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Summary. To provide a categorical semantics for co-intuitionistic logic, one has
to face the fact, noted by Tristan Crolard, that the definition of co-exponents as
adjuncts of co-products does not work in the category Set, where co-products are
disjoint unions. Following the familiar construction of models of intuitionistic lin-
ear logic with exponent !, we build models of co-intuitionistic logic in symmetric
monoidal closed categories with additional structure, using a variant of Crolard’s
term assignment to co-intuitionistic logic in the construction of a free category.

1 Preface

This paper sketches a categorical semantics for co-intuitionistic logic, ad-
vancing a line of proof-theoretic research developed in [1, 2, 3, 4, 7]. Co-
intuitionistic logic, also called dual-intuitionistic [22, 31, 32], may be super-
ficially regarded as completely determined by the duality, as in its lattice-
theoretic semantics. A co-Heyting algebra is a (distributive) lattice C such
that its opposite Cop is a Heyting algebra. In a Heyting algebra implication
B → A is defined as the right adjoint of meet, so in a co-Heyting algebra C
co-implication (or subtraction) A r B is defined as the left adjoint of join:

C ∧B ≤ A

C ≤ B → A

A ≤ B ∨ C

A r B ≤ C

A bi-Heyting algebra is a lattice that has both the structure of Heyting and of
a co-Heyting algebra. The logic of bi-Heyting algebras was introduced by
Cecylia Rauszer [27, 28] (called Heyting-Brouwer logic), who defined also
its Kripke semantics; a category-theoretical approach to the topic is due to
Makkai, Reyes and Zolfaghari [25, 29]. The suggestion by F. W. Lawvere to
use co-Heyting algebras as a logical framework to treat the topological notion
of boundary has not been fully explored yet (but see recent work by Pagliani
[26]).
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Early research showed that the extension of first order intuitionistic logic with
subtraction yields an intermediate logic of constant domains [21]. In a rich and
interesting paper [16] T. Crolard showed, essentially by Joyal’s argument, that
Cartesian closed categories with exponents and co-exponents are degenerate;
in fact even the topological models of bi-intuitionistic logic, i.e., bi-topological
spaces, are degenerate. Crolard’s motivations are mainly computational: he
studies bi-intuitionistic logic in the framework of the classical λµ calculus, to
provide a type-theoretic analysis of the notion of coroutine; then he identifies
a subclass of safe coroutines that can be typed constructively [17]. From our
viewpoint, on one hand Crolard’s work opens the way to a “bottom up” ap-
proach to safe coroutines, independent of the λµ calculus, i.e., co-intuitionistic
coroutines. On the other hand, the question arises whether the collapse of al-
gebraic and topological models may be avoided by building the intuitionistic
and co-intuitionistic sides separately, starting from distinct sets of elementary
formulas, and then by joining the two sides with mixed connectives (mainly,
two negations expressing the duality): this is our variant of bi-intuitionistic
logic, presented in [2, 4].

Both of these tasks were advocated by this author and pursued within a
project of “logic for pragmatics” with motivations from linguistics and nat-
ural language representation [2, 3, 4, 8]. In the characterization of the log-
ical properties of “illocutionary acts”, such as asserting, making hypotheses
and conjectures one finds in natural reasoning forms of duality that can be
related to intuitionistic dualities. For co-intuitionistic logic Crolard’s term as-
signment has been adapted to a sequent-style natural deduction setting with
single-premise and multiple-conclusions. For (our variant of) bi-intuitionistic
logic Kripke semantics has been given (both in S4 and in bi-modal S4) and a
sequent calculus has been proposed where sequents are of the form

Γ ; ⇒ A ; Υ or Γ ; C ⇒ ; Υ

where Γ and A are intuitionistic (assertive) formulas and C and Υ co-
intuitionistic (hypothetical).

But from the viewpoint of category theory a crucial remark by Crolard shows
that already in co-intuitionistic logic there is a problem: namely, co-exponent
are trivial in the category Set. Indeed the categorical semantics of intuition-
istic disjunction is given by coproducts [19], which in Set are represented by
disjoint unions. On the other hand the categorical semantics of subtraction is
given by co-exponents. The co-exponent of A and B is an object BA together
with an arrow 3A,B : B → BA ⊕ A such that for any arrow f : B → C ⊕ B
there exists a unique f∗ : BA → C such that the following diagram commutes:

B
f //

3A,B ##G
GGGGGGGG C ⊕A

BA ⊕A

f∗⊕idA

OO



Co-intuitionistic Categorical Logic 3

It follows that

in the category of sets, the co-exponent BA of two sets A and B is
defined if and only if A = ∅ or B = ∅ (see [16], Proposition 1.15).

The proof is instructive: in Set, the coproduct ⊕ is disjoint union; thus if
A 6= ∅ 6= B then the functions f and 3A,B for every b ∈ B must choose a side,
left or right, of the coproduct in their target and moreover f? ⊕ 1A leaves the
side unchanged. Hence, if we take a nonempty set C and f with the property
that for some b different sides are chosen by f and 3A,B , then the diagram
does not commute.

Thus to have a categorical semantics of co-exponents we need categories where
a different notion of disjunction is modelled. The connective par of linear logic
is a good candidate and a treatment of par is available in full intuitionistic lin-
ear logic (FILL) [15, 23], with a proof-theory and a categorical semantics. The
multiple-conclusion consequence relation of FILL and its term assignment
have given motivation and inspiration to our work, as a calculus where a dis-
tinct term is assigned to each formula in the succedent. The language of FILL
has tensor (⊗), linear implication (−◦) and par (℘) and a main proof-theoretic
concern has been the compatibility between par and intuitionistic linear im-
plication (as it is in bi-intuitionistic logic). However to construct categorical
models of co-intuitionistic logic it suffices to notice that in monoidal categories
par can be modelled by the given monoidal operation and co-exponents as the
left adjoint of par. The main task then is the to model Girard’s exponential
why not?: in this way a categorical semantics for co-intuitionistic logic can be
recovered by applying the dual of Girard’s translation of intuitionistic logic
into linear logic, namely:

(p)◦ = p
(f)◦ = 0

(C gD)◦ = ?(C◦ ⊕D◦) = ?(C◦)℘?(D◦)
(C r D)◦ = C◦ r (?D◦)

(E ` C1, . . . , Cn)◦ = ?(E◦) `?(C◦
1 ), . . . , ?(C◦

n))

where 0 is the identity of ⊕ and we use “r” both in linear and in non-linear
co-intuitionistic logic.

The task amounts to dualizing Nick Benton, Gavin Bierman, Valeria de Paiva
and Martin Hyland’s well-known semantics for intuitionistic linear logic [10].
This may be regarded as a routine exercise, except that one has to provide
a term assignment suitable for the purpose. In this task we build on a term
assignment to multiplicative co-intuitionistic logic, which has been proposed
as an abstract distributed calculus dualizing the linear λ calculus [1, 3, 7]: in
our view such a dualization underlies the translation of the linear λ-calculus
into the π-calculus (see [9]).

As a matter of fact, Nick Benton’s mixed Linear and Non-Linear logic [11] may
give us not only an easier approach to modelling the exponentials but also the
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key to a categorical semantics of (our version of) bi-intuitionistic logic: indeed,
by dualizing the linear part of Benton’s system we may obtain both a proof-
theoretic and a category theoretic framework for mixed co-intuitionistic linear
and intuitionistic logic and thus also for bi-intuitionistic logic - of course, we
need to use the exponential why not? and dualize Girard’s translation. But
then a categorical investigation of linear cointuitionistic logic and of the why
not? exponential is a preliminary step in this direction and has an independent
interest.

2 Proof Theory

As co-intuitionistic linear logic may be quite unfamiliar, we sketch an intuitive
explanation of its proof theory. We think of co-intuitionistic logic as being
about making hypotheses [2, 4]. It has a consequence relation of the form

H ` H1, . . . ,Hn. (1)

Suppose H is a hypothesis: which (disjunctive sequence of) hypotheses H1 or
. . . or Hn follow from H? Since the logic is linear, commas in the meta-theory
stand for Girard’s par and the structural rules Weakening and Contraction
are not allowed. A relevant feature, which we shall not discuss here, is that
the consequence relation may be seen as distributed, i.e., we may think of the
alternatives H1, . . ., Hn in (1) as lying in different locations [1, 7].

The main connectives are subtraction A r B (possibly A and not B) and
Girard’s par A℘B. Natural Deduction inference rules for subtraction (in a
sequent form) are as follows.

H ` Γ,C D ` ∆
r-intro

H ` Γ,C r D,∆

H ` ∆, C r D C ` D,Υ
r-elim

H ` ∆, Υ

Notice that in the r-elimination rule the evidence that D may be derivable
from C given by the right premise has become inconsistent with the hypothesis
C r D in the left premise; in the conclusion we drop D and we set aside
the evidence for the inconsistent alternative. Namely, such evidence is not
destroyed, but rather stored somewhere for future use.

If the left premise of r-elimination, deriving C r D or ∆ from H, has been
obtained by a r-introduction, this inference has the form

H ` ∆1, C D ` ∆2

H ` ∆1,∆2, C r D
.

Then the pair of introduction/elimination rules can be eliminated: using the
removed evidence that D with Υ are derivable from C (right premise of the
r-elim.) we can conclude that ∆1,∆2, Υ are derivable from H. This is, in a
nutshell, the principle of normalization (or cut-elimination) for subtraction.
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The storage operation is made explicit in the rules for the ? operator of linear
logic. Here an entire derivation d of ?∆ from C (where ?∆ =?D1, . . . , ?Dn)
is set aside; what is accessible now is something like a non-logical axiom of
the form ?C `?∆. However in the process of normalization the derivation d
may be recovered to be used, discarded or copied in the interaction of a stor-
age rule with dereliction, weakening or contraction: all of this is conceptually
clear, thanks to J-Y. Girard - and mathematically analysed in the geometry
of interaction.

The rules of sequent-style natural deduction co-ILL for co-Intuitionistic Lin-
ear Logic are given in Table 1.

assumption substitution

A ` A
E ` Γ, A A ` ∆

E ` Γ, ∆

⊥-I ⊥-E
E ` Γ

E ` Γ,⊥ ⊥.

r-I r-E
E ` Γ, C D ` ∆

E ` Γ, C r D, ∆

H ` Υ, C r D C ` D, ∆

H ` Υ, ∆

℘-I ℘-E
E ` Γ, C0, C1

E ` Γ, C0 ℘ C1

H ` Υ, C0 ℘ C1 C0 ` Γ0 C1 ` Γ1

H ` Υ, Γ0, Γ1

dereliction storage
E ` Γ, C

E ` Γ, ?C

H ` Υ, ?C C `?∆

H ` Υ, ?∆

weakening contraction
E ` Γ

E ` Γ, ?C

E ` Γ, ?C, ?C

E ` Γ, ?C

Table 1. Natural Deducton for co-ILL

2.1 From Crolard’s classical coroutines to co-intuitionistic ones

Crolard [17] provides a term assignment to the subtraction rules in the frame-
work of Parigot’s λµ-calculus, typed in a sequent-style natural deduction sys-
tem. The λµ-calculus provides a typing system for functional programs with
continuations and a computational interpretation of classical logic (see, e.g.,
[18, 30]).



6 Gianluigi Bellin

In the type system for the λµ calculus sequents may be written in the form
Γ ` t : A | ∆, with contexts Γ = x1 : C1, . . . , xm : Cm and ∆ = α1 :
D1, . . . , αn : Dn, where the xi are variables and the αj are µ-variables (or co-
names). In addition to the rules of the simply typed lambda calculus, there
are naming rules

Γ ` t : A | α : A,∆

Γ ` [α]t : ⊥ | α : A,∆
[α]

Γ ` t : ⊥ | α : A,∆

Γ ` µα.t : A | ∆
µ

whose effect is to “change the goal” of a derivation and which allow us to
represent the familiar double negation rule in Prawitz Natural Deduction.

Crolard extends the λµ calculus with introduction and elimination rules
for subtraction:1

Γ ` t : A | ∆

Γ ` make-coroutine(t, β) : A r B | β : B, ∆
r I

Γ ` t : A r B | ∆ Γ, x : A ` u : B | ∆

Γ ` resume t with x 7→ u : C | ∆
r E

The reduction of a redex of the form
Γ ` t : A | ∆

r-I
Γ ` make-coroutine(t, β) : A r B | β : B, ∆ Γ, x : A ` u : B | ∆

r-E
Γ ` resume (make-coroutine(t, β)) with x 7→ u : C | β : B, ∆

is as follows:
Γ ` t : A | ∆ Γ, x : A ` u B | ∆

substitution
Γ ` u[t/x] : B | ∆

[β]
Γ ` [β]u[t/x] : ⊥ | β : B, γ : C, ∆′

µ
Γ ` µγ.[β]u[t/x] : C | β : B, ∆′

Working with the full power of classical logic, if a constructive system of bi-
intuitionistic logic is required, then the implication right and subtraction left
rules must be restricted; this can be done by considering relevant dependen-
cies.2 Crolard is able to show that the term assignment for such a restricted
logic is a calculus of safe coroutines, described as terms in which no coroutine
can access the local environment of another coroutine.

1 Actually in Crolard [17] the introduction rule is given in the more general form
of r-introduction with two sequent premises (which we use below) and more
general continuation contexts occur in place of β; the above formulation is logically
equivalent and suffices for our purpose.

2 For instance, in the derivation of the right premise Γ, x : A ` u : B | ∆ of a
subtraction elimination (rE), there should be no relevant dependency between
the formula B and the assumptions in Γ , but only between B and A. Similar
issues arise in FILL, see [23] and [5], section 4.



Co-intuitionistic Categorical Logic 7

Crolard’s work suggests the possibility of defining co-intuitionistic coroutines
directly, independently of the typing system of the λµ-calculus. Since µ-
variable abstraction and the µ-rule are devices to change the “actual thread”
of computation, the effect of removing such rules is that all “threads” of com-
putation are simultaneously represented in a multiple conclusion sequent, but
variables y that are temporarily inaccessible in a term N are being replaced
by a term y(M) by the substitution N [y := y(M)], where M contains a free
variable x which is accessible in the current context. This is the approach
pursued in [2, 3, 4] leading to the present categorical presentation.

2.2 A dual linear calculus for MNJr℘⊥

We present the grammar and the basic definitions of our dual linear calculus
for the fragment of linear co-intuitionistic logic with subtraction and disjunc-
tion.

Definition 1. We are given a countable set of free variables (denoted by x,
y, z . . .), and a countable set of unary functions (denoted by x, y, z, . . .).

(i) Terms and p-terms are defined by the following grammar. Let R = M,P :

M,N := x | x(M) | connect to(R) | M℘N | casel(M) | caser(M) |
| mkc(M, x) | store(M1, . . . ,Mn, y1, . . . , yn, x, N) | [M ] | [M,N ]

P := postp(y 7→ N,M) and postp(M).

Definition 2. (i) The free variables FV (`) in a term are defined as follows:

FV (x) = {x}
FV (x(M)) = FV (M)

FV (connect to(R)) = FV (R)
FV (M℘N) = FV (M) ∪ FV (N)

FV (casel(M)) = FV (caser(M)) = FV (M)
FV (mkc (M, x)) = FV (M)

FV (store(M1, . . . , Mn, y1, . . . , yn, x, N)) = ((FV (M1) ∪ . . . ∪ FV (Mn)) r {x}) ∪ FV (N)
FV ( [M ] ) = FV (M) FV ( [ M, N ] ) = FV (M) ∪ FV [N ]
FV (postp(x 7→ N, M) = (FV (N) r {x}) ∪ FV (M).

FV (postp(M) = FV (M).

(ii) A computational context Sx is a set of terms and p-terms containing the
free variable x and no other free variable. We may represent a computational
context as a list κ = P1, . . . , PM | M1, . . . ,Mn of p-terms and terms.

Definition 3. Substitution of a term t for a free variable x in a in a list of
terms κ is defined as follows:
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x[x := M ] = M, y[x := M ] = y if x 6= y;
connect to(N)[x := M ] = connect to(N [x := M ])

postp(N)[x := M ] = postp(N [x := M ])
y(N)[x := M ] = y(N [x := M ]);

(N0℘N1)[x := M ] = (N0[x := M ] )℘( N1[x := M ])
casel(N)[x := M ] = casel(N [x := M ]),
caser(N)[x := M ] = caser(N [x := M ]);
mkc(N, y)[x := M ] = mkc(N [x := M ], y),

store(N, y, z, N)[x := M ] = store(N [x := M ], y, z, N [x := M)
postp(y 7→ (N1), N0)[x := M ] = postp(y 7→ (N1[x := M ]), N0[x := M ]).

[R ][x := M ] =
[
R[x := M ]

]
[R0, R1][x := M ] =

[
R0[x := M ], R1[x := M ]

]
Definition 4. β-reduction of a redex Red in a computational context Sx is
defined as follows.
(i) If Red is a term N of the following form, then the reduction is local and
consists of the rewriting N  β N ′ in Sx as follows:

postp(connect to(R) β [].
casel (N0℘N1) β N0; caser (N0℘N1) β N1.

(ii) If Red is a term with principal operator store, then the reduction is global
and consists of the following rewriting:

store(N1, . . . , Nn, y1, . . . , yn, z, [M ]) | y1(z([M ])), . . . , yn(z([M ]))  β

| N1[z := M ], . . . Nn[z := M ].
store(N, y, z, connect to(R)) |

| y1

(
z(connect to(R))

)
, . . . , yn

(
z(connect to(R))

)
 β

 β | connect to(R), . . . , connect to(R)︸ ︷︷ ︸
n times

.

store(N, y, z, [M0,M1]) | y1(z([M0,M1])), . . . , yn(z([M0,M1]))  β

 β store(N, y, z,M0), store(N, y, z,M1) |
| [y1(z(M0)), y1(z(M1)]] . . . [yn(z(M0)), yn(z(M1))].

(iii) If Red has the form postp(z 7→ N, mkc(M, y)), then Sx has the form

Sx = Red, κ, ζy, ξz

where ζy = ζ[y := y(M)] and ξz = ξ[z := z((M → y))] and neither y(M) nor
z((M → y)) occurs in κ. Then a reduction of Red transforms the computa-
tional context as follows:

Sx  κ, ζ [y := N [z := M ]] , ξ[z := M ]. (2)

Thus for ζ = S1, . . . , Sk and ξ = R1, . . . , Rm we have:

ξ[z := M ] = R1[z := M ], . . . , Rm[z := M ];
ζ [y := N [z := M ]] = S1 [y := N [z := M ]] , . . . , Sk [y := N [z := M ]] .
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Remark 1. Here are some informal explanations about our calculus and notations.

(i) In a “multi-conclusion logical computation” a term M witnesses a “thread” of
a logical computation which can be continued; on the contrary a p-term P sits
in the “control area”, waiting to become active in a computation at some point.
Moreover a term y(M) denotes a variable y that has become bound because of an
operation in which the term M is active; thus y(M) is an input which is no longer
accessible. Later in the computation such an input may become active again in a
term R and ready for a substitution for a term N . We denote such an operation as
R[y := y(M)] R[y := N ].

(ii) When a logical computation is stored, its threads N1, . . . , Nn are set aside in
the control area, but the “guarding terms” y1, . . . , yn associated with them remain
active; also the free variable z occurring in the Ni becomes inaccessible and is substi-
tuted with z(M), where M is the term active in the storage operation. If M = [M ′]
then the computation is reactivated with threads Ni[z := M ′] and the guarding
terms yi destroyed. If M = [M0, M1] then both of the “guarding terms” and the
store term are copied; if M = connect to(R) then the stored computation and the
guarding terms are destroyed and the outputs are all connected to the term R.

(iii) A term “make-coroutine” mkc(M, y) jumps from the term M to an input y
which becomes inaccessible and thus is substituted by a term y(M) throughout the
computational context. On the other hand a “postpone” term postp(z 7→ N, M ′)
stores some threads of the computation from z to N (possibly a list of terms). As
a consequence the input z becomes inaccessible and is substituted by a term z(M ′)
throughout the computational context. If M ′ is mkc(M, y), then we can reactivate
the stored threads N and free the variables z and y in the computational context.
The variable z is substituted by M wherever it occurs, i.e., as ξ[z := M ]. Moreover
the threads N are connected to M through the substitution N [z := M ] and the
variable y is substituted by N [z := M ]. Here we see a calculus with binding and
substitution implemented as “global effects” in a co-intutionistic calculus through
terms originally conceived by Tristan Crolard [17] as extensions of the λµ calculus.

The term assignment to co-ILL in a sequent calculus notation is given in
table 2. Sequents are of the form

x : E . P | M : Γ

where

• the area of the succedent to the left of “|” may be called “control area”;
• P = P1, . . . , Pm is a sequence of p-terms;
• M : Γ stands for M1 : C1, . . . ,Mn : Cn, where Γ = C1, . . . , Cn;
• writing κ : Γ for P | M : Γ and ζ : ∆ for Q | N : ∆, then κ : Γ, ζ : ∆

stands for P ,Q | M : Γ,N : ∆.

The term assignment for the corresponding system of Natural Deduction is
given below in the discussion of the categorical models.

3 Categorical Semantics

We recall the definition of a symmetric monoidal category.
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axiom

x : A . | x : A

cut

v : E ` P | M : Γ, M : A x : A ` Q | N : ∆

x : E ` P , Q[x := M ] | M : Γ, N [x := M ] : ∆

⊥-R

x : E ` π | M : Γ

x : E ` π | M : Γ, connect to(R) : ⊥
where R ∈ π ∪M

⊥-L

x : ⊥ . postp(x) |

Write κ : Γ for P | M : Γ and ζ : ∆ for Q | N : ∆.

r-R

v : E . κ : Γ, M : C x : D . ζ : ∆

v : E . κ : Γ, ζ[x := x(M)] : ∆, mkc(M, x) : C r D

r-L

x : C . P | M : D, M : ∆

z : C r D . P [x := x(z)], postp(x 7→ M, z) | M [x := x(z)] : ∆

℘-R

x : E . π | M : Γ, M0 : C0, M1 : C1

x : E . π | M : Γ, M0℘M1 : C0℘C1

℘-L

x0 : C0 . κ : Γ0 x1 : C1 . ζ : Γ1

z : C0℘C1 . κ[x0 := casel(z)] : Γ0, ζ[x1 := caser(z)] : Γ1

dereliction
x : E . κ : Γ, M : C

x : E . κ : Γ, [ M ] :?C

storage

x : C . P | N : ?∆

z : ?C . P , store(N, y, x, z) | y(z) : ?∆

weakening

x : E . κ : Γ
x : E . κ : Γ, connect to(R) :?C

where R ∈ κ.

contraction

x : E ` κ : Γ, M :?C, N :?C

x : E ` κ : Γ, [ M, N ] :?C

Table 2. Term assignment to sequent calculus for co-ILL

Definition 5. A symmetric monoidal category (SMC) (C, •, 1, α, λ, ρ, γ), is a
category C equipped with a bifunctor • : C× C → C with a neutral element 1
and natural isomorphisms α, λ, ρ and γ:

1. αA,B,C, : A • (B • C) ∼−→ (A •B) • C;
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2. λA : 1 •A
∼−→ A

3. ρA : A • 1 ∼−→ A
4. γA,B : A •B

∼−→ B •A.

which satisfy the following coherence diagrams.

A • (B • (C •D))

idA•αB,C,D

��

αA,B,C•D// (A •B) • (C •D)
A•B,C,D// (((A •B) • C) •D

A • ((B • C) •D)
αA,B•C,D

// (A • (B • C)) •D

αA,B,C•idD

OO

A • (B • C)

γA,B•idC

��

αA,B,C// A • (B • C)
γA,B•C// (B • C) •A

αB,C,A

��
(B •A) • C

αB,A,C

// B • (A • C)
idB•γA,C

// B • (C •A)

A • (1 •B)

idA•λB

%%JJJJJJJJJJJ
αA,1,B // (A • 1) •B

ρA•idB

yyttttttttttt

A •B

A •B

idA•B
##G

GGGGGGGGG
γA,B // B •A

γB,A

��
A •B

A • 1

ρa

  A
AA

AA
AA

AA
γA,1 // 1 •A

λA
~~}}

}}
}}

}}
}

A

The following equality is also required to hold: λ1 = ρ1 : ⊥ • ⊥ → 1.

Given a signature Sg, consisting of a collection of types σi and a collec-
tion of sorted function symbols fj : σ1, . . . , σn → τ and given a SMC
(C, •, 1, α, λ, ρ, γ), a structure M for Sg is an assignment of an object [[σ]]
of C for each type σ and of a morphism [[f ]] : [[σ1]] • . . . • [[σn]] → [[τ ]] for each
function f : σ1, . . . , σn → τ of Sg.

The types of terms in context ∆ = [M1 : σ1, . . . ,Mn : σn] are interpreted
as [[σ1, σ2, . . . , σn]] = (. . . ([[σ1]] • [[σ2]]) . . .) • [[σn]]; left associativity is also in-
tended for concatenations of type sequences Γ,∆. Thus the obvious functions
Split(Γ,∆) : [[(Γ,∆)]] → [[(Γ ]] • [[∆)]] and Join(Γ,∆) : [[(Γ ]] • [[∆)]] → [[(Γ,∆)]]
are defined by suitable combinations of α, λ, ρ and their inverses; similarly for
Splitn(Γ1, . . . , Γn) : [[(Γ1, . . . , Γn)]] → [[Γ1]] • . . . • [[Γn)]]

The semantics of terms in context is then specified by induction on terms:

[[x : σ . x : σ]] =df idσ

[[x : σ . f(M1, . . . ,Mn) : τ ]] =df [[x : σ . M1 : σ1]] • . . . • [[x : σ . Mn : σn]]; f
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The Exchange right rule is handled implicitly by symmetry in the model:

[[x : σ . M : Γ,N : τ,M : σ]] = [[x : σ . M : Γ,M : σ,N : τ ]];α−1
Γ,τ,σ • γτ,σ;αΓ,σ,τ

One then proves by induction on the type derivation that substitution in the
term calculus corresponds to composition in the category:

Lemma 1. Let x : σ . M : Γ,M : τ and y : τ . N : ∆ be derivable terms in
context, then

[[x : σ . M : Γ,N [y := M ] ]] =
[[x : σ . M : Γ,M : τ ]]; idΓ • [[y : τ . N : ∆]]; Join(Γ,∆)

Let M be a structure for a signature Sg in a SMC C. Given an equation in
context for Sg

x : σ . M : Γ,M = N : σ

we say that the structure satisfies the equation if the morphisms assigned to
x : σ .M : Γ,M and to x : σ .M : Γ,N : σ are equal. Then given an algebraic
theory Th = (Sg,Ax), a structure M for Sg is a model for Th if it satisfies
all the axioms in Ax.

Lemma 2. Let C be a SMC, Th an algebraic theory and M a model of Th
in C. Then M satisfies the equations in context in Table 3.

z : D . M : Γ, M : σ
Refl

z : D . M : Γ, M = M : σ

z : D . M : Γ, M = N : σ
Symm

z : D . M : Γ, N = M : σ

z : D . M : Γ, M = N : σ z : D . M : Γ, N = P : σ
Trans

z : D . M : Γ, M = P : σ

z : D . M : Γ, M = N : σ x : σ . M : Γ, P = Q : τ
Subst

z : D . M : Γ, P [x := M ] = Q[x := N ] : τ

Table 3.

3.1 Analysis of the rules of co-intuitionistic linear logic

We work with symmetric monoidal categories satisfying the dual condition
to closure, namely, with monoidal categories of the form (C, •, r, 1, α, λ, ρ, γ)
such that for all objects A in C, the functor A • − has a left adjoint − r A.
We call such monoidal categories left closed.
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Given a symmetric monoidal category C, its opposite is also symmetric
monoidal. If C is closed, i.e., A •− has a right adjoint, then certainly Cop has
a left adjoint. It is well-known that in a symmetric monoidal closed category
C we can construct a model of multiplicative intuitionistic linear logic, hence
it is certainly not surprising that a model of multiplicative co-intuitionistic
linear logic may be constructed in Cop. The point of the exercise that follows,
however, is to check that the dual linear calculus given above in Section 2.2
is indeed suitable for the construction of such an interpretation. We consider
the rules for each connective in turn.

Linear disjunction Par

3.1.1. Par introduction. The introduction rule for Par is of the form
x : D . κ : Θ,M0 : A,M1 : B

℘ I
x : D . κ : Θ,M0 ℘ M1 : A℘B

This suggests an operation on Hom-sets of the form

ΦD,Θ : C(D,Θ •A •B) → C(D,Θ •A℘B)

natural in Θ and D. Given e : D → Θ • A • B, d : D′ → D and h : Θ → Θ′,
naturality yields

ΦD′,Θ′(d; e;h • idA • idB) = d;ΦD,Θ(e);h • idA℘B

In particular, letting e = idΘ • idA • idB , d : D → Θ • A •B and h = idΘ we
have

ΦD,Θ(b) = b;ΦΘ(idΘ • idA • idB)

Writing PAR for ΦΘ(idΘ • idA • idB) we have ΦD,Θ(b) = b;PAR. We define

[[x : D . Q : Θ,M℘N : A℘B]] =df [[x : D . Q : Θ,M : A,N : B]];PAR.

3.1.2. Par elimination. The Par elimination rule has the form
z : D . κ : Υ, N : A ℘ B x : A . ζ : Γ y : B . ξ : ∆

℘ E
z : D . κ : Υ, ζ[x := caselN ] : Γ, ξ[y := caserN ] : ∆

This suggests an operation on Hom-sets of the form

ΨD,Υ,Γ,∆ : C(D,Υ •A℘B)× C(A,Γ )× C(B,∆) → C(D,Υ • Γ •∆)

natural in D,Υ, Γ,∆. Given morphisms g : D → Υ • A℘B, e : A → Γ and
f : B → ∆ and also a : D′ → D, p : Υ → Υ ′, c : Γ → Γ ′ and d : ∆ → ∆′

naturality yields

ΨD′,Υ ′,Γ ′,∆′
(
(a; g; p • idA℘B), (e; c), (f ; d)

)
=

a;ΨD,Υ,Γ,∆(g, e, f); p • c • d; Join(Υ ′, Γ ′,∆′).
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In particular, setting e = idA, f = idB and also a = idD, p = idΥ , we get

ΨD,Υ,Γ,∆(g, c, d) = ΨD,Υ,Γ,∆(g, idA, idB); idΥ • c • d; Join(Υ, Γ,∆)

Writing (g)∗ for ΨD,Υ (g, idA, idB) we define

[[z : D . κ : Υ, ζ[x := casel N ] : Γ, ξ[y := caserN ] : ∆]] =df

[[z : D . κ : Υ, N : A ℘ B]]∗; idΥ • [[x : A . ζ : Γ ]] • [[y : B . ξ : ∆]]; Join(Υ, Γ,∆).

3.1.3. Equations in context. We have equations in context of the form

℘− β rule:
z : D . κ : Θ,M0 : A,M1 : B x : A . ζ : Γ y : B . ξ : ∆

z : D . κ : Θ, ζ[x := casel (M0 ℘ M1)] = ζ[x := M0] : Γ

z : D . κ : Θ, ξ[y := caser (M0℘M1)] = ξ[y := M1] : ∆

(3)

Let q : D → Θ •A •B, m : A → Γ and n : B → ∆. Then to satisfy the above
equation in context we need that the following diagram commutes:

D
q // Θ •A •B

℘

��

idΘ•m•n// Θ • Γ •∆

Θ •A℘B ∗
// Θ •A •B

idΘ•m•n

OO

We make the assumption that the above decomposition is unique. Moreover,
supposing Θ empty and m = idA, n = idB , q = idA • idB we obtain (idA •
idB ;PAR)∗ = idA • idB and similarly (idA ℘ B)∗;PAR = idA ℘ B ; hence we
may conclude that there is a natural isomorphism

D → Γ •A •B

D → Γ •A℘B

so we can identify • and ℘. Finally we see that the following η equation in
context are also satisfied:

z : D . κ : Υ, M : A ℘ B

℘− η rule:
x : A . x : A y : B . y : B

z : D . κ : Υ, casel(M) ℘ caser(M) = M : A ℘ B
(4)

Linear subtraction

3.1.1. Subtraction introduction. The introduction rule for subtraction has the
form
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x : D . κ : Γ,M : A y : B . ζ : ∆
r I

x : D . κ : Γ, ζ[y := y(M)] : ∆, mkc(M, y) : A r B

This suggests a natural transformation with components

ΦD,Γ,∆ : C(D,Γ •A)× C(B,∆) → C(D,Γ •∆ •A r B)

natural in D,Γ, ∆. Taking morphisms e : D → Γ • A, f : B → ∆ and
a : D′ → D, c : Γ → Γ ′, d : ∆ → ∆′, by naturality we have

ΦD′,Γ ′,∆′ ((a; e; c • idA), (f ; d)) = a;ΦD,Γ,∆(e, f); c•d•idArB ; Join(Γ ′,∆′, ArB)

In particular, taking a = idD, c = idΓ , d : B → ∆ and f = idB we have:

ΦD,Γ,∆(e, d) = ΦD,Γ (e, idB); idΓ • d • idArB ; Join(Γ,∆,A r B)

Writing MKCB
D,Γ (e) for ΦD,Γ (e, idB), ΦD,Γ,∆(e, d) can be expressed as the

composition
MKCB

D,Γ (e); idΓ • d • idArB

where MKCB
D,Γ is a natural transformation with components

MKCB
D,Γ : C(D,Γ •A)× C(B,B) → C(D,Γ •B •A r B)

so we make the definition

[[x : D . κ : Γ, ζ[y := y(M)], mkc(M, y) : A r B]] =df

MKCB
D,Γ [[x : D . κ : Γ,M : A]]; idΓ • [[y : B . ζ : ∆]] • idArB ; Join(Γ,∆,A r B)

3.1.2. Subtraction elimination. The subtraction elimination rule has the form

x : D . M : Γ,M : A r B y : A . N : ∆, N : B
℘ E

x : D . M : Γ, N [y := Y (M)], postp(y 7→ N,M)

This suggests a natural transformation with components

ΨD,Γ,∆ : C(D,Γ • (A r B))× C(A,∆ •B) → C(D,Γ •∆ • 1)

natural in D,Γ, ∆. Given e : D → Γ • (A r B), f : A → ∆ • B and also
a : D′ → D, c : Γ → Γ ′, d : ∆ → ∆′, naturality yields

ΨD′,Γ ′,∆′ ((a; e; f • idArB), (f ; c • idB)) = a;ΦD,Γ,∆(e, f); c • d; Join(Γ ′,∆′)

In particular, taking a : D → Γ • (A r B), e = idΓ•(ArB), c = idΓ , d : id∆,
we obtain

ΨD,Γ,∆(a, f) = a;ΦD,Γ,∆(idΓ•(ArB), f); Join(Γ,∆)

Writing POSTP(f) for ΦD,Γ,∆(idΓ•(ArB), f) we define
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[[x : D . M : Γ,N [y := Y(M)], postp(y 7→ N,M)] =df

[[x : D . M : Γ,M : A r B]]; idΓ •POSTP[[y : A . N : ∆, N : B]]; Join(Γ,∆)

3.1.3. Equations in context. We have equations in context of the form

x : D . M : Γ, M : A

r − β rule:

y : B . N : ∆ z : A . L : Λ, L : B

x : D . M : Γ,
h
N

′
: ∆, redL

′
: Λ

i
=

ˆ
N [y := L[z ::= M ] ], L[z := M ]

˜ (5)

where N
′
= N [y := Y (M)], red = postp (z 7→ L, mkc(M,Y )) and L

′
= L[z :=

mkc(M,Y )].

Given morphisms n : D → Γ • A and m : A → ∆ • B, for these equations to
be satisfied we need the following diagram to commute:

D

MKCB(n)

��

n // Γ •A

idΓ •m

��
Γ • (A r B) •B

POSTP(m)•idB

// Γ •∆ •B

in particular, taking n = idA we have

A

MKCB(idA)

��

m // ∆ •B

(A r B) •B

POSTP(m)•idB

99sssssssssss

Assuming the above decomposition to be unique, we can show that the η
equation in context is also satisfied:

z : D . N : ∆, M : A r B

r − η rule

x : A . x : A y : B . y : B

z : D . N : ∆,
h
mkc(X(M), Y ) : A r B, postp(x 7→ Y (x), M)

i
= M : A r B

(6)
and conclude that there is a natural isomorphism between the maps

A → ∆ •B

A r B → ∆

i.e., that r is the left adjoint to the bifunctor •.
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Unit

3.1.1 Unit rules. The introduction and elimination rules for the unit ⊥ are
⊥ introduction
x : D . κ : Γ

x : D . κ : Γ, connect to(R) : ⊥
where R ∈ κ.

⊥ elimination
x : ⊥ . postp(x)

The elimination rule is interpreted by a unique map 〈〉 : ⊥ → 1.

The introduction rule requires a natural transformation with components

ΦD,Γ : C(D,Γ ) → C(D,Γ • 1)

natural in D and Γ . Given morphisms e : D → Γ , d : D′ → D and c : Γ → Γ ′,
naturality yields

ΦD′,Γ ′(d; e; c) = d;ΦD,Γ (e); c.

Letting d : D → Γ and e = idΓ , c = idΓ•⊥ we have

ΦD,Γ (d) = d;BotΓ

where we write BotΓ for ΦΓ (idΓ ). We define

[[x : D . κ : Γ, connect to(x) : ⊥]] =df [[x : D . κ : Γ ]];BotΓ .

3.1.2. Equations in context. We may assume the operation BotΓ to be com-
patible with the generalized associativity and commutativity properties of •,
so that for Γ = C1, . . . , Cn we have

ΦC1•...Ci•⊥•...•Cn
(idΓ ) : C1, . . . , Ci,⊥, . . . , Cn = ΦΓ (idΓ ) : Γ,⊥

for all i ≤ n. Together with naturality of BotΓ these yield the equations in
context

x : D . κ : Γ

x : D . κ : Γ,
[
connect to(Ri) = connect to(Rj)

]
Ri, Rj ∈ κ

x : D . κ : Γ
y : E . ζ : Γ ′

y : E . ζ,
[
connect to(Ri) = connect to(Rj)

]
Ri ∈ κ, Rj ∈ ζ

(7.0)

that correspond to the rewiring properties of ⊥-links in the proof-net repre-
sentation by [13, 14]. Moreover the equation in context

⊥− β rule
x : D . kappa : Γ y : ⊥ . postp(y)

x : D . [κ : Γ, postp(connect to(R) ) = κ : Γ ]
where R ∈ κ.

(7)
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requires that for any m : D → Γ the following diagram commutes:

D
m;Bot//

m
!!B

BB
BB

BB
BB

Γ • ⊥

idΓ •〈〉;λA

��
Γ.

Assuming that this decomposition is unique and taking m = idA we have that
BotA; idA • 〈〉;λA = idA. Arguing as before, we see that there is a natural
isomorphism

D → Γ • 1
D → Γ • ⊥

(so we identify ⊥ and 1) and that the following equation in context is satisfied:

⊥− η rule:
z : D . κ : Γ,M : ⊥ x : ⊥ . postp(x)

z : D . κ : Γ,
[
connect to(postp(M) ) : ⊥ = M : ⊥

] (8)

Let L be the signature having

• the types given by the following grammar on a collection of ground types
γ:

A := γ | ⊥ | A℘A | A r A

• a collection of sorted function symbols including connect to(−), postp(−),
℘(−,−), casel(−), caser(−), mkc(−,−), postp(−,−).

We have proved the following

Theorem 1. Let T = (L,A) be a theory with signature L having as axioms
the equations in context in Table 3 and in (3) - (8). Let (C, •, 1, r, α, λ, ρ, γ)
be a symmetric monoidal left-closed category and M a structure for L in C.
Then M satisfies the equations in A.

Moreover, define the syntactic category as the category C which has the formu-
las of multiplicative co-intuitionistic linear logic as objects and typed terms
of the form x : E / κ : Γ (modulo renaming of the variable x) as morphisms.
Set x : E . κ : Γ = y : E . ζ : Γ iff κ = ζ[y := x] is derivable from equations
in context in Table 3 and in (3) - (8). Then we have

Theorem 2. The syntactic category is a symmetric monoidal left-closed cat-
egory.

From this fact the categorical completeness theorem follows.
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4 Extension to co-intuitionistic linear logic with
coproducts and exponential

Let L⊕ be L extended with additive disjunction ⊕ and the familiar functions
inl : A → A ⊕ B, inr : B → A ⊕ B and case : A ⊕ B × (A → C) × (B →
C) → C. Then it is easy to extend the above result to show that if C has also
the structure of coproducts, then a structure for L⊕ in C satisfies also the
theory T ⊕ where A is extended with familiar equations in context for inl,
inr and case. We shall not pursue this extension here.

The extension of T to a theory with the exponential ? (why not?) is less simple.
On one hand, one can dualize Benton, Bierman, De Paiva, Hyland’s definition
of a linear category [10, 12] and obtain in this way a sound and complete cate-
gorical semantics for co-intuitionistic linear logic. The construction of weakly
distributive categories with storage operators based on proof-nets by Blute,
Cockett and Seely [13] provides a categorical model for both exponentials !
and ?. On the other hand, the semantics for the exponential ! can recovered in
the context of Nick Benton’s treatment of Linear Non Linear logic [11]. After
dualizing the linear part of LNL one should be able to recover the semantics
for ? and at the same time obtain a framework where the duality of intuition-
istic and co-intuitionistic logic can be studied. We leave the development of
this approach to future work and focus on the categorical semantics of the
multiplicative and exponential ? fragment of co-intuitionstic linear logic.

4.1 Co-intuitionistic linear categories

We begin by dualizing the definition of a linear category [10, 12].

Definition 6. A dual linear category C consists of

1. A symmetric monoidal left-closed category together with
2. a symmetric co-monoidal monad (?, η, µ, n−,−, n⊥) (namely, the functor

? is co-monoidal with respect to ℘ and the linear transformation η, µ are
co-monoidal) such that
(i) - each free ?-algebra (?A,µA) carries naturally the structure of a
commutative ℘-monoid (i.e., for each (?A,µA) there are distinguished
monoidal natural transformations iA : ⊥ →?A and cA :?A℘?A →?A which
form a commutative monoid and are algebra morphisms);
(ii) - whenever f : (?A,µA) → (?B,µB) is a morphism of free algebras,
then it is also a monoid morphism.

Remark 2. By Maietti, Maneggia de Paiva and Ritter (see [24], Prop. 25), con-
dition 2 (ii) is equivalent to the requirement that µ is a monoidal morphism.

(i) To say that the functor ? is symmetric co-monoidal means that it comes
equipped with a comparison natural transformation nA,B :?(A℘B) →?A℘?B
and a morphism n⊥ :?⊥ → ⊥, satisfying
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?(⊥℘ A)

?λA

��

n⊥,A // ?⊥℘ ?A

n⊥ ℘ id?A

��
?A

λ−1
?A

// ⊥℘ ?A

and ?(A ℘⊥)

?ρA

��

nA,⊥ // ?A ℘ ?⊥

id?A ℘ n⊥

��
?A

ρ−1
?A

// ?A ℘⊥

?((A ℘ B)℘ C)
nA ℘,B,C//

?αA,B,C

��

?(A ℘ B)℘ ?C
mA,B ℘ idC// (?A ℘ ?B)℘ ?C

α−1
?A,?B,?C

��
?(A ℘ (B℘ C))

nA,B ℘ C

// ?A ℘ ?(B℘ C)
id?A ℘ nB.C

// ?A ℘ (?B℘ ?C)

?(A ℘ B)

?γA,B

��

nA,B // ?A ℘ ?B

γ?A,?B

��
?(B ℘ A)

nB,A // ?B ℘ ?A

and naturality ?(A℘B)

?(f℘g)

��

nA,B // ?A℘?B

?f℘?g

��
?(A′℘B′)

nA′,B′ // ?A′℘?B′

(ii) To say that η and µ are co-monoidal is to say that the following diagrams
commute:

A℘B
ηA℘ηA //

ηA℘B

��

?A℘?B

?(A℘B)

nA.B

;;vvvvvvvvvv

and ⊥
η⊥ //

id

��>
>>

>>
>>

>>
?⊥

n

��
⊥

??(A℘B)
µA℘B //

?nA,B

��

?(A℘B)

nA,B

��

?(?A℘?B)

n?A,?B

��
??A ℘ ??B

µA℘µB

// ?A ℘ ?B

and ??⊥
?n⊥ //

µ⊥

��

?⊥

n⊥

��
?⊥ n⊥

// ⊥

(iii) To say that the natural transformations iA : ⊥ →?A and cA :?A℘?A →?A
are monoidal means that they are compatible with the comparison maps, i.e.,
that the following diagrams commute:

⊥ id //

i⊥

��

⊥

?⊥

n⊥

@@���������

⊥℘⊥
λ=ρ // ⊥

?⊥℘ ?⊥
c⊥

//

n⊥ ℘ n⊥

OO

?⊥

n⊥

OO ⊥℘⊥

λ=ρ

��

iA ℘ iB // ?A℘?B

⊥
A℘B
// ?(A ℘ B)

nA,B

OO
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(?A ℘ ?A) ℘ (?B ℘ ?B)
cA ℘ cB // ?A ℘ ?B

(?A ℘ ?B) ℘(?A ℘ ?B)

iso

OO

?(A ℘ B) ℘ ?(A ℘ B)

nA,B℘nA,B

OO

cA℘B

// ?(A ℘ B)

nA,B

OO

where iso is the canonical isomorphism derived from symmetry and associa-
tivity;

⊥
iA // ?A

?⊥

n⊥

OO

?iA

// ??A

µA

OO and ?A ℘ ?A
cA // ?A

??A ℘ ??A

µA ℘ µA

OO

?(?A ℘ ?A)

n?A,?A

OO

?cA

// ??A

µA

OO

(iv) Finally for the free algebra morphisms to be monoid morphism we require
that the following diagrams commute:

?A ℘ ?A
cA // ?A

??A ℘ ??A

µA ℘ µA

OO

c?A

// ??A

A

OO ⊥

i?A
��?

??
??

??
??

iA // ?A

??A

µA

OO

4.2 Term and equations in context

To sketch a proof that a dual linear category is a model of co-intuitionistic
linear logic with storage operator ? we give the term in context and the equa-
tion in context relevant to the dereliction, weakening, contraction and storage
rules. These conditions are dual to those in Figures 4.1-4.5 in G. M. Bierman’s
thesis [12], pp. 112-142. Since in our context the exponential rules for dere-
liction, weakening and contraction do not involve let constructions, some of
these conditions result immediately from properties of substitution.

In a Natural Deduction setting, the dereliction, weakening and contraction
rules for the exponential ? are introduction rules and therefore coincide with
the right sequent calculus rules in Table 2. On the contrary, the storage rule is
an elimination rule and its Term in Context rule is given in Table 4. There are
three Equations in Context expressing “β reductions” for the storage operator
in Table 5. Finally there are Categorical Equations in Context in Table 6.
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v : E . κ : Γ, M : ?C x : C . Q | N : ?∆

v : E . κ : Γ, Q[x := x(M)], store(N, y, x, M) | y(x(M)) : ?∆

dereliction
x : E . κ : Γ, M : C

x : E . κ : Γ, [ M ] :?C

weakening

x : E . κ : Γ
x : E . κ : Γ, connect to(R) :?C

where R ∈ κ.

contraction

x : E ` κ : Γ, M :?C, N :?C

x : E ` κ : Γ, [ M, N ] :?C

Table 4. Term in context judgement for the ? storage operator

Dereliction - Storage:

v : E . κ : Γ, M : C x : C . Q | N : ?∆

v : E . κ : Γ,
h
Q[x := x( [M ] )], store(N, y, x, M) | y(x( [M ] )) : ?∆ =

= Q[x := M ] | N [x := M ] : ?∆
i

Contraction - Storage:

v : E . κ : Γ, M0 : ?C, M1 : ?C x : C . Q | N : ?∆

v : E . κ : Γ,
h
Q[x := x([M0, M1])], store(N, y, x, [M0, M1]) | y(x( [M0, M1] )) : ?∆ =

= Q[x := M0], Q[x := M1], store(N, y, x, M0), store(N, y, x, M1]) |

〈[y(x(M0)), y(x(M1))]〉 : ?∆
i

where ?∆ =?D1, . . .?Dm and 〈[y(x(M0)), y(x(M1))]〉 :?∆ stands for

[y1(x(M0)), y1(x(M1))] : ?D1, . . . , [ym(x(M0)), ym(x(M1))] : ?Dm

Weakening - Storage:

v : E . κ : Γ x : C . Q | N : ?∆ R ∈ κ

v : E . κ : Γ,
h
Q[x := x(connect to(R))], store(N, y, x, connect to(R)) |

y(x(connect to(R)) : ?∆ = | 〈[connect to(R)]〉 : ?∆
i

where ?∆ =?D1, . . .?Dm and | 〈[connect to(R)]〉 : ?∆ stands for

| connect to(R) : ?D1, . . . , connect to(R) : ?Dm

Table 5. Equations in context for the ? storage operator
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Monad:

z :?A .
h
store([ [x] ], y, x, z), store(x′, y′, x′, t) | y′(x′(t)) : ?A = x :?A

i
where t = y(x(z)) :??A

Algebra 1

v : E . κ : Γ, M :?C x : C . P | N :?∆

v : E . κ : Γ, P [x := x(M)],h
store(〈N, connect to(R)〉, 〈y, y〉, x, M) | y(x(M)) : ?∆, y(x(M)) : ?A =

= store(N, y, x, M) | y(x(M)), connect to(R′)
i

where R ∈ P ∪N and R′ ∈ P [x := x(M)] ∪ y(x(M))

Algebra 2

v : E . κ : Γ, M :?C x : C . P | N :?∆, N0 :?A, N1 :?A

v : E . κ : Γ, P [x := x(M)],h
store(〈N, [N0, N1]〉, 〈y, y〉, x, M) | y(x(M)) : ?∆, y(x(M)) : ?A =

= store(〈N, N0, N1〉, 〈y, y0, y1〉, x, M) | y(x(M)) : ?∆, [y0(x(M)), y1(x(M))] : ?A
i

Monoid 1
v : E . κ : Γ, M : ?C R ∈ κ

v : E . κ : Γ,
h
[M, connect to(R)] : ?C = M : ?C

i
Monoid 2

v : E . κ : Γ, M : ?C R ∈ κ

v : E . κ : Γ,
h
[connect to(R), M ] : ?C = M : ?C

i
Monoid 3

v : E . κ : Γ, M0 : ?C, M1 : ?C

v : E . κ : Γ,
h
[M0, M1] : ?C = [M1, M0] : ?C

i
Monoid 4

v : E . κ : Γ, M0 : ?C, M1 : ?C, M2 : ?C

v : E . κ : Γ,
h
[[M0, M1], M2] : ?C = [M0, [M1, M2]] : ?C

i
Table 6. Categorical Equations in context

The key decision, discussed at length in G. M. Bierman’s thesis [12] pp. 127-
131, arises in the analysis of the Dereliction-Storage reduction given by
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the equation in context in Table 5. By repeating for the rules of derelic-
tion and storage the kind of analysis done for par, subtraction and unit,
we see that in order to model the storage rule we need a natural transfor-
mation ΦE,Γ : C(E,Γ•?A) × C(A, ?∆) → C(E,Γ•?∆). By naturality con-
siderations this is given by its action ΦΓ (idΓ•?A, d) =df d∗ on morphisms
d : A →?∆. Similarly, for the dereliction rule we need a natural transforma-
tion Ψ : C( , A) → C( , ?A) and by applying Yoneda’s Lemma we see that its
action is given by a morphism ηA : A →?A.

We can certainly define a functor ? : C(A,Γ ) → C(?A, ?Γ ) by f 7→ (f ; ηΓ )∗.
Now by the equation in context for dereliction-storage we have that following
the diagram commutes:

??A ??A
(ηA)∗oo

?A

?ηA

aaBBBBBBBBB
η?A

OO

Assuming the above decomposition to be unique, we have (ηA)∗ = id??A and
thus the derivations

η?A : x :?A . [x] :??A and ?ηA : z :?A . store([ [x] ], y, x, z) | y(x(z)) :??A

must be identified. Now it can be shown that identifying ?ηA and ?ηA forces
the functor ? to be idempotent: ??f = ?f . In order to avoid such collapse,
the functor ? is only assumed to be a K modality, and the properties of S4
are given by the natural transformations η : A →?A and µ :??A →?A of the
monad (?, η, µ). Here µA is given by the proof z :??A . store(x, y, x, z) and
the commutative diagram required by the definition of a monad

?A

??A

µA

OO

?A
?ηAoo

id?A

``AAAAAAAAA

yields the equation in context of Table 6 identifying id?A : x :?A . x :?A with

?ηA :
x : A . [x] :?A

x : A . [ [x] ] :??A
z :?A . store([ [x] ], y, x, z) | t :??A

µA :
z′ :??A . store(x′, y′, x′, z′) | y′(x′(t)) :?A

z :?A . store([ [x] ], y, x, z), store(x′, y′, x′, t) | y′(x′(t)) : ?A
where t = y(x(z)) :??A

Further details are left to the reader.
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5 Conclusion.

In order to provide a categorical semantics for co-intuitionistic logic - given
that as remarked by Tristan Crolard [16] co-exponents in the category Set
are trivial - we have given a categorical semantics for intuitionistic multi-
plicative and exponential co-intuitionistic linear logic, from which our desired
results follows by dualizing J-Y. Girard’s embedding of intuitionistic logic into
intuitionistic linear logic.

In this task we started from a term assignment to multiplicative co-intuitionistic
logic, which has been proposed as an abstract distributed calculus dualizing
the linear λ calculus [1, 3, 7]: in our view such dualization underlies the trans-
lation of the linear λ-calculus into the π-calculus (see [9]). Our dual distributed
calculus is itself a restriction to a co-intuitionistic consequence relation of Cro-
lard’s term assignment to subtraction in the framework of the λµ-calculus: to
subtraction introduction and elimination rules and to their β reduction global
operations of binding and global substitution are assigned; these operations
may appear as notationally awkward at first sight but are forced on us by
the removal of the µ-rule and of the µ-variable abstraction used in Crolard’s
approach.

Thus our work required a lengthy exercise on well-known results by Benton,
Bierman, Hyland and de Paiva[10, 12], with the considerable help given by
Blute, Cockett, Seely and Trimble’s work [13, 14]. To assess the merits and
advantages of our work we need to evaluate the syntax for the exponential
rules: here again the storage rule may appear notationally quite heavy, but it
is a straightforward implementation of the act of storing. Moreover, the role of
terms encoding the stored terms - which may be seen as a form of generalized
axioms - evokes the rather mysterious notion of guarded functoriality appear-
ing in the categorical proof-theory of classical logic [6]. On the other hand
the advantages of working in the dual system are completely evident in the
treatment of dereliction and contraction, where the awkward let operations
and related naturality conditions are replaced by simple operations on lists.
Finally, the treatment of weakening is also completely standard, thanks also
to Blute, Cockett, Seely and Trimble’s work [13, 14] on the notion of rewiring.
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