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Abstract

In this paper, we propose the investigation and the realization of an artificial sensor system and an analysis system able to extract analytical
information from odors, under the constraint of being suitable for miniaturization and portability. A sensor array was realized with a series of
carbon black—polymer detectors. The lack of reproducibility of those sensors was compensated using a very flexible calibration and
recognition tool based on neural networks. The training strategy used in this work, that performs better than derivative-based optimization
techniques like standard back-propagation, permits a very low cost VLSI realization, necessary condition for deep miniaturization of the
system. A comparative analysis of different pattern recognition approaches was performed in order to evaluate the suitability of this kind of
neural networks, which allow deep computing circuit miniaturization. Moreover, we used dimensionality reduction techniques to decrease the
computational complexity of the classification technique. The analyses carried out in this study could allow the development of a compact and
self-contained electronic nose, in which the analysis system is directly embedded in the sensor device. This should permit to minimize the
costs and to obtain better portability and performances. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Odor detection by chemical sensors is a very interesting
task from both a fundamental [1,2] and an applied point of
view [3,4]. In a first approach, sensors were built using a lock
and key technique, which made them very selective, i.e.
designed for only one type of analyte. Recent approaches are
directed to the detection of a wide variety of volatile
compounds, by combining chemically different sensors in
an array. Many solutions have been investigated for the
hardware component of the sensor system. A non-exhaustive
list consists of surface acoustic wave (SAW) [5-7], quartz
crystal microbalance (QCM) [8], optical sensors [9], thin
oxide detectors [10,11] and conducting organic polymer
sensors [12,13]. However, the chemical composition of
those devices is only one aspect of the electronic nose topic:
signal processing and pattern recognition are also decisive
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factors in order to obtain a versatile instrument able to
reliably recognize a wide variety of odors.

In this paper, we present a research project focused on the
study and the realization of an artificial sensor system and a
set of techniques able to extract analytical information from
odors (i.e. mixture of analytes), under the constraint of being
suitable for miniaturization and portability. The project
strategy is well defined: instead of creating a set of sensors
able to provide precise and specific information, we opted
for a solution based on the methods of collective analysis of
the data gathered by a less specific sensor array. Therefore,
our attention was focused on the improvement of the ana-
lysis and recognition techniques rather than on the sensor
hardware, keeping clear in mind the objectives of miniatur-
ization and portability. To the best of our knowledge, the
majority literature works on electronic nose is focused on
chemical aspects rather than signal processing and pattern
recognition, although some excellent papers on this subject
have appeared (e.g. [14,15]).

The sensor array was realized with a series of carbon
black—polymer detectors [16,17] (a subclass of conducting
polymer sensors), which were chosen for their low cost.
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Briefly, the individual sensor elements were constructed
from films consisting of carbon black particles dispersed
into insulating organic polymers. The carbon black endows
electrical conductivity to the films (chemical diversity
among elements in the array was obtained using different
organic polymers for each sensor). Swelling of polymer
during solvent exposure increases film resistance; by this
way, we could simply and efficiently monitor the presence of
vapor of interest. The lack of reproducibility of those sensors
was compensated using a very flexible calibration and
recognition tool based on neural networks [18,19]. This
technique, with different variants [20-24], was successfully
applied in various odor detection systems. In this work, we
used a multilayer perceptron [25], trained with the reactive
Tabu search (RTS) [26]. This optimization strategy, unlike
standard back-propagation technique, is more effective in
finding a global optima of the training function. Moreover,
and most important, this technique is very suitable for deep
circuit miniaturization, an example is given by the TOTEM
chip [27,28].

The main innovative aspect of the present study relies on
the investigation and improvement of the signal analysis and
recognition techniques, in view of a device miniaturization.
In particular, a comparative analysis of different pattern
recognition approaches was performed in order to authorize
and validate the use of the RTS multilayer perceptron, which
allows deep computing circuit miniaturization.

Another important aspect is the analysis of the impact of
the dimensionality reduction techniques on the classification
performances of the system. In this paper, we used the
dimensionality reduction techniques to diminish the curse
of dimensionality [29] impact on the classification techni-
ques. As shown in this paper, the dimensionality reduction,
decreasing the computational complexity, can eliminate part
of data redundancy, with consequent noise reduction. Meth-
ods analyzed in this study are based on simple linear
transformation of data; these transformations, if calculated
off-line, can be implemented with neural network having
linear activation functions, therefore, suitable for our project
goal.

Finally, we wanted to better exploit the information
obtained from each experiment considering the time evolu-
tion of the sensor responses as well. To achieve this aim, we

Table 1
Elements of the sensor array

used additional features, that can better characterize the
sensor and analysis system.

2. Experimental
2.1. Materials

Carbon black—polymer sensors were prepared using
Black Pearls 2000 (BP 2000), a furnace black material.
Polymers adopted in order to obtain the active material are
listed in Table 1. These polymers were purchased from
Sigma—Aldrich and were used as received. The following
solvents were employed: acetone (J.T. Baker, 99.5%),
2-propanol (J.T. Baker, 99.7%), ethanol (Merck, 99.8%)
and tetrahydrofuran (THF) (Merck, 99.5%). These solvents
were used as received.

2.2. Instrumentation and apparatus

The experimental apparatus was composed by a gas line
and a signal acquisition system, connected to a personal
computer via a LabPC+- card. The gas line was an automated
flow system used for producing and delivering to sensors a
predetermined analyte concentration: a stream of carrier gas
was passed through a bubbler filled with the solvent of
choice. The bubbler was a standard glassware tube (30 cm
long with a 3 cm diameter) equipped with exit sidearms. A
glass tube terminating with a coarse filter frit was inserted in
this tube. The carrier gas was introduced into the solvent
through the porous ceramic frit, and the solvent saturated gas
mixtures exited the bubbler via the sidearms of the glass
tube. This flow was then diluted with pure carrier gas to
obtain a well-determined analyte—carrier ratio. Gas flow
rates were controlled with valves driven by an electrical
signal (connected to a personal computer via parallel port)
and flowmeters. Bubblers were equipped with a thermostatic
system, realized with a cavity where a well-known tempera-
ture water flowed. The carrier gas for all experiments was
compressed oil-free laboratory air (80% nitrogen, 20%
oxygen), containing less than 2 parts per million (ppm) of
water vapor; it was introduced in the gas line at 0.5 bar
pressure, and was neither filtered nor dehumidified. The

Sensor Polymer Polymer quantity (mg) Carbon black quantity (mg) Solvent (THF) quantity (ml)
0 Poly(4-vinylphenol) 10 90 35
1 Poly(styrene) 10 90 25
2 Poly(vinylpyrrolidone) 10 90 35
3 Poly(4-vinylphenol) 10 90 35
4 Poly(sulfone) 10 90 65
5 Poly(vinyl acetate) 10 90 100
6 Poly(styrene) 10 90 25
7 Poly(vinyl acetate) 10 90 100
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vapor mixture was then introduced in the sensors chamber, a
glass tube 32 cm long and 5 cm large, containing the sensors
circuits. One side of this tube was for gas entering, the other
was sealed with a ground-glass stopper through which
electrical lead wires had been sealed. Two lateral outlets
allow the downflow of the mixture from the chamber.

The datasets used for testing classification methods were
obtained performing 102 experiments with these experi-
mental conditions: carrier flowed at 0.9 I/min at 0.5 bar
pressure, while analyte flowed at 0.1 I/min. Analyte tem-
perature was 6.7 £ 0.5 °C; concentrations of three analytes
were 5.8 £ 0.1 parts per thousand (ppth) for 2-propanol,
22.62 + 0.02 ppth for acetone and 5.7 £ 0.1 ppth for etha-
nol. Mass loss of solvent in bubblering was used to deter-
mine analyte concentration (analyte/carrier ratio) for each
experiment series.

2.3. Fabrication of carbon black—polymer
composite detectors

Each sensor was based on ceramic capacitors (22 nF,
approximately 2mm x 4 mm x 4 mm). The top of the capa-
citor was removed by using progressively finer grades of SiC
sandpaper and diamonds paste of 6 pm. After this polishing
step, the capacitors were sonicated in acetone for 10 min to
remove any residual alumina. All capacitors used for sensors
had an initial resistance higher than 10 MQ (the upper
measurement limit of our multimeter).

To prepare the carbon black—polymer composites, 10 mg
of carbon black and 90 mg of one of insulating polymers
were added to a well-determined quantity of solvent (shown
in Table 1), which was for all cases THF. Solutions were then
sonicated for 10 min to suspend the carbon black. The
polished capacitor was dipped into solution one or more
times until a good resistance film was obtained (from 80 to
200 kQ). Before use, sensors were dried in open air for 24 h
and placed in air flowing at 0.5 I/min for 5 h.

The film resistance stability, in absence of any volatile
organic compound (VOC) was verified to guarantee sensor
quality. To reach this aim, the sensor circuit was solicited with
a progressively higher frequency sinusoidal signal; amplitude
and phase of the circuit gain function were gathered via a
lock-in amplifier (SR830 DSP—Stanford Research System).
The goodness of the fit of these experimental points with the
theoretical curve was used as measure of the sensor quality.
This goodness was estimated using y* method [30]. All
sensors employed in this work were very high quality sensors,
as they showed the behavior of a pure RC circuit, without any
frequency non-linearity, at least in the precision range char-
acteristic of the equipment employed.

2.4. Measurements
The dc resistance of each sensor was determined as a

function of time: each sensor was placed in an array cell,
with an operational amplifier containing the sensor in its

feedback circuitry, in series with a well-known resistance R,.
The stimulus was a dc voltage V;,; the resistance sampling
rate was approximately 38 times for seconds. For each
experiment, Ry and V;, were chosen to maximize signal
to noise ratio, reducing impact of the digitizing error due to
analogic—digital conversion. A typical experiment consisted
of a three-step process that began with 5 min of air flow to
determine the baseline resistance, followed by 10 min of
vapor exposure and by 10 min of air flow, to restore baseline
resistance values.

2.5. Feature extraction

The feature used for data analysis was extracted from the
temporal series Ri(¢;), one for each sensor j of the array.
These series were obtained by periodically sampling sensors
resistance. To resolve a vapor task, the maximum relative
variation of each sensor resistance was used:

Rj‘Amax[a‘b] - Rj,min[a,h]

)]

Rj,Amux[a,b] Rj,base
where R;pae Tepresents the baseline value of resistance
obtained averaging 5-10 s of gathering, after a suitable wash-
ing interval (typically, 10 min). R; amaxa,5] 80d R; min[a,5] TEPTE-
sent respectively the maximum and the minimum value of jth
sensor resistance in the gathering interval [a, b]:

R; minfap] = lf?[%,’z]Ri ()

Rj,min[aﬁb] = tgl[‘i:}]]Rj(ti)

Typically [16,17] [a, b] represents the whole vapor exposure
interval. In most situations, nevertheless, exposition time
cannot be so long; reaction and analysis should be faster.
Therefore, analyzing evolution of value (1) is very interest-
ing: we can also investigate the minimum time needed by the
sensor system to resolve a particular vapor sensing task. To
achieve this, we calculated (1) in progressively growing
intervals [0, 1 s], [0, 2 s] and so on. Then we grouped all data
collected from same interval [a, b], generating several
dataset, used to test various analysis techniques. These sets
were nicknamed ‘“‘photo sets”, name that recalls the way
they are obtained.

3. Basic pattern recognition theory
3.1. Dimensionality reduction

In this paper, we have adopted the dimensionality reduc-
tion techniques belonging to linear transformation family:

Yy =ATx

where X and Y are the original and the reduced data matrix,
respectively. Aim of these techniques is to determine matrix
A, maximizing (or minimizing) a given criterion.
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Principal component analysis (PCA) [31] chooses the
matrix A that minimizes mean squared distance between
original data and those reconstructed from reduced data. In
[32], it is shown that such A is determined considering the
eigenvectors of the covariance matrix corresponding to m
first dominant eigenvalues, where m is the resulting dimen-
sionality. With discriminant analysis (DA) projection
directions are those that maintain maximum class separ-
ability in resulting space. In this work, Fisher’s criterion
[33] was used to estimate class separability and projection
directions are chosen solving an eigenvalue—eigenvector
problem [32]. Discriminant component analysis (DCA) is a
relatively new technique [34] which transforms original
space into orthonormal space such that for each direction
there is an eigenvalue representing discriminatory power of
projection in that direction: this is obtained with an itera-
tive procedure.

3.2. Classification

K-nearest neighbor (KNN) [32,35] is a classical classifi-
cation technique widely used in pattern recognition pro-
blems. To determine item class this method investigates its
neighborhood class. Given a point to classify x;, KNN
determines set U formed by Kx, nearest neighbors, calcu-
lated using a metric 2 (usually Euclidean metric). The most
frequently class Cy in U is assigned to xy. In this work, we
also employed two variants of this scheme: Local KNN [36]
and discriminant adaptive nearest neighbor (DANN) [37].
KNN, Local KNN and DANN parameters were determined
with a cross-validation technique, called leave one out [38].

Neural network [18,19] is a semi-parametric classification
technique inspired on animal neural system,; it is a complex
structure formed by many simple processing units, called
neurons. Multiple neural network types are obtained varying
neuron type and network topology. In this paper, we used a
standard perceptron-based feed forward neural network
[18,25], with two hidden layers, each containing 10 units.
The activation function used was the logistic one, and the
output layer was composed by one unit for each class of the
classification task. Each networks training was stopped
before over-training situation (detected using a cross-vali-
dated set) or when the training error was adequately low. All
neural networks used in this work were trained using an
optimization strategy called reactive Tabu search (RTS)
[26]. Unlike standard derivative-based optimization meth-
ods, as back-propagation, this technique escapes rapidly
from local optima, discourages cycles in the searching
trajectory and is very robust with respect to the choice of
initial configuration, leading to a more effective training.
With respect to our project guidelines, the most impor-
tant aspect is that the RTS scheme is very suitable for
special-purpose hardware realization, with simple, but fast
electronic components. In particular, the TOTEM chip, a
commercial chip implementing an artificial neural network
[39], is trained with RTS [27,28].

3.3. Classification accuracy

The mean classification accuracy is calculated as

AN =1-E(N=1- PS¢0

i=1 i

where fis the discriminant function of the classifier, P; the ith
estimated class prior probability, and C(f) is the f confusion
matrix [39].

Each element of this matrix can be estimated with

Ni

Cy() = 0> h(w)
Ni =

where x; is the kth element of the ith class.

Usually, only one dataset is available from the problem:
several techniques able to obtain training and testing set
from dataset are explained in [38]. In this study, we used the
“averaged holdout” one, which randomly split dataset into
two mutually exclusive subsets, one for learning and one for
testing. In order to make the result less dependent on the
partition, we generated 30 different partitions, calculated
accuracy for each of them and then averaged the results.

4. Results and discussion
4.1. Classification performances

A first analysis was made on the whole dataset, and results
are shown in Table 2. We can note that accuracy values are
very high: the nose discriminated well from these solvents at
these concentrations. The second analysis was made on
reduced datasets, using different classification methods, vary-
ing data dimensionality reduction technique and dimension-
ality of resulting set. For DA, the maximum resulting
dimensionality is ¢ — 1, where ¢ is the number of classes
of the problem [40]. Results of this analysis are shown in
Table 3. We can infer some considerations from this table.
First, excluding DCA, on two-dimensional reduced sets the
performances of classifiers were comparable with those on not
reduced dataset: there was a lot of redundancy on data.
Second, in many situations dimensionality reduction implies
error reduction. Probably data redundancy was source of
noise, and its reduction causes a partial noise decreasing.
Final, DA seems to be the most suitable technique for classi-
fication, even if its application is limited by number of classes.

Table 2
Classification accuracy of various classifiers on whole set

Classifier Accuracy (%)
KNN 99 +1
Local KNN 99 +1
DANN 99 £+ 1

Neural nets 100 £ 0
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Table 3

Classification accuracy on the set reduced with principal component analysis (PCA), discriminant component analysis (DCA) and discriminant analysis

(DA), varying resulting dimensionality

Resulting Method KNN
dimensionality accuracy (%)
1 PCA 92 +3
1 DCA 69 +5
1 DA 69 +5
2 PCA 99 + 1
2 DCA 70 + 4
2 DA 100 + 0
3 PCA 100 £ 0
3 DCA 89 +4
4 PCA 99 + 1
4 DCA 90 + 3
5 PCA 99 + 1
5 DCA 100 + 0
6 PCA 99 + 1
6 DCA 100 £ 0
7 PCA 99 + 1
7 DCA 100 £ 0

Local KNN DANN Neural nets
accuracy (%) accuracy (%) accuracy (%)
93 +£3 92 £3 94 +2
69 + 4 69 +5 71 +4
69 + 4 69 +4 71 £5
98 + 1 100 + 0 99 + 1
69 +5 71 +£5 77 + 4
100 £ 0 99 + 1 100 + 0
99 + 1 100 £ 0 100 £ 0
89 +3 82 +4 90 + 2
99 + 1 99 + 1 99 + 1
90 + 3 92 +4 92 +3
98 + 1 99 + 1 99 + 1
100 £ 0 99 + 1 100 + 0
99 + 1 99 + 1 99 + 1
100 £ 0 99 + 1 100 £ 0
99 + 1 99 + 1 99 + 1
100 £ 0 99 + 1 100 £ 0

4.1.1. Photo sets

Another analysis was made evaluating classifiers perfor-
mance on photo sets, obtained with eight intervals [0—1]
[0-2]...[0-8] seconds. Results are given in Table 4: accuracy
values increased when increasing interval dimension; the
accuracy on the last interval photo set is appreciably high.

We then used these sets to determine ratio of total
responses that each sensor showed after n seconds of solvent
exposure. In order to obtain this aim, for each sensor, we
calculated the averaged ratio between n second and total
response (after the whole exposure interval). These ratios are
shown in Table 5 (percentage values): ratios after 8 s were
still low. Moreover, same sensor showed different ratios for
different analytes. From these considerations, we can sug-
gest the hypothesis that the speed of the sensor response is a
factor useful in solvent discrimination.

4.1.2. Final considerations on performance analysis
About classification performances, we have shown that

KNN, Local KNN, DANN and neural network showed same

performance level on examined datasets. Regarding com-

putational aspects, nevertheless, these techniques are very
different.

For neural networks, the training was the most onerous
part: some preliminary tests showed that the use of the RTS
training algorithm replacing the standard back-propagation
results in a great improvement in the speed of the conver-
gence of the training error. KNN showed pattern storage
problem, which can be very important on wider context:
nevertheless, it was a good classifier, fast and sufficiently
accurate. Using Local KNN quantity of information main-
tained in memory increased; moreover, system initialization
took much time. DANN needed very long execution time
(one or two magnitude order greater), due to metric estima-
tion.

4.2. Sensor analysis

In this section, we propose an analysis of sensor
responses. We tried to evaluate sensor response reproduci-
bility, comparing responses of the same sensor in different
experiments (with the same experimental conditions). Then

Neural nets
accuracy (%)

Table 4

Classification accuracy on photo sets varying interval dimension

Dim of KNN Local KNN DANN
interval (s) accuracy (%) accuracy (%) accuracy (%)
1 82+ 5 81 +£4 75+ 6
2 91 £2 90 £ 3 92 +£3
3 90 + 3 91 +4 93 +3
4 93 +3 93 +3 93 +3
5 95 +3 94 +3 94 +3
6 95 £2 94 £2 94 +£3
7 96 + 2 95 +2 96 + 2
8 96 + 2 96 + 2 9 + 3

84 +£3
94 +£2
96 £ 2
96 £ 2
97 £2
97 £2
97 £2
97 £2
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Table 5
Fraction of total responses, in percentage value, showed by each sensor in a photo interval, varying interval dimension®
Dimension of Analyte Sensor Sensor Sensor Sensor Sensor Sensor Sensor Sensor
interval (s) (I/A/E) 0 (%) 1 (%) 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%)
1 I 2.37 13.04 4.95 5.37 14.71 6.44 9.37 8.07
A 0.36 1.34 1.50 0.26 4.81 3.93 2.42 3.37
E 2.38 13.69 0.83 1.42 17.64 27.42 20.78 6.96
2 I 2.87 13.51 5.21 5.86 15.66 11.97 11.54 11.09
A 1.01 2.02 1.66 0.27 5.06 8.41 3.90 5.33
E 6.24 35.13 0.89 1.47 18.75 54.14 39.00 10.36
3 I 3.32 14.55 5.35 6.38 16.35 17.03 13.21 15.60
A 2.07 2.90 1.96 0.29 5.27 14.43 5.92 8.55
E 10.81 51.38 1.02 1.78 18.92 76.60 53.93 17.07
4 I 3.65 15.20 5.58 6.70 17.08 22.55 16.37 20.16
A 3.45 4.03 4.03 0.33 5.50 20.77 7.86 13.15
E 15.64 66.25 66.25 2.54 19.76 89.77 66.15 24.52
5 I 428 16.58 5.94 6.79 17.54 27.7 19.17 24.96
A 4.90 4.98 4.70 0.44 5.79 25.77 9.65 18.72
E 21.16 80.42 1.52 3.70 20.62 94.86 78.47 35.53
6 I 4.80 18.07 6.64 6.85 18.68 32.02 22.29 29.13
A 6.37 5.99 7.23 0.65 6.36 30.20 11.28 23.62
E 26.80 93.92 1.84 5.33 22.80 97.92 90.08 45.46
7 I 5.46 20.09 7.02 7.03 19.29 36.74 25.34 33.05
A 12.27 17.64 4.66 1.66 10.70 59.65 25.25 31.22
E 20.96 39.88 5.15 3.64 19.45 66.20 48.64 52.11
8 I 6.15 21.89 7.41 7.62 21.97 40.47 27.86 37.34
A 9.10 7.17 13.12 1.12 8.32 35.92 13.10 32.02
E 39.76 97.51 2.62 9.19 30.85 97.19 98.10 64.59

“1, A and E stay for 2-propanol, acetone and ethanol, respectively.

we tried to evaluate interchangeability of sensors made with
same active material, comparing responses of analogue
sensors in the same experiment.

4.2.1. Response reproducibility

To measure response reproducibility we calculated mean
and standard deviation of each sensor response for each
experimental series, reported in Table 6. Reproducibility
was acceptable. In this sense, the worst sensor was 2
(poly(vinylpyrrolidone)), which was very unstable during
the whole work. We tried to stabilize its response, e.g.

Table 6
Mean responses and standard deviations of array sensors
Sensor 2-Propanol Acetone Ethanol

Mean S.D. Mean S.D. Mean S.D.
0 0.013 0.002 0.053 0.004 0.031 0.004
1 0.007 0.001 0.024 0.002 0.008 0.001
2 0.014 0.008 0.033 0.009 0.060 0.020
3 0.009 0.003 0.046 0.009 0.028 0.005
4 0.008 0.002 0.011 0.001 0.008 0.002
5 0.008 0.002 0.024 0.002 0.009 0.002
6 0.011 0.002 0.024 0.001 0.012 0.002
7 0.007 0.002 0.015 0.001 0.008 0.002

putting it in a furnace at 40 °C for 24 h, without any success.
Another consideration: worst responses were those that
presented lower entities, where data acquisition noise is
more influent.

4.2.2. Sensor reproducibility

During the production of sensors, the reproducibility was
poor: seldom we obtained two sensors, made with the same
active material, showing the same baseline resistance value.
Nevertheless, responses of sensor were baseline value inde-
pendent, because they were differential measures. To have
an idea about the sensor reproducibility, we duplicate some
sensors in the array: in the same experiment, we hoped to
find analogue responses for analogue detectors. With photo
sets analysis, we could obtain information about response
speed. From Table 5, we can see that the response speed
were not the same in analogue sensors. Speed depends on
film thickness, and with fabrication technique used in this
work this factor cannot be controlled.

4.2.3. Alternative support analysis

We tried to test reproducibility of sensor response when
varying sensor support: we build an alternative support,
based on thick standard glass strips, of 3mm x 3 mm.
Electrical contacts were obtained sealing copper wires on
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strips ends. Sealing process was performed using silver paste
(CW2400 Circuit Works Conductive Epoxy Kit, made by
Chemtronics Inc.). A 2 mm gap was guaranteed between
two electrical contacts. To obtain sensor, we dipped support
in carbon black—polymer solution one or more times, until a
good film resistance was obtained. Each solution was com-
posed by 80 mg of polymer, 20 mg of carbon black and
30 ml of THF and was prepared following procedure men-
tioned earlier. After recreating array shown in Table 1, we
repeated experiments in condition explained in Section 2.
We then tested the compatibility using the analysis of
variance (ANOVA) test [30]: the null hypothesis that the
data obtained from the two kinds of sensors are equivalent
was rejected for all the carbon black—polymer composites.
The level of significance of this rejection was 0.05 for the
second sensor (made with poly(vinylpyrrolidone), the very
unstable one), 0.01 for the others. Thus, the compatibility
was not present; we could reasonably deduce it also from the
analysis reported in Section 4.2.2.

5. Conclusions

In this work, we showed that the RTS neural network
approach represents an adequate classification technique for
odor detection, with performances that are equivalent to
KNN and other methods: this method is moreover very
suitable for miniaturized device. Moreover, we demon-
strated that in this problem dimensionality reduction tech-
niques, principally DA, could reduce the computational
complexity of classification techniques, without substantial
information loss. Moreover, their application reduces noise
level on redundant sets, resulting in performances that are
sometimes better than those on not reduced sets. Finally, we
could better characterize sensor and analysis systems creat-
ing a new features set. In fact, using photo sets, we could
determine, e.g. the reproducibility of the speed of response
of a sensor built with the same active material. We could
obtain more than one dataset from one experimental session,
useful for testing classification techniques. Photo sets ana-
lysis clearly shown that the speed of the sensor response can
be used as discriminant factor to resolve a wide range of
vapor sensing tasks.

We believe that the analyses carried out in this investiga-
tion should allow the development of a compact and self-
contained electronic nose, in which the analysis system is
directly embedded in the sensor device. This should permit
to minimize the costs and to obtain better portability and
performances.
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