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Abstract— The automatic execution of a complex task reguires
the identification of an underlying mental model to derive a
possible task control sequence. The model aims at analysing and
segmenting -the ‘task in simpler sub-tasks. As an example of a
complex task, in this paper we consider teleoperation where a
person commands a remote robot. This paper presents a new
modeling approach using Hidden Markov Models (HMM) and
Support Vector Machines (SVM) to analyse the force/lorque
signals of a teleoperation task. The task is divided into simpler
sub-tasks and the model is used to segment the signals in each
" sub-task., The segmentalion gives informations on the system
behavior identifying the changes of the model states. Peg in Hole
force/torque data are used for testing the model. The results are
consistent with the’ literature with respect to off-line analysis,
" whereas a significant increase of performance is achieved for
on-line analysis. ’

I_. INTRODIJCTION

In the last years, different teleo?eration'syslems have been.

proposed to allow human. operaiors o execute lasks in. a

variety of applications such as space operation, surgery and

underwater maintenance. During task execution it is advisable
that a supesvisory algorithm analyses the teleoperation data
as an additional safety measure. This algorithm should have
the ability 10 monitor the system by using feedback signals.
" Because of the variability of complex teleoperation tasks (a
sequence of simpler but different sub-tasks) the knowledge of
the task state could help improving performance. For example,
a single contro} algorithm ‘may not be the most appropriate
choice for every sub-task. A better choice could be 1o use a
different control strategy for every sub-task, in this way each
controller can be made more precise. To identify the various
sub-tasks of a teleoperation, it is. necessary 1o segment the
teleoperation data in order to recognize the changes in the
task state and to mark them as “jumps” from a sub-task to
" another. _ -
~In literature the problem.of data segmentation has been
addressed in.different ways. In {1] a Hidden Markov Model
(HMM) is used to carry out the task segmentation with a
number of states equal to the teleoperation sub-tasks. The
state transition is computed using the Viterbi algorithm, which
‘returns the more probable state sequence of the HMM; and
the parameters of the HMM are computed using the Baum-
Welch algorithm “or, equivalently, the Expectation Maximiza-
tion method (EM). However .this approach returns the seg-
mentation only in off-line analysis. In [2] a partially Recurrent
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Fig. 1. Hybrid HMM/SVM scheme proposed in this paper, shown are the
training phase and the on-line segmentation.

Neural Network (RNN} with fixed feedback is trained in order
to segment the task on-line. This approach produced good
results but the use of a neural network hides the use of prior
information about the task. In [3], [4] auto-regressive models
are presented where the segmentation or the jump between a
state and the next is obtained using the Sequential Likelihood
Ratio Test (SLLRT) technique [5]. This technique is based on
work on failure detection [6] and speech segmentation {7].
The teleoperation task and the signals produced during
a teleoperation task are very unpredictable. They strongly
depend on the operator and they are also quite variable when
the same operator executes the same task. For these reasons
we propose to use the HMM approach, since HMM describe
very well signal variability and the sequential aspect of a
teleoperation task [8]. A difficulty in using HMM is the choice
of probability distribution, typically a parametric distribution.
The assumption of parametric distribution can decrease the
performances of HMM [9}-[11] because the real distribution

_is hidder and the cheice of a parametric distribution is a

strong hypothesis on the model. This probability must be
computed outside the HMM framework. For this reason we
use a HMM where the emission probability distributions are
computed using.a Suppori Vector Machine (SVM) Classifier
[12). SVM represent an instrument that have been intensively
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used and that have shown a good classification properties for
multidimensional data.

Anoiher key feature of the approach proposed here is that
the segmentation can be obtained on-line, as shown in Fig. 1.
This is important since the analysis of a teleoperation task can
be used to tdentify the operator performance (computed earlier
off-line) but alse to recognize the sub-task in execution. This
would give an important information to the control algorithm
and would be possible only if the segmentation is obtained on-
line. The model is tested using the force/torgue data of Peg
in Hole tasks, performed at NASA-JPL and used also in [1],
[2]. It produced good results directly comparable with those
of [1], 12]. In panticular our HMM/SVM hybrid mode] returns
the average correct segmentation rate of about 100% (off-line)
and of about 84% (on-line).

The rest of the paper is organized as follows. Secticn 2
briefly introduces the two tools that are used in the paper, ie.
HMM and SVM. Section 3 describes our HMM/SVM hybrid
model. Section 4 reports the analysis results, and finally in
Section 5 the final remarks are summarized.

II. SEGMENTATION TOOLS

In this Section we introduce the two tools vsed in our ap-
proach: Hidden Markov Models and Support Vector Machine
Classifiers.

A. Hidden Markov Models

In a Markov model each state corresponds to an observable
event. In many problems this model is too restrictive to be
applicable: an HMM .is a Markov random process that can
not be observed directly. In other words an HMM can be seen
as an extension of the Markov model where the states are not
observable, and the observation is a probabilistic function of
the state. The resulting model is a doubly embedded stochastic
process with an underlying stochastic process that is not
observable, but can only be observed through another set of
stochastic processes that produce the sequence of observations.
An HMM is formally defined by the following elements [8}:

o Aset § ={5;,5:,.., 5~} of (hidden) states;

e A state transition probability distribution, alse called

transition matrix A = {a;;}, representing the probability
to go from state S; to state S

a;; = P41 = 55 | g = 53)

with 1 < 4,5, < N, a;j 2 0and 30 a5 = 1.

o Aset V={u,vs .., va} of observation symbols.

+ An observation symbol probability distribution, also
called emission matrix B = "{b;{k)}. indicating the
probability of emission of symbol v, when system state
is Sj

b (k) = Plugat time t [ g, = S;)

with 1 < j < N1 < k< M b(k) 2 0 and

e An initial state probability distribution v = {m;} repre-
senting probabilities of initial states

i =P(91 = Si)

with m; > 0 and Y00 m = L.
For convenience, we denote an HMM as a triplet A =
(A,B,m).

The traditional approach in using a HMM is to select the
topology type (Fig. 2) and compute the parameters (A, B, n}
using the Baum-Weich algorithm [8]. Then, the Markev model
is compietely defined.

(a} [15] {<)

Fig. 2.
4.state left-right model (c) A 6-state paratle! path lefi-right imodel.

Three possible types of HMM. {a) A 4-state ergodic model. (b) A

B. Support Vector Machines

The Support Vector Machines, introduced at the end of
70 [13], [14], are classifiers that have been intensively used
[15]-[20]. They have several strengths: fast training by using
specific algorithms [21], [22), accurate classification and, at
the same time, high performance of generalization, i.e. the
ability to learn the trend and the regularity of the data. A
nice introduction of SVM for pattern recognition is reported
in [12]. _ |

The basic objective of the SVM training is to find the
optimal separation hyper-plane that minimizes the expected
classification error, which is equal to maximizing the distance
of the points from the margin (Fig. 3).

origin

Fig. 3. Separation plane of two example sets (black and white points).

The use of the so called “Kemel trick™ [12] permits to define
linear separation surfaces in a larger dimensional space that
becomes highly non linear in the original space. In practice,
it defines a “map” P that iransforms the veclors 10 a space
where they can be more easily separable by a linear classifier,
by using the Kernel ®(x) - ®(y) = K(x.y}. The use of this
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Kernel permits tc obtain a highly non linear separatlon surface
with the same computational cost of a lincar separation. The
classification function is represented by a linear combination
of Kernels K applied to the training data {x;} with class labels

{w}:

F(x) =3 cap K (%, %) + b (n
t

where «y; are the Lagrange multipliers. The elements _'x,- with

non null multiplier are called Support Vecrors (8V) and are

the only cnes that concur to the definition of the separation

surface, represented with circles around points in Fig! 3.

A SVM is a binary classifier. In the case of more classes,
two differents strategies are possibie: “one vs. one™ and “one
vs. all”. In the first case one SVM for each pair of classes is
constructed; an element x; belongs to the class that produces
the most positive output. In the second case one SVM for
each class is constructed, in order to separate one class from
the others. Once ‘the training is completed the estimate of

. function (1) permits 1o decide the proper class of each data’ -

. point. As described more in detail in [12], [23] the number of
SV. generally, is low with respect to the number of examples,
There are however non trivial cases, in which such set is not
minimal and it can further reduced 10 benefit the testirig speed;
this is important in our case during the ségmentation phase by
_ Viterbi algorithm. For this purpose we have used the methoed
described in [24] that we introduce in the following,

‘Suppose we train an SVM classifier with patiem vectors X;
and that 1 of these are determined to be SV with separation
-surface described by equation (1). We. want to find all the
- SV linearly dependent, with the correspondent dependency
* coefficients ¢;, to remove them from the SV set and to update
ihe Lagrange muliipliers of the remammg SV, In practice
equation (1) becomes .

T - 7 T to .
flx) = Z%%K(X, Xi) + axyy ZCI‘K(& %)+ b
’ {;L 7k
= Za,(l 1K (x x,) +b
z;ék -
o= Za}yik(x, x;) + b @
7k - Lo

where ; = &l &) = a;(1+:) and k is the mdex of the
linearly dependent SV.

From this equation we see that the linéarly dependem
vectors are not required for the representation of the separation
surface and therefore in the testing phase. We see, instead, that

the Lagrange multipliers must be modified in order 1o obtain

such a simplified representation. However, this is a very simple

modification that can_be applied to every lmear]y dependent

SV. Thanks to this method, it is possible to reduce the number
- of SV without modifying the performance of the classifier.

During a teleoperation task, signals are sequentially gene-
rated. These signals are measured by the sensors on the robot
and give a great amount of informaticn about the teleoperation
state: force/torque contact data, position/velocity/acceleration
of the robot joint, images record by a camera and so on.
The SVM are good classifier but do not account for terporal
information, since they are static classifiers. For this reason,
we can not use this classifiers 10 segment ieleoperation signal
sequences. In this paper we propose to develop a hybrid model
that use both HMM and SVM.

III. HMM/SVM HYBRID MODEL

We choose to define the HMM with one state for every
sub-task in which the teleoperation task can be partitioned.
The segmentation is obtained from the analysis of the passage
between a state and the other of the HMM automaton (Viterbi
algorithm). In practice the current state of HMM defines the
sub-task in execution, The main points of the our hybrid model
refer to the use of the SVM and the definition of an algorithm
that gives back the segmentation during the task execution,
and not off-line, at the end of data seqguence, like standard
HMM.

A. Emission Probability with SVM

Here we have used SVM classifiers to generate the HMM
emission distribution probability in the training phase and in
the segmentation phase, Firstly, we train one SVM for every
sub-task signal (one vs. all), This produces one separation
surface (equation 1) for each sub-task.

The function f(x) that describes the separation plane,
measures the distance of the element x from the margin.
To produce a distribution probability from this function two'
considerations are important:

1) The function sign{f(x)) defines whether the pattern x
belongs or not to the class (f(x) > 0 = x € class and
f(x) < 0= x & class). : i

2} The distance from the margin is proportional to the
probability that the element belongs to this class. If
the point is near the margin, then the probability of
belonging to the class is low. If the point is far from
the margin then it has a higher probability of be]engmg
to the class.

For this reason we have used a sigmoid (Fig. 4) to transform
the distance measure f(x) into the conditional probability
P(class | x) and then, using Bayes’ theorem, in the HMM
. emission probablhty P(xiclass): -

P(j | )
1
1+ e-kf00
P((xtj) '
. P{®)-PX) ’
S TR o

P(class | element)

Il

P(element | class)
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where P(j) is the probability of the class j and f; is the
function that identifies the class j from the others and that
returns the distance from the margin.

F‘;’]ll)

Fig. 4. Sigmoid function vsed to transform SVM measure into the conditional
probability P{f | x). k describes the trend of the sigmoid function.

The use of a sigmoid transforms a distance measure into a
probability distribution and permits to satisfy the consideration
1,2 described above. For this reason, this function is used in
several studies, an example can be found n [25].

B. Segmentation

The Viterbi algorithm segments the data when the whole
data sequence is available. The interest in real time segmen-
tation of telerobotics tasks has lead to the definition of an
algorithm that computes the most probable state (sub-task)
during the execution of the task. This algorithm samples the
normal Viterbi algorithm (Viterbi Standard (VS)), computing
every t samples the partial result of the process without
backtracking (Viterbi Sampled (VC)). In the V3 algorithm the
variable 4;(z) represents the probability that the model is in
the stale j at the time ¢. The VC algorithm, at the time £,
chooses the state (sub-task) ¢; of maximum probability:

g = arg max [5(7)]. C

VS and VC are not equivalent and generally produce
different results. This is because VS computes the optimal
sequence of states at the end of the sequence, by back-tracking
on the whole data-set. This is not equivalent to consider, for
every t, the maximum &. In fact, VC finds the optimal sofution
at each time t. For this reason VS is generally more precise,
while the performances of VC strongly depends on the HMM
and SVM training phases.

IV. DATA USED FOR TESTING

In order to test our HMM/SVM hybrid model we have used
a typical “Peg in Hoie” teierobotic task. Such task consists

of inserting and subsequently exiracting a peg from a hole.
The force and torque data used have been collected from
two previous experiments described in [1], {2] and whose
data are shown in Fig. 5. The experiments were carried out
at NASA-JPL using a PUMA manipulator equipped with a
“Smart” Hand, and a Force Reflecting Hand Controller. Some
of experiments and the equipment setup is described in [I],

[2].
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Fig. 5. Force and Torque data during an example of Peg in Hole task. The
data are the forces in z,y, z directions, the torque in .y, , 2 directions, the
jaw opening and the gripping force.

The task can be subdivided into a sequence of four sub-tasks
(move, tap, insert, extract). This subdivision can be observed
by analyzing the force signal in the x direction in Fig. 6.
The complete sequence of sub-task is move, tap, move, insert,
move, tap, move, extract, move, tap, move also used in [1].
We observe that in correspondence to different sub-tasks the
force signals are quite different.

V. RESULTS

In order to test the model, we have implemented the HMM
algorithms with MarLab [26], whereas for SVM we have used
a free SVM MarLab toolbox [27].

For analysis and segmentation we have used only the force
and torque signals in « direction. Table I shows the SVM
training results (4 SVM, one for every different sub-task). The
last column in the table represents the final number of linearly
independent Support Vectors with a reduction of the 12.21%
respect to the whole set of Support Vectors (“N. Example”
are the number of training examples, “Time” represent the
length of training in seconds, “N. SV and “Min.” represent
respectively the total number of Support Vectors and the
numbers of linearly independent Support Vectors). For all the
training runs we have used a Gaussian “Radial Basis Function”
Kernel (Rbf) with ¢ = 2:
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:

ix — %
K{x,y) = ei' i

(5)

This type of Kemel is used in several SVM applications, as
described in [16], [171, [28]. -

TABLE I
SVM TRAINING,

[ sub-task | N. Example | Time | N.§V. | Min. ||
move 766 715 295 286!

tap 716 540 167 128"
insert 760 035 450 | 406
extract 744 618 403 352

Once the SVM training is completed, the second step is tor
execute the HMM iraining. For HMM .we have used a 11-
state left-right model [1] corresponding to the Peg in Hole
subdivision. .

The results of the segmentation with VS (off-line seg-
mentation) and VC (on-line segmentation)-algorithms for a
few examples are shown in Table II. VS obuains an exact
segmentation in all cases (off-line), whereas VC obtains 84%
of correct segmentation (on-line). The results of segmeniations
computed by VS and VC algorithms using only data in the x
force direction are shown in Fig, 7.

These results can be directly compared with the results
presented in [1], {21.

o We achieved equal results in off-line segmentation, but

in [1] no on-line segmentation is performed.

« In on-line segmentation HMM/SVM returns an average
correct segmentation of about §4% versus the 64% ob-
tained in [2].

Moreover, the VC algorithm returns in real time a control

value {Guard) that represents how the hidden Markov model

TABLE I1
SEGMENTATION RESULTS ON FIVE EXAMFPLES.

[rSequcnce “ Seq. length l Vs | vC u
first 889 100% | 92.58%
second 249 100% | 8%.16%
third 259 100% | 88.42%
fourth 369 100% | 89.16%
fifth 449 100% | 63.47%

r Exact Segmentation I 100% | 84% “

follows the teleoperation data. This is equivalent to the value
of P defined in [8]. This value represents a good index to
estimate operators training, and a good safety value to pass to
a control algorithm (the more the data are far away from the
model and the more this value decreases). In Fig, 8 we see the
behavior of the Guard in an example with and without poise:
we could note that this parameter changes if we introduce a
noise sequence.

ondt
move|
tap
move i
oxtmetf
mave
tap
mova
insert
move
tap
move|
init

Fig. 7.

Peg in Hole segmentation example. Solid line represent the VS
segmentation while dotted line represent the VC segmentation, each step
indicates a state transition (sub-task).

As shown in Fig, 8, the insertion of wrong data, for example
in case of operator execution error, decreases drastically the
value of the Guard because the signal does not follow the
HMM medel. This can be a good warning to detect sig-
nal changes and operator performance. The idea to define
“guards™ based on the analysis of the data measured from
the sensors can be seen also in [29] (“sensory-guard™).

VI. CONCLUSIONS

In this paper, an approach aimed at modeling and segmen-
ting teleoperation tasks is presented. A new HMM/SVM hy-
brid model is defined and tested on a Peg in Hole teleoperation
task. In detail:

« We use a HMM model to describe a typical sequential

teleoperation task.
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Fig. 8. The Guard progress. Solid line represent the Guard on real signal
while the dotted line represent the Guard on modified signal (we have
exchanged the real signal with noise in a central interval, from [200, 299]).

o We have overcome limitations of the HMM emission
distribution probability using SVM as “probability ge-
nerators”.

« We use dimensional reduction [24] to decrease the num-
ber of suppori veciors to speed up the classification phase
and then the scgmentation of signals,

« We have developed a new algorithm, based on the stan-
dard Viterbi algorithm, to segment experimental data on-
line (VC).

The results can be compared with those presented in the
literature, since we have used the same data sets. In particular
VS can be compared with the HMM in [1]; in both cases the
correct off-line segmentation is 100%. VC can be confronted
with the Neural Network in [2] that produced correct on-
line segmentation of about 65% versus 84% of the new
HMM/SVM hybrid model.

The long-term objective of this research is to improve our
model using more complex HMM and a new method [23] 1o
increase the SVM classification performance (Virtual Support
Vector method). Finally, we propose to use our model to
analyse more complex tasks, especially in robotic surgery.
Among these tasks, a special interest will be placed on
applying our hybrid model to the suture surgical task, both
as input for a possible teleoperation control algorithm, and as
the basis for a future automatic task execution.
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