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Abstract 

In Computer Vision, two-dimensional shape classifca- 
tion is a complex and well studied topic, often basic for 
three-dimensional object recognition. Object contours are 
a widely chosen feature for representing objects, useful in 
many respects for classifcation problems. In this paper; 
we address the use of Hidden Markov Models (HMMs) for 
shape analysis, based on chain code representation of ob- 
ject contours. HMMs represent a widespread approach to 
the modeling of sequences, and are largely used for many 
applications, but unfortunately it is poorly considered in lit- 
erature concerning shape analysis, and, in any case, with- 
out reference on noise or occlusion sensitivi9. In this paper 
HMM approach to shape modeling is tested, probing good 
invariance of this method in term of noise, occlusions, and 
object scaling. 

1 Introduction 

Object recognition, shape modeling, and shape classi- 
fication constitute active research areas in computer vision. 
Moreover, these issues are receiving a growing attention due 
to the advent of visual databases and the related necessity to 
retrieve information not only by using textual queries, but 
also on the basis of the image content. 

Three-dimensional (3-D) object recognition has been 
faced by a large number of different approaches [I]. Among 
these, many techniques are based on the analysis of two- 
dimensional (2-D) aspects (images) of the objects, and a 
large literature can be found on 2-D shape classification or 
planar object recognition. A basic issue to be solved first 
consists in the type of representation of the object, i.e., the 
features to be used to describe it. Object contours are widely 
chosen features, as they are easily estimated from an im- 
age and well represent the semantic information also from 
a perceptual point of view. Different types of approaches 
have been proposed in the previous years, like, Fourier de- 
scriptors, chain code, curvature-based techniques, invari- 
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ants, auto-regressive coefficients, Hough-based transforms, 
associative memories, and others, each one featured by dif- 
ferent characteristics like robustness to noise and occlu- 
sions, invariance to translation, rotation and scale, compu- 
tational requirements, and accuracy [ 11. 

In this context, this paper tries to investigate the capa- 
bilities of the Hidden Markov Models (HMMs) for shape 
classification, where shapes are represented by contours ex- 
pressed using Chain Code [2]. Hidden Markov Models rep- 
resent a widespread approach to the modeling of sequences 
as they attempt to capture the underlying structure of a set 
of symbol strings. HMMs can be viewed as stochastic gen- 
eralizations of finite-state automata, when both transitions 
between states and generation of output symbols are gov- 
erned by probability distributions [3]. 

The basic theory of HMMs was developed by Baum et 
al. [4, 51 in the late 1960s, but only in the last decade it 
has been extensively applied in a large number of prob- 
lems. A non-exhaustive list of such problems consists of 
speech recognition [3,6], handwritten character recognition 
[7 ] ,  DNA and protein modelling [SI, gesture recognition [9] 
and, more recently, behavior analysis and synthesis [ 101. 

The use of HMM for shape analysis has not been widely 
addressed. Only a few work have been found to have some 
similarities with our approach. In the first, He and Kundu 
[ 171 utilize HMMs to model shape contours represented by 
auto-regressive (AR) coefficients. Results are quite inter- 
esting and presented in function of the number of HMM 
states ranging from 2 to 6. Another method [ 111 proposes 
the use of circular HMM for shape classification. This par- 
ticular HMM topology allows to achieve good classifica- 
tion accuracy with respect to scaling and deformations, also 
presents useful characteristics for the model training and 
testing. However, in both work, no examples using noise 
are reported and, although sensitivity to occlusions is an- 
alyzed, shapes are constrained to be a closed contour also 
in these cases. Another work, presented in [12], addresses 
shape recognition comparing HMMs and a syntactic model- 
ing technique based on stochastic finite-state grammars. No 
particular original solutions for the HMM design are pro- 
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posed, the goal of this work was to show the superiority of 
HMM with respect to the other method. 

Although HMMs are largely used for some interesting 
characteristics like, e.g., the possibility to be trained by a 
formal algorithm which converge safely, and their implicit 
generalization capability, there are some drawbacks that are 
not raised or are disregarded by the literature. For instance, 
it is not clear how to design the model topology for a given 
problem. Moreover, the correct training is not always as- 
sured because the learning algorithm converges on local 
minima, so that initial conditions may heavily affect model 
performances. Other problems arise depending on the tack- 
led application. 

In this paper, we will investigate the capability of HMMs 
in discriminating object classes, showing its performances 
with respect to noise, scale, occlusions, and, preliminarly, 
rotation. It is worthwhile noting that our approach does not 
relies on any specific HMM topology or particular training 
algorithm, nor object shapes are constrained to be closed, 
represented using a specific number of symbols, or always 
start from a fixed point. In our case, HMM are trained using 
the classic Baum-Welch method without any assumptions 
on the model topology. Actually when objects are occluded, 
the resulting boundaries are not necessarily closed, and, in 
this sense, our algorithm classifies any (closed or open) 
symbol string. All these features, together with the promis- 
ing performances achieved, make the proposed method an 
interesting alternative to the typical shape classification al- 
gorithms. 

The rest of the paper is organized as follows. In Sect. 2,  
a formal description of the HMM, and the related training 
phase are reported. The description of the boundary extrac- 
tion and representation phases, and experimental results on 
a small set of objects are presented in Sect. 3. Finally, Sec- 
tion 4 contains conclusions and future perspectives. 

2 Hidden Markov Models 

An HMM is formally defined by the following elements 
r31: 

A set S = {SI, S2, . . . , S,} of (hidden) states. 

A state transition probability distribution, also called 
transition matrix A = {a i j } ,  representing the proba- 
bility to go from state Si to state Sj. 

15 i , j  < N (1) aij = P[qt+1 = SjlQ = Si] 

with aij 2 0 and E,”=, aij = 1. 

A set V = { 01,212, . . . , VM} of observation symbols. 

An observation symbol probability distribution, also 
called emission matrix B = {b j ( l c ) } ,  indicating the 

probability of emission of symbol ‘Uk when system 
state is Sj. For 1 5 j 5 N ,  1 5 IC 5 M ,  

bj(IC) = P [ W k  at timet 1qt = Sj] (2) 

with bi(IC) 2 0 and C,”il bj(IC) = 1. 

resenting probabilities of initial states. 
0 An initial state probability distribution n = { n i } ,  rep- 

(3) ni = P[ql = Si] 1 < i < N 
with ni 2 0 and ELl ni = 1. 

For convenience, we denote an HMM as a triplet X = 
(A ,  B ,  T), which determines uniquely the model. 

An HMM can be classified into one of the following 
types, in the light of its state transition matrix: ergodic 
HMM, when HMM has full state transition matrix, or left- 
right HMM, when HMM has only partial state transition 
matrix such that aij = 0, V j  < i; this second type is usu- 
ally used in modeling sequential signals. 

There are three main problems involved with HMM use: 

1. Given the HMM X = ( A ,  B,  n), we want to compute 
P(OIX), i.e. the probability that an observation se- 
quence 0 = 0 1 , 0 2 , .  . . , OT (with Ot E V )  is gen- 
erated by the model A. This usually is solved using 
the so called forward-backward procedure [ 5 ] .  This 
method makes use of two inductively computed vari- 
ables at(i)  and Pt(i), called respectivelyforward and 
backward variables, defined as: 

at(i) = P(01 ,02 , . . . ,O t ,q t  = &(A), that is 
the probability to have observed partial sequence 
01, . . . , Ot at time 1 , 2 ,  . . . , t and being in state 
Si at time t ;  
h ( i )  = P(Ot+i,Ot+2.-.,OT,qt = SilX), that 
is the probability to be in state Si at time t and to 
observe partial sequence Ot+l, Ot+2, . . . , OT at 
time t + 1 , .  . . , T .  

P(0IX) is then computed as EL1 at(i),&(i) (for 
each t). 

2.  Given the model X = (A1Blr), we want to deter- 
mine the sequence I = { i l ,  i 2 , .  . . , i ~ }  (1 < it < 
N )  such that P ( 0 ,  I l X )  is maximum with respect to 
I .  In other words, we want to compute the state se- 
quence that most probably generates the observation 
sequence 01, 0 2 ,  . . . , OT. This problem is resolved 
by the Viterbi Algorithm [13, 141. It is an inductive 
algorithm that at each instant t determines the optimal 
(i.e., the one leading to the maximum probability) state 
sequence to obtain 0 1 , 0 2 ,  . . . , OT. At each instant, it 
chooses from a set of N probabilities (one for each 
state), the probability of obtaining 01, 02, ‘ . . , Ot and 
to be in state Si. 



3. Given a set of L observation string {O,}e, 1 5 t <!T,  
1 5 e _< L, we want to determine X = ( A , B , x )  
such that P({Ot}elX) is maximized: this is the prob- 
lem of training an HMM. The best-known method to 
perform this operation is the so-called Baum- Welch re 
estimation technique [4]. It is an iterative procedure 
that at each step adjusts model parameters according 
to P(OIX), computed on their previous values. More 
precisely, it is based on Expectation-Maximization 
(EM) algorithm [15, 161, and it tries to maximize log- 
likelihood of the model with respect to the data. 

l -  
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3 Experimental results 

3.1 Chain Code representation 

Chain Code is a well-known method to represent con- 
tours; it specifies the direction of a contour at each edge in 
the edge list. Directions are coded into one of eight direc- 
tions, as shown in Fig. 1. In other words, a contour is coded 

pixel of 
interest 

Figure 1. Code rule for assigning chain code 
to each edge point. 

by a generic initial point and a symbol string: each sym- 
bol indicates the direction of the following point in the con- 
tour. Chain code representation presents some interesting 
inherent characteristics like discrete invariance to rotation 
(if code local differences are considered) and translation. 
Given an image of 2D objects, in our work data are gath- 
ered assigning at each object its chain code, calculated on 
object contours. Edges are extracted using Canny edge de- 
fector [18], while chain code is calculated as described in 
113. 

3.2 Results and discussion 

In this section, HMM approach for shape modeling is 
tested, particularly in the case of noise, partial views and 
scaling. The test image is shown in Fig. 2. Classification 
was performed as follows: for each object we extract edges, 
calculate the related chain code and train an HMM on it. 
This means that HMM parameters are estimated by using 

Figure 2. Original image used for experi- 
ments. 

the object chain code sequence as input to the HMM. At 
the end of the learning session we have one HMM model, 
Xi ,  for each object. Given a sequence 0 to be classified, 
we compute, for each model Xi, the probability P(OJXi) 
of generating the sequence 0, using the forward-backward 
procedure. The sequence 0 is then classified as belong- 
ing to the class whose model shows the highest probability. 
Each HMM learning started using random initial estimates 
of A, B and x and ended when likelihood is converged or 
after 100 training cycles. The Baum-Welch training algo- 
rithm converges at local maxima of the likelihood function: 
the convergence of this technique for actual absolute max- 
ima strongly depends on initial estimates of parameters. To 
avoid the problem of choosing adequate initial condition, it 
is customary to perform HMM training by utilizing several 
learning sessions (in our case, five sessions were utilized), 
and choosing the one presenting the maximum likelihood. 

Classification accuracy of the system was tested by cre- 
ating three test sets, each one referring to one particular as- 
pect (occlusion, noise and scale). The first set is obtained 
considering, for each object, fragments of their chain code 
of variable length, expressed as percentage rate of the whole 
length. It varies from 40 to 95 percent (i.e. occlusion de- 
creases from 60% to 5%), and the point where fragment 
starts was randomly chosen. This experiment aims at quan- 
tifying robustness of HMM to object occlusions. It is worth 
noting that the random choice of the initial point is impor- 
tant for assessing the invariance from the specific object 
part occluded. Examples of occluded object are shown in 
Fig. 3(bl)-(b4), at varying occlusion levels, that are re- 
spectively 60% (of object occlusion), 45%, 25% and 10%. 
For each occlusion level 150 sequences are generated, and 
classification accuracy is computed as percentage rate given 
by the number of correctly classified objects versus the total 
number of objects. In Table l(a) these rates are reported, in 
function of the occlusion level. One can notice that the ac- 
curacy is very satisfactory, even for high occlusion factors: 
up to 20 percent occlusion, object are correctly classified 



Figure 3. Images used for experiments: (bl- 
b4) examples of occluded images, at increas- 
ing degree of occlusion: (cl-c4) examples of 
noisy images, at increasing level of noise. 

in every case. Moreover, HMMs are able to perform very 
good classification (over 90%) even seeing less than half of 
object. Clearly classification accuracy decreases when oc- 
clusion level grows, remaining, nevertheless, on very good 
levels. 

The second set is obtained by adding synthetic noise to 
each chain code, using the following procedure: for each 
object, each code is changed with fixed probability P ,  i.e. 
if cci is the i-th symbol of the original code, the change 
(((cci - 1) f 1) mod 8) + 1 is carried out, with probability 
P.  Probability ranges from 1% to 19%, and, for each value, 

Occlusion 
level (%) 

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 

Noise 
level (%) 

10 
13 
16 
19 

Classification 
Accuracy (%) 

100.00 
100.00 
100.00 
100.00 
99.33 
98.00 
98.67 
97.33 
94.67 
90.00 
89.33 
85.33 

Classification 
Accuracy (%) 

100.00 
98.00 
90.00 
90.67 
92.67 
84.67 
84.67 

I Scale I Classification 1 
factor Accuracy (%) l+l 

loo.oo I I 4 I 100.00 
3 

Table 1. Classification accuracy on: (b) oc- 
cluded set, varying occlusion level; (a) noised 
set, varying noise level; (c) scaled set, vary- 
ing scale factor. 

150 sequences are generated. In Fig. 3(cl)-(c4) examples 
of noisy images are shown, for noise level equal to 1 %, 7%, 
13% and 19%, respectively. Results of the tests are shown 
in Table 1 (b): one can notice that classification accuracy re- 
mains high, even when noise level increases. Up to 13% of 
noise level, the accuracy remains over 90%: a good result if 
compared with degradation of objects shown in Fig. 3(c3). 

The third set is obtained by scaling objects by factor 
2, 3, and 4. Classification accuracies are shown in Table 
1 (c). The algorithm works perfectly on scaled objects, giv- 
ing 100% accuracy. 

In our work we have tried to exploit also invariance of 
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j 
HMM for object rotation. It is known that using differential 
chain code, calculated by local differences of code, we can 
obtain invariance over rotations of angles that are multiple 
of 45". To obtain invariance for other rotations our approach 
was to learn each HMM on all 45" views of each object; we 
then test our system on 30" views, obtaining an accuracy 
of 86.7%. This preliminary result shows that when chook- 
ing suitable contour representation, HMMs can accurately 
classify also rotated objects. 

4 Conclusions 
I 

In this paper H M M  is used for 2D shape classification, 
where shape is modeled using chain code. One  H M M  was 
trained'for each object chain code, with states varying from 
3 to  12. The method was tested using object partially oc- 
cluded, noised or scaled, showing good performances on 
examples proposed. 
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