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1 Preliminaries

We provide the formal definitions of some important categorical concepts.

Definition 1.1 Let C and D be categories. A functor F : C −→ D is a
map that takes an object X of C to an object F(X) of D and a morphism
f: X −→ Y of C to a morphism F(f):F(X) −→ F(Y) such that, for all objects
X of C and all morphisms f: X −→ Y and g: Y −→ Z of C, F(idX) = idF(X)

and F(g ◦ f) = F(g) ◦ F(f).

Definition 1.2 Let C and D be categories, and F : C −→ D and G: C −→ D
functors from C to D. A natural transformation ν from F to G, written
ν:F ˙−→ G, is a function that assigns to every object X of C a morphism
νX:F(X) −→ G(X) of D such that, for any morphism f: X −→ Y of C, the
equation G(f) ◦ νX = νY ◦F(f) holds in D. [exercise: write the equation as
a commuting diagram.]

Definition 1.3 A symmetric monoidal category (M, �, I, α, λ, ρ, τ) consists
of a category M together with a bifunctor �: M × M −→ M, an object I
of M, and four natural isomorphisms αX,Y,Z: X � (Y � Z) −→ (X � Y) � Z,
λX: I � X −→ X, ρX: X � I −→ X, τX,Y: X � Y −→ Y � X such that λI =
ρI: I � I −→ I and the following five diagrams commute for all objects X, Y,
Z, and U of M.

X � (Y � (Z � U)) (X � Y) � (Z � U) ((X � Y) � Z) � U

X � ((Y � Z) � U) (X � (Y � Z)) � U

α //

id � α

��

α //

α
//

α � id

OO
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X � (I � Y)

(X � I) � Y X � Y

α

�� LLLLLLLLLLLLLLLL
id � λ

&&

ρ � id
//

X � Y

Y � X X � Y

τ

�� DD
DD

DD
DD

DD
DD

DD

DD
DD

DD
DD

DD
DD

DD

τ
//

X � I

I � X X

τ

�� DD
DD

DD
DD

DD
DD

DD

ρ

""

λ
//

X � (Y � Z) (X � Y) � Z Z � (X � Y)

X � (Z � Y) (X � Z) � Y (Z � X) � Y

α //

id � τ

��

τ //

α

��

τ
//

τ � id
//

Remark 1.4 It seems worth to provide some explanations at this point.

1. A bifunctor F : C×C −→ D is a functor F that maps a pair of objects
(X, Y) of C to an object F(X, Y) of D and a pair of morphisms (f, g)
of C to a morphism F(f, g) of D. Note that we shall write X � Y and
f � g instead of �(X, Y) and �(f, g).

2. A natural isomorphism is a natural transformations ν:F ˙−→ G that
comes endowed with an inverse natural transformation ν̄:G ˙−→ F such
that both νX ◦ ν̄X = idX = ν̄X ◦ νX.

Example 1.5 Every cartesian category is a symmetric monoidal category.

Definition 1.6 A symmetric monoidal functor (F , µ, u): M −→ M′ be-
tween two symmetric monoidal categories M = (M, �, I, α, λ, ρ, τ) and M′ =
(M′, �′, I′, α′, λ′, ρ′, τ ′) consists of a functor F : M −→ M′ together with a
natural transformation µX,Y:F(X) �′ F(Y) −→ F(X � Y) and a morphism
u: I′ −→ F(I) such that, for all objects X, Y, and Z of M, the following four
diagrams commute in M′.

(F(X) �′ F(Y)) �′ F(Z) F(X � Y) �′ F(Z) F((X � Y) � Z)

F(X) �′ (F(Y) �′ F(Z)) F(X) �′ F(Y � Z) F(X � (Y � Z))

µ �′ id
//

µ
//

α′

OO

id �′ µ
//

µ
//

F(α)

OO

F(I) �′ F(X) F(I � X)

I′ �′ F(X) F(X)

µ
//

F(λ)

��

u �′ id

OO

λ′
//

F(X) �′ F(I) F(X � I)

F(X) �′ I′ F(X)

µ
//

F(ρ)

��

id �′ u

OO

ρ′
//
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F(X) �′ F(Y) F(X � Y)

F(Y) �′ F(X) F(Y � X)

µ
//

τ ′

��

F(τ)

��

µ
//

Definition 1.7 A symmetric monoidal category (M, �, I, α, λ, ρ, τ) is closed
if, for all objects X and Y of M, there exists an object [X ( Y] of M together
with a morphism app: [X ( Y] � X −→ Y of M such that, for every object
Z of M and every morphism f: Z � X −→ Y of M, there exists a unique
morphism cur(f): Z −→ [X ( Y] of M that satisfies app ◦ (cur(f) � idX) = f.

2 Project proposal

We provide a collection of problems about topics in categorical semantics.

2.1 Modal logic

The aim of this exercise is to prove soundness and completeness results for
the propositional intuitionistic modal logic IK. Formulae or types A of IK
are defined by the grammar A ::= > | A∧A | A → A | 2A. The sound (a.k.a.
valid) and complete categorical semantics for the corresponding extension of
the simply typed λ-calculus is given by a cartesian closed category C that
comes equipped with a monoidal endofunctor (F , η, u), i.e. a monoidal func-
tor (F , µ, u) from C to C. The extended interpretation function J−K2

C: λ → C
is defined as expected, thus assigning an object J2AK2

C = F(JAK2
C) of C to the

type 2A. The other missing details are provided in the following sections.

2.1.1 Term formation rule

Γ ` s1: 2A1 · · · Γ ` sn: 2An x1: A1, . . . , xn: An ` s: A
2

Γ ` box s with (s1, . . . , sn) for (x1, . . . , xn): 2A

2.1.2 Equations in context{
Γ ` r1: 2B1 · · · Γ ` rm: 2Bm y1: B1, . . . , ym: Bm ` r: B
Γ ` s1: 2A1 · · · Γ ` sn: 2An x1: A1, . . . , xn: An, x: B ` s: A

}
β2

Γ ` box s with (~s, box r with ~r for ~y) for (~x, x)
= box s[r/x] with (~s, ~r) for (~x, ~y): 2A
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Γ ` s: 2A
η2

Γ ` box x with s for x = s: 2A

2.1.3 Interpretation of term

JΓ ` box s with (s1, . . . , sn) for (x1, . . . , xn): 2AK2
C

= F(Jx1: A1, . . . , xn: An ` s: AK2
C) ◦ µ̂

◦ 〈JΓ ` s1: 2A1K2
C, . . . , JΓ ` sn: 2AnK2

C〉

[µ̂:F(JA1K2
C)× · · · × F(JAnK2

C) −→ F(JA1K2
C × · · · × JAnK2

C)]

Task 2.1 State the obvious soundness and complete theorems and provide
proofs of them. In particular, note that you are not required to repeat the
parts of the proofs for the 2-free fragment already discussed in class.

2.2 Linear logic

The aim of this exercise is to prove soundness and completeness results for
the multiplicative fragment of intuitionistic linear logic IMLL. Formulae or
types A of IMLL are defined by the grammar A ::= I | A�A | A ( A. The
sound (a.k.a. valid) and complete categorical semantics for the corresponding
variant of the simply typed λ-calculus is given by a symmetric monoidal
closed category M. The interpretation function J−KM: λ → M, also written
as J−K, is defined as expected, thus assigning objects JIK = I, JA � BK =
JAK � JBK, and JA ( BK = [JAK ( JBK] of M to the types I, A � B, and
A ( B. Contexts are interpreted as follows: J∅K = I; JΓ, x: AK = JΓK � JAK.
All the other missing details are provided in the following sections.

2.2.1 Term formation rules

ax
x: A ` x: A

Ii
` ∗: I

Γ ` s: I ∆ ` r: A
Ie

∆, Γ ` let s be ∗ in r: A

Γ ` s: A ∆ ` r: B
�i

Γ, ∆ ` s � r: A � B

Γ ` s: A1 � A2 ∆, x1: A1, x2: A2 ` r: B
�e

∆, Γ ` let s be x1 � x2 in r: B

Γ, x: A,` s: B
(i

Γ ` λx.s: A ( B

Γ ` s: A ( B ∆ ` r: A
(e

Γ, ∆ ` (s)r: B
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2.2.2 Equations in context

Γ ` s: A
βI

Γ ` let ∗ be ∗ in r = r: A

Γ ` s: I ∆, x: I ` r: B
ηI

∆, Γ ` let s be ∗ in (r[∗/x]) = r[s/x]: B

Γ1 ` s1: A1 Γ2 ` s2: A2 ∆, x1: A1, x2: A2 ` r: B
β�

∆, Γ1, Γ2 ` let s1 � s2 be x1 � x2 in r = r[s1/x1, s2/x2]: B

Γ ` s: A1 � A2 ∆, x: A1 � A2 ` r: B
η�

∆, Γ ` let s be x1 � x2 in (r[x1 � x2/x]) = r[s/x]: B

Γ, x: A,` s: B ∆ ` r: A
β(

Γ, ∆ ` (λx.s)r = s[r/x]: B

Γ ` s: A ( B
η(

Γ ` λx.(s)x: A ( B

2.2.3 Interpretation of terms

Jx: A ` x: AK = idJAK

J` ∗: IK = idJIK = idI

J∆, Γ ` let s be ∗ in r: AK = J∆ ` r: AK ◦ ρJ∆K

◦ (idJ∆K � JΓ ` s: IK)
JΓ, ∆ ` s � r: A � BK = JΓ ` s: AK � J∆ ` r: BK

J∆, Γ ` let s be x1 � x2 in r: BK = J∆, x1: A1, x2: As ` r: BK
◦ (idJ∆K � JΓ ` s: A1 � A2K)

JΓ ` λx.s: A ( BK = cur(JΓ, x: A ` s: BK)
JΓ, ∆ ` (s)r: A ( BK = app ◦ (JΓ ` s: A ( BK � J∆ ` r: AK)

Task 2.2 State the obvious soundness and complete theorems and provide
proofs of them. In particular, note that: (a) in the proof of the soundness
theorem you will have to make use of the substitution lemma given below;
(b) since the proof of the completeness theorem needs quite a lot of routine
calculations, it suffices two provide a concise description of all the possible
cases that need to be considered together with some sample calculations.

Lemma 2.3 (substitution) If Γ ` s: A and ∆, x: A ` r: B are derivable
according to the rules given in section 2.2.1 above then J∆, Γ ` r[s/x]: BK =
(idJ∆K � JΓ ` s: AK) ◦ J∆, x: A ` r: BK.
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2.3 Adjointness

The aim of this exercise is to show that the connection between implication
and conjunction can be expressed categorically in terms of an adjunction. In
NJ, we have that

C ∧ A ` B
=========
C ` A → B

where the double bar indicates that one can derive the conclusion from the
premise and vice versa. In terms of cartesian closed categories this may also
be reformulated as

Z× X −→ Y
============
Z −→ [X → Y]

which is equivalent to say that implication is the right adjoint of conjunction.

Definition 2.4 An adjunction consists of a pair of categories C and D, a
pair of functors F : C −→ D and G: D −→ C, and a natural transformation
ε: (F ◦ G) ˙−→ ID (where ID: D −→ D is the identity functor on D) such
that, for each morphism g:F(X) −→ Y in D there is a unique morphism
g∗: X −→ G(Y) for which the equation g = εY ◦ F(g∗) holds in D. (F ,G) is
called an adjoint pair; F is the left adjoint of G, and G is the right adjoint
of F . The natural transformation ε is called the counit of the adjunction.

Task 2.5 Define a pair of functors F and G, and a natural transformation ε
that show that implication is the right adjoint of conjunction. In particular,
provide proofs of the facts that F and G are functors and that ε is a natural
transformation. Can the above claim be modified in such a way that it also
applies to symmetric monoidal closed categories? Justify your answer.
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