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Abstract

In this paper a new probabilistic method for background
modelling is proposed, aimed at the application in video
surveillance tasks using a monitoring static camera. Re-
cently, methods employing Time-Adaptive, Per Pixel, Mix-
ture of Gaussians (TAPPMOG) modelling have become
popular due 1o their intrinsic appealing properties. Never-
theless, they are not able per se to monitor global changes
in the scene, because they model the background as a set
of independent pixel processes. In this paper, we propose
1o integrate this kind of pixel-based information with higher
level region-based information, that permits 1o manage also
sudden changes of the background. These pixel- and region-
based modules are naturally and effectively embedded in a
probabilistic Bayesian framework called particle filiering,
that allows a multi-object tracking. Experimental compar-
ison with a classic pixel-based approach reveals that the
proposed method is really effective in recovering from sit-
uations of sudden global illumination changes of the back-
ground, as well as limited non-uniform changes of the scene
illumination.

1 Introduction

Analysis and understanding of video sequences is an ac-
tive research field which has rapidly increased the interest
of the scientific community in the last years, due to the
availability of more and more powerful hardware, the de-
velopment of effective techniques, and the potential vastity
of involved applications. Video surveillance is undoubtedly
one of the most interesting application of sequence analy-
sis, due to its immediate applicability in several contexts,
for instance, the monitoring of parking and working areas,
supermarkets, indoor and confined outdoor environments in
general.

A videosurveillance system contemplates typically the
monitoring of a site for long periods, using a static cam-
era: the goal is to detect and classify moving objects (fore-

ground) from static information (background). A funda-
mental issue to be solved is therefore the modelling of the
background. Recently, methods employing Time-Adaptive,
Per-Pixel, Mixture Of Gaussian (TAPPMOG) have become
a popular choice for modelling the background [8, 4]. With
these methods, the time evolution of each pixel is consid-
ered as a spatial independent process, modelled using a mix-
ture of Gaussians. Each mixture is updated as new obser-
vations arrive, while decaying the importance of older ob-
servations. At each time step and for each pixel, a subset
of Gaussians are considered as background, and current ob-
servations that do not match this distribution are labelled as
foreground. The attractive properties of TAPPMOGSs meth-
ods are various: first, they are able to slowly adapt their
background model to persistent scene appearance modifica-
tions, like the motion of a background object; second, they
are quite effective in modelling the relatively simple, but
largely repetitive scene appearance changes associated with
dynamic objects, like moving foliage; third, they are suit-
able for real-time implementation.

Nonetheless, these techniques present also some draw-
backs. For example, the assignment of a pixel to the back-
ground or to the foreground is based on a threshold on
the Gaussian mixture, that have to be fixed a priori. An-
other problem is that they consider each pixel as an inde-
pendent process without any use of spatial information or,
more generically, higher-level information. This problem
has been recently addressed by [4], where positive and neg-
ative feedbacks from higher level modules have been used
to guide low level pixel processes. Moreover, the choice
of the learning rate, that determines the “speed” of the self
adaption of TAPPMOGS methods to variations of the back-
ground, is critical. A high leamning rate allows them to adapt
rapidly to illumination changes, but does not permit the de-
tection of slowly moving objects, or accentuates the fore-
ground aperture phenomena (i.e., when an uniformly col-
ored object moves, internal pixels could not be detected as
foreground [10]). On the other side, a low learning rate
permits only slow adaptation, hence in case of a sudden
change of the background they find numerous false fore-
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ground points for several frames until adaptation is com-

pleted.

To face this problem, a non-parametric model for back-
ground detection has been proposed in [3]. This work does
not model each pixel with a mixture of Gaussians (whose
number is fixed), but uses a non-parametric prediction al-
gorithm to estimate the probability density function of each
pixel, which is continuously updated to promptly capture
the fast variations of the pixel intensity. This technique suc-
ceeds to better model the behavior of each pixel, not neces-
sarily constrained to fit a set of fixed Gaussians, but it still
requires the use of thresholds to be tuned to get the desired
performances (number of false positives).

The sensitivity to global changes of the illumination of

the scene is another delicate issue. This is one of the most
severe problems to be solved by a background modelling
system, especially if changes are local and not uniformly
distributed over the scene. Actually, a variation on the il-
lumination of the whole scene could be detected and re-
covered with a standard histogram normalization technique,
whereas local variations could not be detected with such a
global analysis. This situation can be very frequent in in-
door situations, for example when the door of a lit room is
opened in a monitored dark corridor. A substantial contri-
bution in this sense was provided by [9], where a topology
free Hidden Markov Model was used in order to model illu-
mination changes of the scene. Even if results are promis-
ing, this method does not work on-line, and illumination
changes have to be pre-classified off-line. Another inter-
esting approach was proposed by Ohta in [7], where the
possible changes in illumination are coded explicitly in a
mathematical model. Nevertheless, the effectiveness of the
method depends on the number of background prototypes
estimated, failing for unexpected illumination changes.

In this paper a novel approach is proposed, which is
able 10 deal with sudden variations of illumination in the
scene, also restricted to partial parts of it. We start from a
generic TAPPMOG method like that proposed by Stauffer
and Grimson [8). The basic idea of our approach is that
this process can be improved if we consider also a sort of
region-based modelling, i.e., considering the spatial infor-
mation as provided by a classical image segmentation. With
high probability, a change in illumination, even if restricted
10 a particular area, results in a variation of the gray-level
values of most of the pixels of the regions in that zone. In
other words, if all pixels of a region significantly vary si-
multaneously, a typical system will tend to identify them as
foreground, but, if the region is enough large, there is a high
probability that this situation can be due to an illumination
change rather than actual foreground.

Our approach uses spatial information resulting from a
(off-line) spatial segmentation of the background (obtained
for example by processing the first frame) as prior in order

to modulate the response of a TAPPMOG system. In par-
ticular, a variation of the learning parameter of the system
is devised in order to cope efficiently with sudden changes
in the background appearance.

Subsequently, this approach is natrally integrated in
a probabilistic Bayesian framework, the particle filtering
[5, 2] paradigm for tracking. This Monte Carlo technique
[2], that has recently received growing attention, is based on
sequential importance sampling/resampling, and provides a
sound statistical framework for propagating sample-based
approximations of posterior distributions, with almost no
restriction on the ingredients of the model. We will show
how a TAPPMOG module can be naturally inserted in this
framework, eliminating the mixture threshold problem dis-
cussed above. We will also show, on a real sequence avail-
able in the literature [9], that the use of spatial information
is able to correct and manage sudden changes of illumina-
tion, even if restricted to local scene areas,

The rest of the paper is organized as follows. In Section
2, the basics of TAPPMOG-based methods and particle fil-
tering is introduced, mainly to fix the notation. Section 3
details the proposed approach which includes both region
and pixel information in a sound statistical model, and, in
Section 4, some results are reported, showing a compari-
son with the classical method. In Section 5, conclusions are
finally drawn and future perspectives are envisaged.

2 Fundamentals
2.1 The TAPPMOG background modelling

In this subsection, standard time adaptive per-pixel mix-
ure of Gaussians background modelling scheme is pre-
sented, following [8). A mixture of Gaussians is associated

to each pixel, modelling the evolution of its gray level dur-
ing time. The probability to observe the value z.(f.?, ie., the
intensity gray level of the pixel (u, v) of the image at time

t, is given by:
K
t
P =3 wi N (01,08 @
Jj=1

t t t . ..
where w§.,2w, u§~,2,., and '75',2‘,, are respectively the mixing

coefficients, the mean and the standard deviation of the j-th
Gaussian of the mixture of the pixel (u,v) at time ¢. The
background modelling algorithm proceeds as follows. Sup-
pose that, at each time instant, the Gaussians in a mixture
are ranked in descending order by the value of w/o. Every
new pixel value is checked against the existing K Gaussian
functions until a match is found, where a success match is
defined as a pixel value within 2.5¢ of any mode of the dis-
tribution. If none of the K Gaussian functions matches the
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pixel value, the least probable function is replaced with a
new one, having mean equal to the current value, high vari-
ance, and low mixing coefficient. If jp;; is the Gaussian
component matched, a pixel 29 is labelled as foreground if

Jhu

> wi >

=1

2

where T is a threshold (to be defined a priori) that indicates
the minimum portion of the data that should be accounted
for by the background.

Each mixture evolves during time, as new evidence ar-
rives. For the mixing coefficients:

w) =1 -a)i)+aMP,0<j< K,

Jruv

3

where Mgy (t) ic 1 for the matched Gaussian and 0 for the oth-
ers, and a is the learning rate. Low a values imply a slow
adaption, and vice versa. The p and o parameters for un-
matched Gaussians remain the same, but, for the matched
Gaussian function jxi: we have (omitting indexes for clar-

ity):

e prediction: samples {sb)} for time t are then obtained

by applying a dynamics to {5t @ 11, predicting the new
configurations based on prev10us values and on some
a priori knowledge about the possible movements of
the objects; typically, this dynamics also contains a
stochastic component.

o weighting: samples obtained by previous step are then
weighted using the evidence P(Z*X*) (also called
likelihood) from the image Z*; at each sample 3(1)

is then assigned the weight 7’(()’ computed as 7"(4) =
Ztlxt = S(l))

At each time step ¢, the estimated model X* could be ob-
tained with a MAP approach, i.. by choosing the most
probable sample.

In our approach, we did not use the pixel as elementary
image entity, but the response of a circular Gaussian filter
of mean 0 and variance 1. These filters are spaced in the
image every 5 pixels, and are partially overlapped. The set
of the res;;onses of each filter at time ¢ yields the “image”

= {z"}.

The definition of the sample sf,) follows the idea of mul-

tiple blob tracker proposed in [6]: s{, is a configuration

p® = (1=t +pz® @ e e e L
2® = (1-p)d? (t-1) (m‘,xm,zm,...,xl'm:), where m} is the number of ob-
T jects, and z}’,- are the positions of the objects in the scene.
+ p (z ® - #(t)) (z(t) - #(t)) &) Each object is simply described with a vertically oriented el-

® L0 )

Rl u’U YUY

where p = aN' (zu,? jus
2.2 The particle filtering tracker

Due to lack of space, a comprehensive description of
this approach is not presented here, and only the general
ideas are introduced, mainly to setup the notation. Inter-
ested readers are referred to [$, 2, 6).

The particle filtering is a Bayesian approach, assuming
that all information obtainable from the image Z* about the
model X*, which represents the moving (foreground) ob-

lipse, centered on « , called £ (2%,5)- The dynamics (sec-
ond step of the algorithm) operates on the samples by pro-
cessing not only the objects’ positions, but also the number
of objects. In this way, the system is also able to track sev-
eral objects, managing also entities which are entering or
exiting in the scene. Finally, the likelihood of a configura-
tion s( ¢ is computed starting from the background response

L(z(')) = P(z(t) € FG), that represents the probability
that the filter n is foreground at time ¢. The likelihood is
zero for the configurations in which not all ellipses are cov-
ered by a sufficient foreground. For the others, the likeli-
hood is computed as:

jects in the scene at time ¢, is encoded in the posterior dis- P(ZYXt= stt)) = (6)
tribution P(X | Z*). This probability is approximated using
a set of samples {s( £ ‘)} where each sample represents L( FHON L(z®
- zZ
an instance of the model X* with a probability nf,,. The 2,,: ,,e%l ) ne% ) (=)

algorithm, in its general formulation, follows a set of rules
for propagating this set of samples over time. Basically, at
each time instant 2, the following steps are performed:

e sampling from prior (the poszenor of step t — 1).
L samples are chosen from {s(l) } with probability

where k is a normalization constant. In other words, a posi-
tive contribution to the likelihood of the sample st ¢) derives
from filters “covered” by the objects of st 7> Whereas the
others filters contribute negatively. In this way, the con-
figurations that correctly predict both the positions and the

13, obuaining {si '}. In this way, samples with number of objects in the scene have higher likelihood than
ﬁlwelght attimet f'nave higher probability to “sur- configurations that correctly predict only the positions of a
vive”. less number of objects.
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3 The integrated region and pixel-based ap-
proach

In this section, the proposed approach is detailed: first,
we describe how a TAPPMOG-based system is extended to
naturally incorporate spatial information and to be encapsu-
lated in the particle filtering framework; second, we explain
the strategy that uses region-based information to modulate
the pixel-based response, in order 1o obtain the background
response L needed by the tracking algorithm.

The starting point is a spatial segmentation of the back-
ground scene (for instance, obtained by segmenting, using
a region growing approach [1], the first frame of the se-
quence). The segmented image is defined as R = {R;},
1<i< M,and R; = {R}.. R'R"} where |R;| is the size
of region R; and R} is the n-th filter of the region R;. We
denote as z,(,i’t) the observation of the n-th filter of the i-th
region at time £.

The unmodulated pixel-level background response
L(2$") is naturally obtained by computing

L) =P (9 € F0) =3 uli? @

representing the probability that zni % js foreground, which

is assigned by the TAPPMOG module, i.e. before high-
level modulation. The weights w( *) are mixing coefficients
related to the j-th Gaussian of the mixture corresponding
to the n-th filier of the i-th region, at time ¢, It is worth
noticing that in this way the threshold T', present in the Eq.
(2), is not required anymore. The tracking algorithm uses all
information embedded in Eq. (7), without any loss derived
from the thresholding approximation.

Subsequently, the spatial information derived from seg-
mentation is used to modulate the low-level response, vary-
ing the learning parameter a in order to allow the system to
rapidly evolve in case of sudden change of the background.
The idea is to “accelerate”, when needed, the process of
adaptiveness of the low level module. For example, with
a sudden change in illumination, the most of pixels of the
interested region changes suddenly, thus obtaining a wrong
high probability to be foreground. Monitoring these sudden
changes, we can adapt leamning parameters in order to re-
cover from these situations. To do that, we define for each
region R; the approximate filling coefficient —7f ), that repre-
sents the probability, assigned by the low level module, that
aregion R; is foreground:

1R:} L( (i,t)
() - =1 Lz ™)
Y |R:| 8]

We define also the modulated filling coefficient 4, 5 in the
same manner, only using L(z(’ ‘)) instead of L(z ,t))

L(zs (bt )) represents the final estimate, after modulation, of
the probability of being foreground of the n-th filter of the
region R;. The computation of this quantity is described
later in this section.

Instead of having a fixed learning parameter a, we pro-
pose to have, at each time step ¢, a set of learning param-

eters a(t) one for each region R;. These coefficients are
computed with the following formula:

%7 —4¢)) ©)

where a is the TAPPMOG learning parameter of formulas
(3) and (4): this was fixed t0 0.7, value that permits to detect
also relatively slowly moving objects.

The quantity l'y(t) “(t )I represents a measure of

how much part of the reglon R; is changed from step t ~ 1
to step ¢. If this quantity is low, the low-level module
does not need rectification or adjustments. On the contrary,
when this quantity is high, a large part of the region R; has
changed rapidly, and, if the regions are sufficiently larger
than the foreground, this rapid change can be likely due
10 an illumination variation. In this case, the background
mode] must adapt very fast to this new situation, hence the
learning parameter should be increased. Moreover, this up-
surge of the speed of adaptiveness is not a priori fixed, but
depends on the rapidity and the globality of the background
change.

The increase of the adaptiveness speed means that, in the
update of the parameters, most of the importance is given to
the last observation (the one of the illumination change),
forcing it to become rapidly one of the background Gaus-
sians., This is correct if the whole region is background,
but, if foreground is present during the change, this update
is indeed wrong. In this case, the algorithm sets as back-
ground what is actually foreground, losing the foreground
in the scene. This is solved by using, in the updating pa-
rameter equations (Eq. (3) and (4)), the value () instead
of z( Y)_ This value is the weighted average of the observa-

tions z,(,’ ) of the filters of the region R;, each weighted by

its probability to be background at time stept — 1, i.e.,

ol = max (a,

IR-I
»(1. 1) — 2(1 L(z(t,t—l)))z(n t)

n—l

(10

where k is a normalization constant. In this way, the
system is able to detect the foreground also after the re-
parameterization of the background model. The use of this
averaged region-based value to update the model, instead
of using pixel-based (or filter-based) value, is actually rea-
sonable in that the segmentation used as prior knowledge
determines regions of gray-level similarity. Consequently,
by substituting each value in the region with the averaged
region value results in a approximation, indeed sufficient to
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recover from illumination change situations. This region-
based approximation is then refined in a couple of frames
by the usual time-adaptation of the TAPPMOG pixel-based
process.

If the learning parameter a‘(‘) is changed, the mixture
parameters of the whole region are adjusted accordingly.
From the update, we obtain new mixture paramelers’ es-
timates, 1Iz§.f;f),p§.:;f),&§";f) , and we re-compute the like-
lihood L, allowing an immediate correction and recov-
ery from illumination changes. The final modulated back-
ground response L, used by the tracker (Eq. (6)), is finally
computed as:

. L(z4) ifal) = o
L(z{) = NG : 11
(z") )P u')J(:,’f ) otherwise an

4 Results

The proposed approach was compared with [8] using dif-
ferent sequences, presenting or not illumination changes. In
the former case, no relevant differences were found between
the two approaches; more interesting is the latier case,
where the non uniform illumination change drastically af-
fects the TAPPMOG performances. One of such sequences
was obtained from [9], regarding the monitoring of an in-
door environment with one moving object . The sequence
is formed by 160 frames, acquired at 20 frame/sec. Some
of the frames of the sequence are presented in Fig. 1, show-
ing the illumination change, occurring at frames 83-84. The
initial spatial segmentation used in this experiment is shown
in Fig. 2. In Fig. 3, a comparison between standard TAPP-
MOG method as in [8] and the proposed approach is pre-
sented (white pixels represent the foreground). We can no-
tice that, in correspondence of the sudden change of illu-
mination (frames 83-84), the TAPPMOG method identifies
almost all pixels in the scene as foreground. This is obvious
as the per pixel process recognizes only the pixel gray level
variation. With our approach, the use of the spatial high-
level information permits the detection of the globality of
the change, recovering in real time the correct background.
We can also notice that when the foreground object actu-
ally comes in again in the scene at frame 100, our approach
succeeds to distinguish it (right of the images of the right
column of Fig. 3), whereas the TAPPMOG method succeed
to discriminate it after a certain latency, only at frame 112.
More precisely, the TAPPMOG approach needs 28 frames
for the adaptation to the change of illumination, whereas
in the proposed approach the recover is immediate. This is
confirmed by results obtained applying tracking procedure,
proposed in figure 4. We could notice that, before the illu-
mination change, the object (identified by the red ellipse) is
correctly tracked by both methods. After the change, in-
stead, the background response given by the TAPPMOG

frame 84 frame 110

Figure 1. Frames from the test sequence.

Figure 2. Spatial segmentation of the back-
ground.

module is not-informative, and the tracker is not able to de-
tect the incoming object. With our approach, instead, the
response of the background module is correct, and the ob-
ject is correctly tracked. It is worthwhile noticing that the
obtained results are similar 1o those proposed in [9]: never-
theless, our approach, as [8], could be executed in real time,
whereas [9] runs off-line.

5 Conclusions

In this paper, a novel method for background modelling
is proposed. The idea is 10 modulate pixel-based informa-
tion with higher level region-based information, represented




Proceedings of the Workshop on Motion and Video Computing (MOTION’02)
0-7695-1860-5/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER
SOCIETY

Figure 3. Response of the background model:
(left) standard TAPPMOG module; (right) the
proposed approach.

by a spatial segmentation of the background scene. This
modulation results in a variation of the adaptiveness speed
of the background modelling system driven by region-based
reasoning. The presented system is naturally and effectively
integrated in a probabilistic multi-object tracking frame-
work, namely, the particle filtering, which allows a seam-
less management of the available information, and avoids
the use of heuristic thresholds (indeed utilized in the classic
approach). Experimental results have shown that our ap-
proach is able to effectively recover from sudden changes
in the illumination of the scene.
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