A PRAGMATIC INTERPRETATION OF SUBSTRUCTURAL LOGICS

GIANLUIGI BELLIN AND CARLO DALLA POZZA

Abstract. Following work by Dalla Pozza and Garola [2, 3] on a pragmatic in-
terpretation of intuitionistic and deontic logics, which has given evidence of their
compatibility with classical semantics, we present sequent calculus system ILP
formalizing the derivation of assertive judgements and obligations from mized con-
tezts of assertions and obligations and we prove the cut-elimination theorem for
it. For the formalization of real-life normative systems it is essential to consider
inferences from mixed contexts of assertions and obligations, and also of asser-
tions justifiable relatively to a given state of information and obligations valid in
a given normative system. In order to provide a formalization of the notion of
causal implication and its interaction with obligations, the sequents of ILP have
two areas in the antecedent, expressing the relevant and the ordinary intuitionistic
consequence relation, respectively. To provide a pragmatic interpretation of rea-
soning with the linear consequence relation we consider the deductive properties
of pragmatic schemes where the operators of illocutionary force are unknown (free
logic of pragmatic force). We introduce an auxiliary system ILLP which formal-
izes such a logic, and has substitution rules that allow us to derive the desired
mixed sequents. It is shown that in order to permit non-uniform susbtitutions
and to preserve Hume’s law (the underivability of obligations from truth-asserting
judgements only and the potential ineffectuality of norms) ILLP must indeed be
based on the linear consequence relation. It is also argued that the above uses
of linear and relevant logics are perfectly compatible with a theory of pragmatics
in a classical semantical setting and immune from popular confusions about the
intuitive interpretations of substructural logics.

§1. Preface. Most forms of human reasoning can be formal-
ized and those which deserve such a treatment also benefit from
it. Not all philosophers may agree with such a statement, but
never mind: the most distinguished opponent of the formalization
of mathematical reasoning in the 20th century, Brouwer, was luck-
ily contradicted by his followers and sympathisers, to whom we
owe the beautifully insightful constructions of intuitionistic logic,
from Heyting’s axiomatization and informal semantics of proofs

to Gentzen and Prawitz’s natural deduction NJ, from Curry and
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Howard’s correspondence between NJ and the typed lambda cal-
culus to categorical logic, and so on and on. Today formal logic has
been developed to represent a large variety of forms of reasoning;
even such branches as deontic logic, which in the 1950s was the
territory of a very small group of logicians, have now become pop-
ular and found applications, e.g., in Artificial Intelligence. Does
this lush development threaten the idea(l) of the unity of logic?

1.1. A simple observation about the development of formal logic
may give reassurances about “the unity of logic”. Many math-
ematical systems receiving the name “logic” prima facie do not
deserve it. But the considerations which justify regarding such
systems as logics also show their compatibility with the main body
of logical theory. A formal system may be properly regarded as a
logic (within the framework of a commonly accepted logical the-
ory) only if it adequately represents pre-formal forms of reasoning
which actually occur in human practice and can be shown to be
correct and compatible with the standard forms of reasoning (as
defined by the logical framework in question). For instance, in the
predominant framework of classical logical theory, logic has to do
with propositions, and propositions are objects which a truth-value
can be assigned to: this does not mean that the only possible logic
is a theory of propositions, but rather that other aspects of logi-
cal theory, e.g., a theory of judgements, must be shown to be in
harmony with the logic of propositions classically understood.

There are forms of reasoning, e.g., reasoning with defaults, whose
formalization is convenient for applications to Artificial Intelli-
gence, although strictly speaking they ought to be regarded as
fallacious and would indeed lead to fallacy if their range of appli-
cation wasn’t clearly defined. The “user manual” for such logics
(implicitly or explicitly) contains a translation into the syntax and
the semantics of ordinary propositional or first-order theories. In
this way, “default logics” are shown to be no threat to the “unity
of logic”.
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1.2. There are good reasons to believe that the garden of logic is
not in danger of degenerating into a wild and impenetrable jun-
gle. For instance, only those who see an irreconciliable opposition
between classical logic and “deviant logics” may be tempted to
mount crusades against the intuitionistic troublemakers or the clas-
sical imperialists, respectively, in the name of “the unity of logic”.
But there is a more interesting way of looking at this opposition,
namely, to ask whether classical and intuitionistic logic are about
the same aspects of reasoning and, if not, what they are about.
An answer may be given by recalling Frege’s distinction between
propositions and judgements (or assertions): in [2] the second au-
thor has argued that Heyting’s interpretation of intuitionistic con-
nectives applies not to propositions but to the relations between
illocutionary acts, such as assertions, commands, etc. Propositions
are true or false. lllocutionary acts are justified or unjustified. But
the illocutionary act of assertion can be justified only by a proof of
the proposition expressed in it: a mathematical proof in the case
of a mathematical assertion, or some kind or empirical evidence
in the case of an empirical assertion. Proofs in classical logic use
semantical properties of propositions given by the truth-functional
semantics of connectives as a method of justification. This method
of proof is not allowed intuitionistically: here the justification of an
intuitionistic formula is built up according to Heyting’s interpre-
tation of intuitionistic connectives starting from proofs of atomic
propositions, thus from non-logical proofs. But if we restrict the
content of assertions to atomic propositions, then truth-functional
interpretation of the connectives is never used as a tool for the jus-
tification of judgements; thus the restriction on the propositional
content of judgements is sufficient to guarantee that restricted ex-
pressions are constructively interpreted. If this is correct, then
intuitionistic logic is a special case of the logic of judgement.

Intuitionistically minded philosophers question the distinction be-
tween truth and provability. The point of view expressed in [2] is
that a proof can only be a proof of the truth of a proposition: here
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“truth” is meant in the sense of Tarski’s semantics as “truth-as-
correspondence”, and is regarded as an ontologically neutral no-
tion.! This amounts to saying that the classical notion of truth is
prior to the notions of proof and hence of justification and, more-
over, that the logic of judgement is an extension of the classical
logic of propositions.

1.3. A similar treatment can be given of other illocutionary acts:
for instance, prescriptions are regarded as propositions pragmati-
cally used in a prescriptive way. Among these, norms are imper-
sonal prescriptions [3]. Indeed when we speak of illocutionary acts
as assertions and norms, we regard them abstractly, i.e., imperson-
ally: we are not considering an assertion made by Bill in a given
situation with obvious physical limitations on information retrieval
and on the capacity of inferring the consequences of a given body
of knowledge, but the assertion of a proposition which could or
could not be justifiedly made, given existing scientific information.
Similarly, we are not interested in a command given in a given
situation by Bill, a person in position of legitimate authority, but
limited in his capacity of judgement and subject to “weakness of
the will”; rather we are interested in the command that Bill should
have given in the framework of the normative theory he operates in.
A logic of assertions and norms along these lines is an attempt to
extend the domain of logic beyond the class of expressions to which
a truth-value can be assigned and to create a formal pragmatics,
i.e., a logic of illocutionary acts.

Extending Frege’s theory (later developed by Reichenbach), in Sec-
tion 2 we define a formal language for pragmatics £F, containing
not only formulas + a (“«a is assertible”) and o- a (“« is obliga-
tory”) but also formulas +, o and oy «, which express assertions
justifiable depending on a system of knowledge k£ and norms valid
relative to a normative system N, respectively. The main novelty
of the language L is the presence of connectives representing re-
lations between illocutionary acts, in addition to the connectives
of classical logic. As indicated above, the pragmatic connectives

! The philosophical position adopted here seems to us in agreement with the
point of view expressed by Professor Solomon Feferman in many occasions, in
particular in his review of Prawitz [12] in the J.S.L.[5].
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are given Heyting’s “semantics of proofs”. A formula is called
pragmatically valid (or p-valid) if it represents relations between
illocutionary acts which hold in all circumstances. Like the notion
of provability in Heyting’s semantics, the notion of justifiability is
informal.

In previous papers [2, 3] Hilbert-style deductive systems for the
pragmatic language £ have been given, in which classic, intu-
itionistic and deontic logics are representable. In particular the
pragmatic operator of obligation has the following properties:

(i) It satisfies the axiom of classical deontic necessitation:

if Bi,...,0,Fa then o f,..., 08, = o«

namely, “if a is a truth-functional consequence of B1, ..., Bn,
then o-« follows from o- By, ..., o (3,”.
(ii) The class of obligations is consistent:

o-(pA-p)= +(pA-p)

namely, “if an absurdity is an obligation then an absurdity is
Justifiably assertible”.

(iii) The principle “o- «a or not o- a” is a fact about normative
systems, not a law of logic.

Notice that (iii) is a departure from the tradition of systems such
as KD in harmony with our Heyting-style interpretation of the
pragmatic connectives.

Notice also that, unlike the case of assertions, it is not assumed
that the justification of an obligation ultimately lies in the recog-
nition of the truth of the proposition expressing the content of the
obligation. Even in a cognitivist approach to ethics where “bonum”
and “verum” ultimately meet it would be counterintuitive to pos-
tulate that the class of propositions expressing moral obligations
coincides with the class of true propositions: the former is rather
be a proper subclass of the latter. It is the task of ethical theory to
characterize these nonlogical axioms and what counts as a justifi-
cation for regarding these axioms as obligations. The task of logic
is to guarantee that logical inferences may be correctly performed
from the axioms.
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1.4. There is a hitch in our treatment of pragmatic obligation: in
reality, legal obligations are always expressed as conditional state-
ments of the form: “f B is the case, then « s obligatory”. In
coherence with the above discussion, here conditional normative
expressions must have the form “if 5 is assertible, then o is oblig-
atory”, where “B is assertible” means “there is a proof of 3” rather
than “t is the case that 5”7. It is not a problem to express such
statements as non-logical azioms within the frame of the existing
systems for £F However, as soon as mized contexts are introduced,
it becomes natural to ask whether in a sequent calculus for £LF we
need bridging principles for assertive and deontic judgements such
as

(x0) o-a, r(a—=f) = o .
or
(%8) o-a, (ra D rf) = o f.

Notice that (*0) is problematic, because a proof in classical logic
of  — B may be too weak to convert a justification of o- « into a
justification of o- 3: from evidence that “if Hitler is dead, then the
Titanic has sunk” and the assumption “Hitler ought to have died”
we do not intuitively infer the conclusion “the Titanic ought to have
sunk”. On the other hand, let us consider (*§): intuitionistically,
Fa D r (3 is justified if there is a method to convert any proof of the
truth of « into a proof of the truth of 5. But what kind of method
is needed to transform a justification of o- « into a justification of
o- B according to our intuitions about justified obligations? It is
not difficult to show that in £F the formula

Fla=p)=(radrp)

is p-valid. It follows that, if we accept classical logic, we cannot
accept (*§) without also accepting (x0). (Of course, if &« — [ is a
tautology, then also +a D+ and o a D o- [ are p-valid, see [3],
so the problem does not arise.)

However, there is a sense in which principle (%§) is plausible (at
least to some logicians in this area): this is the case whenever the
method that converts any proof of the truth of a into a proof of
the truth of 8 is based upon a principle of causality. Suppose «
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causes [3; then from a proof of this relation of causality and from
the obligation that o we conclude that g is obligatory. Let us use
the special sign “©” to indicate this special (causal) case of the
intuitionistic implication. The principle (x§) becomes

(§) o-a,(ra @rf)= o f.
which is intuitively plausible.

In our framework we would like to have rule of deontic necessitation
so as to derive sequents of the form (§). Clearly, it should not be
possible to derive

(x1) Fp=o-p

because of a formal constraint which we may call Hume’s Law:
“we cannot derive an ought from an is”.? Indeed stronger formal
constraints are needed: “we cannot derive an ought from an is and
from oughts that are irrelevant”. Otherwise, we could derive the
undesirable sequent

(x2) o-q, +p = o p

where p and ¢ are atomic. Moreover the following sequent is coun-
terituitive:

(x3) ra, (o-aDo-f) =+ [

as obligations may be ineffective. In general, “we cannot derive an
is from a relevant ought”.

We have extended the language £”, by introducing a new connec-
tive © of causal implication. We need to show that this extension
is compatible with our framework of logical theory of propositions
and judgements. An expression +« o + [ is justified if and only
if va D+ [ is justified as an instantiation of a first order expres-
sion - Vz(p(x) — x(x)) which expresses a scientific law, where
a = ¢(t) and B = x(t) for some objects t. Of course, it is the task
of epistemology to identify the universal statements which express
scientific laws.

2Tt should be clear from the discussion in section 1.3. above that such a
formal constraint does not rule out the possibility of expressing a cognitivist
approach to ethics within £.
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Now the rule
I'=ra

'=+r82ra

is clearly inadmissible for causal implication (when r /3 does not
occur in the contex I') and this show that a sequent calculus for
causal implication cannot admit the unrestricted rule of Weaken-
ing.

1.5. We need a deductive system in which the logical properties
of causal implication and of ordinary intuitionistic implication can
be presented in the same context. This system may be regarded as
a framework where new deductive principles, corresponding to in-
tutively p-valid expressions, can be safely added. Here we present,
a new sequent calculus ILP~ for the intuitionistic fragment of L7,
inspired by Girard’s LU [7]. Sequents have two areas in the an-
tecedent:

';: A=9

In the internal area (where A lies) and in the succedent formu-
las are introduced according to the familiar rules of inference of
Gentzen’s intuitionistic sequent calculus LJ. In the external area
(where T" lies) Weakening is not allowed; formulas can be intro-
duced here by the axiom “ex falso quodlibet” or by the logical rule
left causal implications; moreover, the rule right causal implica-
tions is correct only with the crucial restriction that the internal
area should be empty. In particular, it is incorrect to infer a causal
implication through the use of the axiom ez falso quodlibet”:

51,P; /\,A:>52
P; /\,A:>51 D 09

(where A is the symbol for absurdity, d1, do are formulas and I"; A
sequences of formulas of £7).)

In the setting of ILP~ we can safely introduce the deductive
principles characteristic of the system ILP:

causal implication - obligation
AL = p
o-AZ; = o f
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where + A is a sequence of assertions of atomic formulas + « and Z
is a sequence of formulas of the form (r oy @ ... (ra, @ +f3)...),
i.e., built from atomic assertions using positive causal implications
only.

On one hand it is easy to see that the system ILP solves the
problem of deriving the new deductive principles, without deriv-
ing the undesirable ones. Other extensions are possible along the
same lines, as we shall see below. On the other hand the use of
relevant logic (or any other substructural logic) may be regarded
with suspicion by those who believe that no satisfactory account
has been given so far of substructural logics in the framework of
logical theory: in this case substructural logics themselves may
be regarded as a threat to the “unity of logic”. For this reason
we shall consider reasoning with the linear consequence relation,
where not only Weakening but also Contraction is in general not
allowed, and try to provide an interpretation of such forms of rea-
soning that shows their compatibility with the framework of the
logical theory of propositions and assertions sketched above.

1.6. Linear logic is presented as a “refinement” of both intuition-
istic and classical logic. It is based on the linear inference relation
which rules out the structural rules of Contraction and Weakening,
except for formulas prefixed with special modalities, the exponen-
tial operators. Many features of intuitionistic logic are extended
in a very interesting way to linear logic: the denotational seman-
tics of coherent spaces, the categorical semantics of intuitionistic
linear logic, the game-theoretic semantics are all important “refine-
ments” of ideas developed for intuitionistic logic and the typed A
calculus. Moreover, classical logic can be represented within linear
logic in many ways, but in such representations the proof-theory
of classical logic acquires the properties of strong normalization
and convergence of normalization which are notoriously lacking in
Gentzen’s classical sequent calculus LK. The list may be extended
with several significant items, but all of them are mathematical
properties which do not give an answer to the question: what s
linear logic about?

In [8] the following explanations are given:
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“classical and intuitionistic logic deal with stable truths:
if Aand A= B, then B, but A still holds.

This is perfect in mathematics, but wrong in real life,
since real implication is causal. A causal implication can-
not be iterated since the conditions are modified after its
use; this process of modification of the premises (condi-
tions) is known in physics as reaction.”

The suggestion is that in everyday reasoning the use of a causal
implication modifies the deductive context in the same way as in a
physical process the application of a causal law modifies the pre-
conditions. The notion of “causal implication” is related here to
the notion of assumptions as “deductive resources”. Now in proof-
theory we may give a technical sense to the expression “deductive
resources”, but it is less clear how an act of assertion may be “con-
sumed” during an argument. What is worse, the popular examples
commonly cited to suggest a natural language interpretation seem
to imply a confusion between logic and its domain of application:
for instance, the formula “two atoms of hydrogen and one of oxygen
yield a molecule of water” is quoted to suggest that the meaning
of “yield” in the chemical sense could help clarify the logical no-
tion of causal implication and could give an example of reasoning
where the rules of Weakening and Contraction do not apply. It
is therefore a lucky circumstance that an interesting example of
the role of linear logic as an auxiliary system in philosophical logic
may come from the development of a formal pragmatics for mized
assertive and deontic deductive contexrts: we shall show that in
this theory it becomes natural to prohibit the unrestricted rules of
Weakening and Contraction, without making appeal to the notion
of “deductive resource”, but preserving Girard’s intuition of linear
implication as causal implication. Such an example should give re-
assurances about the status of linear logic in the general framework
of logical theory.

1.7. The main idea of this paper is that the linear consequence
relation expresses the deductive properties of pragmatic schemes
where the operators of illocutionary force are unknown and their
specification is not required to be uniform. Let us write « « for an
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illocutionary act whose propositional content is o and whose force
is unspecified. We want to define a formal theory of illocutionary
acts under such restrictions, a system which may be called the free
logic of pragmatic force. Notice that in the popular interpreta-
tions, linguistic acts interpreting atomic expressions of linear logic
are single events, while those interpreting the atoms of intuitionis-
tic logic are repeatable events: in some sense the former are more
concrete entities than the latter. On the contrary the atoms of lin-
ear logic are interpreted here more abstractly than the assertions
and obligations denoted by the atoms of the intuitionistic logic of
pragmatic force. Therefore in our “intended interpretation”, linear
logic is about more “abstract” patterns of reasoning than those of
standard logical systems.

To see that Contraction is not generally valid in such a free logic,
consider the rule
ca, ca, ' = A

*

() ea, ' = A

and notice that in the premise we may want to replace the first
«a with + a and the second with o- a. (Of course, the inference
(*) would be valid if the substitution [+ a/ «a] or [ o- a/ « a] was
uniform in both the sequent-premise and the sequent-conclusion!)

To see that Weakening is not generally valid, consider that from
. p io p
*q,*p=°Dp
through non-uniform substitutions we could derive (x2), which is
unacceptable by Hume’s law. Also we could derive

op:}oq —oop

and this is inadmissible, if from the free logic by suitable substi-
tutions we want to recover the notion of causal implication. But
then the free logic of pragmatic force must also take into accout
the relation of relevance between assumptions and conclusion, and
thus it cannot allow unrestricted uses of Weakening.

1.8. Next we must show how intuitionistic forms of reasoning of
the system ILP~ can be represented in the context of the linear
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consequence relation and how the deductive principles character-
istic of ILP can be implemented. This task may be achieved in
several ways (for a possible alternative, see [13]). Here we take
the familiar system ILL of intuitionistic linear logic and extend
it with an exponential “1.”, loosely inspired by B. Jacob [10]: to
expressions of the form !.a the rule of contraction applies, but not
the rule of Weakening. We define the language £f and the sequent
calculus ILLP of Intuitionistic Linear Logic for Pragmatics.

The language £¢ is that of intuitionistic linear logic ILL where
atoms are of the form « o, extended with implicit substitution op-
erators, regerded as “pragmatic modalities”. Such an operator,
e.g., (\), turns a linear formula )\ into a pre-sentence ¢ and in-
dicates a possible replacement of the symbol “¢ with the actual
sign of illocutionary force “+ (similarly for the other operators
(A) "5 (A) @ and (A) @), Now given any “suitable” translation
of IL into ILL, (where the symbol “!.” is used instead of “!” in the
translation of causal implication) we consider the resulting map

[ ]°: L8 — !

and we stipulate that an implicit substitution indicated by our op-
erators is realized only for those expressions of Lt that are trans-
lations of formulas of LY. We indicate the result of an actual sub-
stitution with (A 7). For instance, a “suitable translation” yields

[ ] ra,ra@rf=r8 +— leal(leea—ol ef)=1 00

and the principle (§) becomes
(o) (L(leea—o ! eB) "= (1.4 8) &

Moreover the rules of ILLP are the familiar ones for ILL, extended
with the obvious ones for “!.” and also with substitution rules: the
latter are similar to the exponential rules of linear logic and allow
us to derive sequents X = ¢ where X is a sequence of pre-sentences,
possibly containing different substitution operators. The map [ ]°:
L — £¢ extends to a map

[]": ILP — ILLP,

thus if ¥ = ¢ is the translation into ILLP of a sequent in the
language of £F, then the transformation of the pre-sentences into




A PRAGMATIC INTERPRETATION OF SUBSTRUCTURAL LOGICS 13

| substitution
ruiesl t

>~ linear formulas | presentences

FIGURE 1

sentences can be realized, the resulting sequent is taken as a non-
logical axiom of ILP and the derivation in ILLP may be regarded
as a justification for such an axiom. Therefore as represented in
Figure 1, we have

e % o 9 mwLp O ILP.

We claim that the systems ILP and ILLP have the cut-elimination
property, so that the above translations are sound.

1.9. We have not produced a formal semantics for the extended
system ILLP, just proved its consistency through cut-elimination.
But the proposed formalism well reflects the intuitive properties of
the illocutionary forces under consideration and their ranking.

The interpretation of the atoms of linear logic as unspecified illo-
cutionary acts provides an argument for considering the use of the
linear consequence relation as an extension, rather than an alterna-
tive to the ordinary intuitionistic consequence relation. However,
we do not have a clear and convincing interpretation of Girard’s
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operator The mapping () does provide a pragmatic inter-
pretation of linear formulas through some translation of IL into
ILL, some of which make a rather unparsimonious use of the oper-
ator “!”. Moreover, only a few linear formulas of £¢ are translated
into formulas of the pragmatic language £ through the map (),
namely, only those which result from formulas of £F relatively to
the given translation [ |*. All other formulas of £ are uninterpreted
and play only a syntactic role in the calculus, similar to the role
played in scientific theories by theoretic formulas which lack a di-
rect observative meaning. Thus, the possibility remains open of
new interpretations of the formal calculus, which may capture new
forms of reasoning, different from those considered above.

«y»
LI

A satisfactory feature of our system is that in the object language
we may formalize normative orders as dynamic systems, as they
are indeed, by means of a sequence of operators o-y, o-ys, ...,
where N, N’ ... are indices for normative systems.

In the same way cognitive dynamic systems can also be formal-
ized by a sequence of operators by, b, ... where &k, k', ... are
(indices for) non-logical theories. Here we may consider also situ-
ations where the language of such a theory is not included in the
metalanguage, so that r, a may not be expressible as K + a.
The logics of Godel’s provability predicate Bew provide interesting
mathematical examples along these lines.

It is therefore clear that the cases discussed here are only instances
of a large family, where the combined use of several modalities re-
quires restrictions on the inference relation in the metalanguage
according to specific properties of the modalities under consider-
ation. The axiomatic method in logic has successfully described
the properties of modal operators in isolation. New challenges now
arise from the formal study of several modalities in the same con-
text, an inevitable step towards a better understanding of the com-
plexities of informal reasoning. It should be clear that this paper
is a tentative incursion in a new territory, and that further work
will certainly simplify and improve the technical development.

§2. The pragmatic language L.
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DEFINITION 1. (Syntaz) (i) The language L% is built from an
infinite set of propositional letters p, po, p1 ... using the proposi-
tional connectives —, N, V, —; these expressions are called radical
formulas. The elementary formulas of the pragmatic language are
obtained by prefixing a radical formula with a sign of illocution-
ary force “F7, “Fi7, ¢ o7 or “ o-5”". There is only one elementary
constant for absurdity, namely A. Finally, the sentential formulas
of L are built from the elementary formulas and the constant A,
using the pragmatic connectives N, U and D.

(ii) (Formation Rules) The pragmatic language L£” is the union of
the sets Rad of radical formulas and Sent of sentential formulas.
These sets are defined inductively as follows:

a:=ploalaghay|ogVa | o —as

n=Nlral nal cal| oyal
¢ ==ra| rad(|
d =[] Dd| 01Ny |01 Ub |

(iii) The intuitionistic fragment of the language L” is obtained by
restricting the class of elementary sentences to those with atomic
radical only:

77:=/\| |—p| kkp| o-p| o-Np‘

We use the letters o, 5, aq, ... to denote radical formulas, 0, ny, . ..
... to denote elementary sentential formulas, ¢, and 9, d1, ... to
denote sentential formulas. The letters (y, ... denote expressions

built from assertions and positive occurrences of casual implication.
The negation of ¢ is defined as ~ 6 =4 0 D A.

(iii) The symbol A stands for an illocutionary act which is justifi-
able in no situation, e.g., asserting that “0 = 1”. (Such an act is
called p-invalid, see the next definition.) Let o be “0 = 17. We
postulate

/\:ka:O—a:kka:O—NCy

We will not write down the formal axioms expressing this equiva-
lence.
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DEFINITION 2. (Informal Interpretation) (i) Radical formulas are
interpreted as propositions, with the Tarskian classical semantics,
as usual.

(ii) Sentential expressions are interpreted as follows:

1. +aand +, « are interpreted as illocutionary acts of assertion;
o- o and o-y « are interpreted as illocutionary acts of pre-
scription (or norms). All such acts are regarded as impersonal,
i.e., making abstraction from the specific qualities of the sub-
jects of such acts. Illocutionary acts can be “ustified” (J) or
“ungustified” (U); by extension, so are also the corresponding
elementary sentential expressions.

2.+« is justified if and only if there is a proof that o s true; it
is unjustified otherwise.

3. Let k denote a state of information (regarded as equal to its
deductive closure). Then r, « is justified if and only if it is
provable that « is true given the state of information k; ~
is unjustified otherwise.

4. Let N be a normative system (regarded as equal to its deduc-
tive closure). Then o-y « is justified if and only if there is a
proof that « is obligatory in the normative system N; o-y «
is unjustified otherwise.

5. o- « is justified if and only if o-y « is justified for all norma-
tive systems N; o- « is unjustified otherwise.

6. 01N dy is justified if and only if §; is justified and d, is justified;
it is unjustified otherwise.

7. 01 Udq is justified if and only if d; is justified or d, is justified;
it is unjustified otherwise.

8. 01 D 09 is justified if and only if there is a proof that a justifi-
cation of d; can be transformed into a justification of ds; it is
unjustified, otherwise.

9. ra o + [ is justified if and only if - a D + 3 is justified as an
instantiation of a first order formula - Vx.¢(z) — x(z) which
expresses a scientific law, where a@ = ¢(t) and 8 = x(t) for
some (sequence of) objects t.

(iii) Let  be an elementary (sentential) formula of £F: we denote
the maximal radical subformula of 7 by |a|. A pragmatic interpre-
tation 7 gives a justification value J (justified) or U (unjustified)
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to the sentential formulas £F. Let ¢ be a truth-value assignment
to the radicals of £F. We say that m depends on o if for every
elementary formulas n, 7(n) = J implies o(|n|) = T. We write
T, to indicate that the pragmatic interpretation m depends on the
truth-value assignment o. A sentential formula § of £F is called
pragmatically valid (or p-valid) if and only if for all o and for all
7, we have 7,(0) = J. Similarly, given a sentential formula ¢ and a
set of sentential formulas I', we say that § is a pragmatically valid
consequence (or a p-consequence) of T' if for every o and every m,,
if m, makes all formulas in I' justified, then 7, makes ¢ justified
as well. Since the notion of pragmatic interpretation is still infor-
mal, the definitions of p-validity and p-consequence are informal as
well. To give a precise mathematical model for these notions goes
beyond the scope of this paper: our task here is to identify some
principles which seem to characterize these notions in an intuitively
compelling way.

Ezamples. (i) A state of information k£ may be formalized as an
axiomatic theory Ty, say, in first-order logic. Let A; be the set of
axiom of T} and let o be the translation of o in the language of
Tj. Then +; o is justified if and only if there is a deduction of o
from Ay in first-order logic.

(ii) Extend the set of radical formulas of £” with a modal operator
a

a:=pl|loalagAhay|agVa | o — ar | Do

and let Tgr be the classical propositional modal theory with ax-
ioms and rules of the system GL (Gd6del-L6b) formalizing the prop-
erties of the predicate Bew of arithmetic provability. Let T} be
first-order Peano Arithmetic together with a sequence of closed
sentences, one for each propositional letter of Tgr. Any such Ty
determines an interpretation ( )* of the formulas of Tqy, where O is
interpreted by the arithmetic predicate Bew and the interpretation
commutes with classical connectives. Soloway’s theorem [15] states
that Tqr F o if and only if for all k, PA F, (a)*. In propositional
LY we can express the infinite set of equivalences Fqr, @ = F; a,
for every o and k, which we may regard as non-logical axioms.



18 GIANLUIGI BELLIN AND CARLO DALLA POZZA

(iii) Consider the same setting of (ii) for intustionistic logic,? i.e.,
let Tigr be the modal theory with axioms and rules of the sys-
tem Godel-Lob on intuitionistic propositional logic and let Ty be
first-order Heyting Arithmetic together with a sequence of closed
sentences, one for each propositional letter of Tigr. As Solovay’s
theorem does not hold for Heyting arithmetic, in £ there will be
nontrivial logical relations between gy, @ and all the expressions
}_k .

(iv) Let Ty, ..., T4, ... be a transfinite recursive sequence of
systems where T is first-order Peano Arithmetic, T, is T, ex-
tended with the Gédel sentence —Bew(0 = 1) for T,, as in Fefer-
man [4].

(v) A normative system could be formalized as an axiomatic theory
Ty possibly with mixed modalities. Let Ay be the set of axioms of
such a theory and let oV be the translation of o into the language
of Ty. Then o-y o is justified if and only if o is derivable from
Ay. Let Ty, Tpyr, ... be a sequence of such theories. Then in the
language of £ one may hope to express the evolution of a nor-
mative system, the relative ranking of its principles, the metarules
which govern the abrogation of laws when a set of laws has became
inconsistent with more fundamental principles, etc.

Remark. (i) Clauses 2, 5 — 7 in Definition 2.(ii) are those of
Heyting’s semantics of proofs for intuitionistic logic, but the notion
of proof is not restricted here to that of a mathematical proof.
The claim implicit in Definition 2 is that Heyting’s “semantics”
belongs to the logic of judgement and is rather the beginning of
a formal pragmatics: it characterizes the notion of justification
of pragmatics sentences, as inductively defined relations between
illocutionary acts.

(ii) Suppose the language of LF is extended as in Example (i1)
above, but with the axioms of the modal system S4. Then one
could follow Gdodel [9], McKinsey and Tarski [11] and interpret Do
as “there is a proof that « is true”; thus we obtain the following
modal translation of the assertive fragment of £ into its radical

3We thank Giovanni Sambin for suggesting this example.
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part thus extended:
(ra)™ = Da (6 D6)" = B0 =67
(01 Udg)™ = o7V o (01 N dg)™ = o7 AT

Kripke’s semantics for the system S4 applies here. Notice that this
is a descriptive interpretation of the pragmatic sign of assertive
force, a reflection of the pragmatic metalanguage into the set of
radical modal formulas. The pragmatic and the descriptive ap-
proaches may be very closely related from a mathematical point
of view, but cannot be identified: for instance, in the descriptive

interpretation nested occurrences of the sign O may occur, while
as a sign of pragmatic force - cannot be iterated.

(iii) A similar remark applies for the sign of deontic force, which
could be interpreted descriptively within some system of deontic
logic, from which we would also obtain a form of Kripke’s seman-
tics. The challenge of this paper is to provide a Gentzen-style
system for the language £ extended with mized contexts. We do
not consider the descriptive interpretation of pragmatic forces here
and do not provide a Kripke-style semantics for our system.

2.1. Sequent calculi for intuitionistic £”. The sequent cal-
culus ILP~ formalizes derivations of sentential formulas of £F.
No rule is given for the derivation of elementary sentences, there
is a connective expressing “causal implication” which requires a
relevant consequence relation and the other connectives represent
relations between sentential formulas informally characterized by
Heyting’s “semantics of proofs”. The calculus therefore resem-
bles the intuitionistic part of Girard’s LU system (with a relevant
rather than linear area for causal implication).

DEerFINITION 3. Let I, A denote finite sequences of sentential
formulas. The sequent calculus ILP™ is defined in Tables 1 and 2.

The proof of the following theorem is similar to that Girard’s
system LU:

THEOREM 1. The sequent calculus ILP™ has the cut-elimination
property, thus it 1s consistent.

We have the following symmetric reduction for causal implication:
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identity rules
logical axiom:

d;=>90
cuty: cuty:
'; A=9¢ oIy A= ¢ s A= I; 5A=¢
rr; A=y¢ r; A=4¢
structural rules
exchange: exchange:
P,51,52,PI; A= r; A,51,52,AI:>(5
09,61, ; A=§ I'; A dg,61,A"=6
contraction: contraction:
5,0 ; A= ¢ L; 8,6A=¢
6T A=¢ I'; ,A=4
permeability: weakening:
,0; A=¢ r; A=¢

T:0,A=d T;0A=0d

TABLE 1. The sequent calculus ILP™, structural rules

I, ra; =¢C i=ra (IMiA=9,
':=+raa( a2, I'T";, A=
O,I'T"; A=§

right © eft ©

cuty

reduces to

I"; =ra F,ka;égcut
LT =¢ LG A=
IIT": A=0

’U,tl

The reductions strategies for the cut-elimination process are sub-
ject to constraint resulting from the restrictions on the context for
the causal tmplication rules. Consider the case of a cut where the
right sequent-premise is the conclusion of right =:
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logical rules

right ©: left ©:
I, ra;=¢ Iy =ra (TV;A=0
s=ra o ra (0T A=6
right N: left N:
F:A=6 T:A=b T 6 Ao fori=0,1.
'; A=6nNn4, '; dNd,A=4
right D: left D:
F;A,(50=>51 ;A:>(50 F;51,A:>5
'; A=d) D '; 60D0,A=9
right U: left U:
;A= for 1 =0,1. T'; 00,A=6 T'; 61,A=4
;A= U ; 6gUd,A=6

absurdity axiom:
L'; A,A=96
for any I', A and §6.

TABLE 2. The sequent calculus ILP ", logical rules

d,

dl Fﬂ’c’rl; :><I '["Z ht D
;A= ¢ (= BoC
cut;

I A= +8o(

here the cut; can always be permuted with the inferences of d;.
Since ¢ has one of the forms +v or +7v © (', eventually one of the
following is the case:

(i) the left premise of the cut is an absurdity axiom, and the cut
is eliminated by taking its conclusion as a single absurdity
axiom;

(ii) the left premise of the cut is a logical axiom, and the usual
axiom reduction applies;
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(iii) the left premise of the cut is also the conclusion of a right
© and in both sequent-premises the area to the right of “;”
is empty; henceforth the cut-elimination procedure continues
without further constraints in the relevant area only.

Similarly, if the right sequent-premise is the conclusion of a left ©.
Other details of the proof are left to the reader.

The above calculus can be extended in various ways, to formalize
arguments that are p-valid according to the informal interpretation
of the language £F but cannot be represented in ILP~. We extend
ILP™ to an intuitionistic system ILP that represent reasoning with
mized context. A first set of mizred rules connects indered asser-
tions with assertions, on one hand, and wndexed obligations with
obligations, on the other. A second kind of mixed rules connects
obligations (indexed or not) with causal implication. We write Z

for (y,...,C; also we write + A for +aq,..., r ai and similarly
o- A.

mixed rules
k-assertability N-obligation
FO 3= i o-0; = o-nd
for any £ and N.

causal implication - obligation
FAZ = v
-AZ;= of

causal implication - N-obligation
FAZ = v f
o-nAZ; = oy B

TABLE 3. The sequent calculus ILP, mixed rules

DEFINITION 4. Let ILP be ILP~ with the addition of the ax-
ioms K-assertability, N-obligation, causal implication - obligation
and causal implication - N-obligation (see Table 3).

THEOREM 2. The system ILP emjoys the cut-elimination prop-
erty (modulo atomic cuts with k-assertability and N-obligation
axioms).

We have the following reductions:
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i. causal implication - obligation | causal implication - obligation

reduction:

FAZ = FB, FALZ S = ke

o-AZ; = op o-fB, - A" Z'; = oy
oA, o AZZ ; = o~y

D — o

D — o

cut

reduces to
FAZ = kB B, FAZ S = ry
A, FANZZ G =5 vy
Oan oﬁAlaZaZI; = CL/Y

cut

92— o

it. causal implication / causal implication - obligation reduction:

dy da
T, ra o +AZ; = +
right © rali= ¢ @2¢ T 55— o
I''= rao( ra@(, - AZ; = o-vy
T, oAZ; = on cut
reduces to
dq
. Fa, ;= ¢ do
right = I''= ra o ra9( +AZ; = v
I -AJZ; = +v cut
D — o
' - AJZ; = o«
1. causal implication - obligation permutation:
do
dy rao( rAZ; = +[ 5_ o
I'; A= rad( ra 96 AZ S -
cu

[, o-A)Z; A= o-v
The cut can always be permuted with the other inferences of d;.

w. causal tmplication - obligation permutation.:

do
dl '_av'_AaZ;:> '_/8 D — o
;s A= o-a o-qa, -AZ; = o-f3 :
cu

I o-AJZ ; A= o«
The cut can always be permuted with the inferences of d;.
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v. causal implication - obligation permutation
di
FAZ; = ra doy
o-AZ; = o« o-al; A= o f
o AZT; A= o B
The cut can always be permuted with the inferences of ds.

B —_
cut

The formal details of the proof are left to the reader.

Another extension of ILP™ is obtained by allowing classical meth-
ods of inference: in our framework this is done by removing the
restriction that the radical |n| of any elementary formula 1 should
be atomic and by introducing all axioms of the form

classical assertability classical obligation
if aq,..., 0, E «, then if aq,..., 0, E a, then
; FQq,..., Fap = FX ;- Q1,..., O-Qp = O-
where a1, ..., o, a are arbitrary radical formulas.

DEFINITION 5. Consider the language £ without the connective
© of causal implication and let LP~ be the sequent calculus ob-
tained by adding the classical assertability and classical obligation
rules to the system TLP™ without the rules for © and the causal
implication-obligation rule.

COROLLARY. The system LP™ is consistent.

Indeed, by Theorem 1 we may reduce all cuts, except those where
both cut-formulas occur in classical assertability axioms or both in
classical obligation axioms and similarly for indexed assertability
and obligation. But these cuts can also be reduced in an obvious

way, since ai,...,q, E a and a,B1,...,08, E B yield an
a’/Bla"'a/Bn):B'

The classical extension of ILP seems to be more problematic.
We will not pursue this extension here.

§3. The language of intuitionistic linear L£{. We present
the language of the intuitionistic linear pragmatic language L.
We consider translations of the intuitionistic fragment of the £¥
into £¢ and we define the substitution operations, giving partial
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translations from L£¢ back to £F. We define the intuitionistic lin-
ear sequent calculus ILLP and the bridging rules that allow us
to extend the deductive principles of ILP~ with rules for mixed
assertive and deontic contexts.

3.1. Linear expressions, translations, substitutions. £ is
a formal language for pragmatic sentences with unspecified signs
of illocutionary force.

DEFINITION 6. (Syntaz (i) £¢ is based on the language of intu-
itronistic linear logic ILL, namely, on the constants 0, 1 and T,
the connectives —o, ®, & and & and the exponential ! with the ad-
dition of the relevant exponential !.. Moreover, there are operators

L)) () Tand ()

The elementary formulas are elementary pragmatic sentences, writ-
ten « o, where “’ is an operator capable of being substituted by
any sign among F, Fr, o- or o-y for some k£ and N.

The “modal” operators (A\)", (A\)"*, (A\) © and (\) ©», whose oc-
currences cannot be nested, indicate the possibility, but only the
possibility, of a substitution of the indicated operator of pragmatic
force for every occurrence of « in the given formula A, as explained
above.

(ii) (Formation Rules) The set Lin of the formulas of £ is defined
inductively as follows:

A 3:'CY|O‘1|T‘)\1—O)\2|)\1®A2|A1&)\2 ‘)\1@)\2‘!A|!C)\‘

G = A AN AT

The expressions A\ are the linear formulas, the expressions ¢ will
be called pre-sentences. We use the letter ¥ to range over linear
formulas and pre-sentences.

We are interested in using linear logic as a tool to expand the
deductive power of the sequent calculus ILP™ so as to derive mized
deontic and assertve sequents. For this purpose we need transla-
tions ( )* : IL — ILL of intuitionistic logic ILL into intuitionistic
linear logic ILL which are functorial in the sense that if d is a
derivation of I' = ¢ in IL, then (d)* is a derivation (I')* = (4)*
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in ILL and, moreover, the translation respects cut. There exist in
the literature a few translations of this kind.

For example, we may use the “boring translation” [ | : Sent — Lin
(see [6], p.81) which is related to the S4 interpretation of intuition-
istic logic:
L[ra]t = [nat = oot = [onva]™ =4 ea;
il. [(51 N 52]+ = ![51]+ & '[52]+,
1ii. [51 U 52]+ = ![51]+ D ![(52]+;
iv. [51 D 52]+ = '([51]+ —0 [52]+),
v. [raorfp]T =1 (lcea—o ! 0);
[ Fa 9 <]+ = !c(!c *@ —0 [C]+)a
vi. [¢ 2 81 = 1([¢]* o [o]°):
[01 D G = !([8]* —o 1[¢]F);
vii. [A]T =4 0.

We could also use the more familiar translation [ |*: Sent — Lin
as follows:

L[ra]" = [na]" = [o-of = [o-a]" =4

il. [(51 N 52]* = [61]*&[52]*,

iii. [51 U (52]* = '[51]* S5 ![52]*,

1v. [61 D 52]* = ![(51]* —0 [52]*,

v.[raorff=l.ea—ol..0;

[Fa D =!a—[5

v. (55 ¢ = (e o 1[0));

vi. [A]* =4 0.
In this paper we need a fully functorial translation ( )* : IL —
ILL i.e., a translation having the additional property that for any
derivation d* of (T)* = (0)* in ILL there exists a derivation d of
I' = § in IL such that d* = (d)* (modulo suitable equalities of
derivations). This property can be assumed of the translation ( )*
(see [14], 1.3.).

First of all we must check that given one of our translations, we
may indeed use them for our purpose, i.e., to substitute the signs
of illocutionary force in the language of LF.

PROPOSITION 1. (Partial interpretation of pre-sentences) Given
a functorial translation | ]° : IL — ILL of intuitionistic logic
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within intuitionistic linear logic, there is a map () : (L7)" = £F
from a subset (LF)* of the pre-sentences of LS to the sentential
formulas of L, with the following properties:

¢ = ¢

(0 = [/ Fr,b /) o)) o-nl, for all k, N;
(6 = dFe /F bk [ Fj bk [ ok [ 0wl for all N, j #k;
(69 = 6[o-/F, o= /b, 0=/ o-4] for all k, N;

(0y°n~N = §[on/F, 0on/Fk, 0n] o 0] O] forallk, N'# N.
Ezxpressions of the form A, \™x, X ° and (\) ©~ are uninter-
preted, if for all 6, we have X\ # 6°.

Remark. The mapping () provides a partial pragmatic interpre-
tation of linear formulas by translating them into the language £F,
which has an intended pragmatic interpretation. But only a few
formulas of £¢ are translated into formulas of £F through the map
(), namely, only those which result from formulas of £F relatively
to a given translation [ ]°. All other formulas of L are uninter-
preted. and play only a syntactic role in the calculus, similar to the
role played in scientific theories by theoretic formulas which lack a
direct observative meaning.

3.2. The sequent calculus ILLP.

DEFINITION 7. (i) (Notation) We use Greek capital letters A, A’,
... to range over sequences of linear formulas, the capital letter X,
Y/, ... to range over sequences of pre-sentences and lowercase and
capital letters 6, ©, © to range over expressions and sequences of
expressions consisting of either linear formulas or pre-sentences.
As usual, if Ais A, ..., Ay, then 'Adis A, ..., !\, and A" is A",

.., A\x~ and similarly for the other substitution operators.

(ii) The sequent calculus ILLP for intuitionistic linear logic for
pragmatics is defined in Tables 4, 5, 6, 7 and 8.

PROPOSITION 2. The fragment of sequent calculus TLLP with-
out the relevant implication/ o- rule has the cut-elimination prop-
erty.
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identity rules

logical axiom: cut: /
LN Ne 0= Q9a 0" = 6
0,0 =¢
structural rule
exchange:

@,190,191,@’ =19
0,91,90,0" = 9

TABLE 4. The sequent calculus ILLP, structural part.

logical rules
1-Right 1-Left :
A1= A
—o-Right: —o-Left:
Ao, A =\ A= X /\1,AI:>)\
A=Ay o)\ Ao AL, AN = A
®-Right: ®-Left:
A= X AliAl Ao,Al,AiA
AN =N A ®@ A, A=A
T-Right: 0-Left:
A=T A0= A
&-Right: &-Left:
A= N A=\ i, A= A for i =0, 1.
A = A& )\0&)\1,[\ = A
@-Right: @-Left:
A:>/\Z fori:O,l. )\O,A:>)\ /\1,A:>)\
A= Nd N\ A DB ALA=S A

TABLE 5. The sequent calculus ILLP, logic
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exponentials
dereliction: weakening: contraction:
ANA =N A= N ILILA = N
INA= N LA =N INA= N
promotion:
A=)
ALY = 1A
dereliction: contraction:
ANA =N LA = N
WAA=S N IAA=S N
promotion:
A=A
A=A

TABLE 6. The sequent calculus ILLP, exponentials.

Indeed for the fragment of ILLP without substitution rules, the
proof is essentially the same as for the system of intuitionistic lin-
ear logic ILL (cfr. [1] and the bibliography in it). Also the left
substitution rules are analogous to the dereliction rule for the ex-
ponential operators; the right rules are analogous to the promotion
rule for the exponential operator. Thus the cut reductions for the
substitution rules (Table 7) are those for a promotion - dereliction
pair in ILL, so the same argument applies mutatis mutandss.

Remark. Since the substitution operators can neither be nested
nor occur in the scope of a linear operator, we may always assume
that in a cut-free ILLP derivation quasi-sentences occur only in
the terminal branch of the derivation.

DEFINITION 8. The sequent calculus ILP™ is ILP~, with the
addition of all rules of the bridging rules of Table 9.



30

GIANLUIGI BELLIN AND CARLO DALLA POZZA

F-Subst Right: F-Subst Left:
=) MNAE=S N
Y= A" ALAE=S N
where all pre-sentences in ¥ are of the form (\") ".
o--Subst Right: o--Subst Left:
Y=\ MA E= N
=A% AOAE= N

where all pre-sentences in ¥ are of the form (\) <

F-Subst Right: F-Subst Left:
Y=\ AMAE = N
Y= Ak AR ANE = N
where all pre-sentences in ¥ are of the form (\) "*.
o--Subst Right: o--Subst Left:
Y= A MA 2= N
DIESD N AN AE=S N

where all pre-sentences in ¥ are of the form (\”) ©V

TABLE 7. Substitution rules - I

Given a fully functorial translation [ ]*:

relevant implication | o-:
AN = A
(A) 5 (A7 = A
where all formulas in A and A are of the form !, » &
and all the formulas in A’ are of the form (*.

relatz.'viged (15;367"151’971:F relativized obligation:
([ra]) "= (ra]) " ([ra]) T = ([+a]) 7™

TABLE 8. Substitution rules - 11
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Given a fully functorial translation [ ]

([-A]) 7 (2]) "= ((~a) 7, ([-A]) 7 N([2]) "= ([ra]) T

o-AZ; = o« o-AZ; = o0«
(1) "= (1) () = = (@) =
(D) "= ()" (D) &= () &
(ITT") ™ = ([o]") ™ (") = = (@) =~
() = 6) (1) &= (5) =

where the upper sequents are derivable in ILLP.

TABLE 9. Bridging rules.

THEOREM 3. Let § be a formula in the language of LF. The
sequent ; = 0 1s provable in ILP if and only if it is provable in
ILP*.

This result is an obvious consequence of the functoriality of the
given translation [ ]*:IL — ILL. The “only if” part of Theorem
3 is obvious. To prove the “f” part notice that by Proposition 2
and the following remark we may assume that every subderivation
d’ ending with a bridging rule is cut-free and all the substitution
rules occur at the end. If the last substitution rule is r-Subst Right,
then the conclusion of the bridging rule has the form (T') "= () "
and by the functoriality of the translation [ |* we can transform
d* into a derivation d’' of (T') " = (6) " in ILP~. Similarly if the
last susbstitution is o--Subst Right, +,-Subst Right and o-y-Subst
Right.

If the last substitution rule of d* is a relevant implication / o- rule,
then d’ ends as follows:

[F Al Z] =[-8

([-A]) 721" = (8~
o-AZ; = o f

rel. impl,/ o- rule

bridging rule
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and by the functoriality of the translation we can transform d* into
a suitable derivation d':
dl
AZ; =
AL =
o AZ; = o f
3.3. Examples. The following derivation shows that the prin-
ciple “if p is obligatory and if the assertibility of p causally implies
the assertibility of q, then q 1s obligatory”, is provable in ILP:
PP =P vq; =g

Fp, FPDrq; =g DD_ o
o-p, F DR ;:>O— o
; b P g _q derelictions
; O-p,Fp Oorqg=0-g left N

; o-p, o-pN(rp Drq)= o

4 left N, contraction
; opN(rp@rg)=cog

; = (o-pN(rpDrq) Dogq

right D

In a similar way we derive ( o-xpN(+p @ +q)) D -~ g.
By the cut-elimination theorem we cannot derive any of the fol-
lowing formulas:

(o-pN(rpDrq)) Do-gq (rpN(e-pDo-q)) Dogq
(rpN(o-pDo-q)) Dryg (repN(o-pDo-q)) Drigq
(rpN(rep D riq)) (o-pN(rpDreq)) Do-gq
(repN(rupDrwq) Drwqg  (o-pN(oypDong)Dogq

84. Concluding remark. From a mathematical point of view
the extension from ILP~ to ILP™ through the linear system ILLP
is an immediate corollary of the existence of fully functorial trans-
lations IL — ILL and does not seem to add much to the direct
extension from ILP~ to ILP. Its significance lies in the following
facts. On one hand ILP formalizes reasoning with mixed contexts
and with various notions of implications using a mized relevant and
intuitionistic consequence relation, where we can infer properties of
causal tmplication by using the relevant area only and also derive
standard intuitionistic formulas using the intuitionistic area of the
consequence relation, but the relations between the two forms of
reasoning are not fully clarified. Moreover, other uses of reasoning
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with mixed contexts may require other extensions of standard in-
tuitionistic calculi: this could certainly be done on a case by case
basis. On the other hand linear logic has been proposed as a gen-
eral framework for such extensions, where the relations between
these different forms of reasoning may be clarified. But the expla-
nations so far given of the “intended interpretations” of linear logic
and its place in the context of logical theory appear unsatisfactory
to us. In our approach the language £¢ and the calculus ILLP
have a clear “intended interpretation” in the notion of a free logic
of pragmatic force. It is not claimed that this is the only possible
“natural reasoning interpretation” of linear logic. However, our
interpretation shows that reasoning with the linear consequence
relation is an extension of the ordinary logic of assertions and obli-
gations rather than a deviant logic. The connectives and operators
of intuitionistic linear logic also obtain in this way a partial inter-
pretation in the pragmatic framework, although through the rather
cumbersome machinery of translations and substitution operators.
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