM has been trained for each

shape represented by curvature coefficients, paying particular

attention to the HMM initialization and to the model selection

issues during the learning process. Testing objects have been fed to

all the trained HMMs, and each object has been classified as

belonging to the class whose model provided the maximum

likelihood. Tests on three different data sets have demonstrated

that the proposed system is able to recognize objects that are

modified instances of their original shape after rotation, occlusion,

shearing, and noise degradations. The system has shown to be

particularly robust to all these kinds of alterations, despite the

intrinsic curvature sensitivity. This proves that the Hidden Markov

Model methodology, with particular care to the training proce-

dure, represents a powerful approach to shape classification.
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