1 Computational Logic 2008 - Dr G.Bellin

Solution of Pre-Examination

17th December 2008

Answer the following four questions. Questions 1 and 4 carry 25 marks. Questions 2 and 3 carry 35 marks. Marks above 100 are bonus for the final mark.

QUESTION 1. Consider the language of modal logic

$$A := P \mid \bot \mid A_1 \to A_2 \mid \Box A$$

Extend the sequent calculus system for classical logic **G3C** with the following rules for the modal system **S4**:

$$\frac{\Box\Gamma \Rightarrow A}{\Pi, \Box\Gamma \Rightarrow \Box A, \Lambda} \Box - \mathbf{R} \qquad \frac{A, \Box A, \Gamma \Rightarrow \Delta}{\Box A, \Gamma \Rightarrow \Delta} \Box - \mathbf{L}$$

(a) Consider a Kripke model $\mathcal{M} = (W, R, \Vdash)$, where W is a set of possible worlds, $R \subseteq W \times W$ is the accessibility relation and $\Vdash \subseteq W \times \text{Atoms.}$ Answer the following questions:

(a.1) What is the *frame* of \mathcal{M} ?

1 mark

Answer: The frame of \mathcal{M} is the structure (W, R), the set of possible worlds and the accessibility relation.

(a.2) What does it mean to say that a sentence A is valid in (or true in) \mathcal{M} ?

2 marks

Answer: A is valid in (or true in) \mathcal{M} if for all $w \in W$ we have $w \Vdash A$ (equivalently, $\mathcal{V}(w, A) = T$, where \mathcal{V} is a valuation relatized to the possible world w). [The relation w forces A is defined inductively as a propositional valuation \mathcal{V} relativized to each possible world, setting $w \Vdash \Box B$ if and only if for all $w' \in W$ such that wRw' we have $w' \Vdash B$.]

(a.3) What does it mean to say that a sentence A is valid in **K**?

2 marks

Answer: A is valid in **K** if for all models \mathcal{M} A is true in \mathcal{M} .

(a.4) What does it mean to say that a sentence A is valid in **S**4?

2 marks Answer: A is valid in **S4** if A is true in all models $\mathcal{M} = (W, R, \Vdash)$ where R is reflexive and transitive (a preorder).

Consider the following sequents:

- (i) $S_1: \Rightarrow \Box (\Box (\Box A \to B) \to A) \to A$
- (ii) $S_2: \Rightarrow \Box (\Box (\Box A \to B) \to A) \to \Box \neg \Box \neg A$

(a) **Question**: are S_1 or S_2 valid in **S**4? (yes or no answer)

2 marks

Answer: S_1 is not valid, S_2 is valid.

(b) If the sequent S_1 or S_2 is falsifiable, **define** a Kripke model (W, R, \Vdash) with a world $w \in W$ such that $w \nvDash S_i$. Otherwise, **write** a derivation of S_i in the sequent calculus for **S4**.

16 marks

Answer: (i) We need a model (W, R, \Vdash) and a world $w_0 \in W$ such that

- (a) $w_0 \Vdash \Box (\Box (\Box A \to B) \to A)$ and
- (b) $w_0 \not\Vdash A$.

Since $w_0 \not\models A$ and R is reflexive, we have $w_0 \not\models \Box A$ hence $w_0 \not\models \Box A \to B$. Since we have $w_0 \not\models A$, the only possibility for $\Box(\Box A \to B) \to A$ to be true in w_0 is that in some world w' accessible from w_0 we have $w' \not\models \Box A \to B$. But w' cannot be w_0 . Hence suppose there exists w_1 such that $w_0 R w_1$ and

(c) $w_1 \Vdash \Box A$ and $w_1 \not\models B$.

Since $w_1 R w_1$, we must have

(d) $w_1 \Vdash A$.

Thus we can let (W, R, \Vdash) where $W = \{w_0, w_1\}$, R is the reflexive and transitive closure of $w_0 R w_1$ and \Vdash satisfies (b), (c) and (d).

Answer (ii): $\Rightarrow \Box (\Box (\Box A \rightarrow B) \rightarrow A) \rightarrow \Box \neg \Box \neg A$ is derivable as follows:

TOTAL: 25 marks

QUESTION 2. (a) Consider the language of *classical logic* in the form:

 $A := P \mid \neg P \mid A_1 \land A_2 \mid A_1 \lor A_2$

Consider the sequent calculus system for classical logic (one sided) **G3C** with the following axioms and rules:

 $\begin{array}{ll} \text{STRUCTURAL RULE} & \text{IDENTITY} \\ \hline \Rightarrow \Gamma, B, A, \Delta \\ \hline \Rightarrow \Gamma, A, B, \Delta \end{array} Exchange & \hline \Rightarrow \Gamma, A, \neg A \end{array}$

Consider the following sequents:

(iii) $S_3: \Rightarrow \neg A \lor (\neg B \land \neg C), (A \land B) \lor (A \land C);$ (iv) $S_4: \Rightarrow \neg A \lor (\neg B \land \neg C), (A \land B) \lor C);$ (v) $S_5: \Rightarrow (\neg A \lor \neg B) \land \neg C, (A \land B) \lor C.$

Are they derivable? If yes, **write** a derivation; otherwise, **write** a truth value assignment that makes the sequent false.

Answer: The following are proofs of (iii), (iv) and (v):

$$\begin{array}{c|c} \operatorname{axiom} & \operatorname{axiom} & \operatorname{axiom} & \operatorname{axiom} & \operatorname{axiom} \\ \hline \Rightarrow \neg A, \dots, A & \Rightarrow \neg B, \dots, B \\ \hline \hline \Rightarrow \neg A, \neg B, A \land C, A \land B & \wedge \cdot \mathbf{R} & \hline \Rightarrow \neg A, \dots, A & \Rightarrow \neg C, \dots, C \\ \hline \Rightarrow \neg A, \neg B, A \land C, A \land B & \wedge \cdot \mathbf{R} & \hline \Rightarrow \neg A, \neg C, A \land B, A \land C \\ \hline \hline \Rightarrow \neg A \lor (\neg B \land \neg C), (A \land B) \lor (A \land C) & \vee \cdot \mathbf{R} \text{ twice} \end{array} \right) \land -\mathbf{R}$$

$$\begin{array}{ccc} \operatorname{axiom} & \operatorname{axiom} \\ \xrightarrow{\Rightarrow \neg A, \neg B, A, C} & \xrightarrow{\Rightarrow \neg A, \neg B, B, C} & \operatorname{axiom} \\ \xrightarrow{\Rightarrow \neg A, \neg B, A \land B, C} & \wedge \operatorname{-R} & \xrightarrow{\operatorname{axiom}} \\ \xrightarrow{\Rightarrow \neg A, \neg B, A \land B, C} & \xrightarrow{\to \neg A, \neg C, A \land B, A} \\ \xrightarrow{\Rightarrow \neg A, \neg B \land \neg C, A \land B, C} & \xrightarrow{\to \neg A, \neg C, A \land B, A} \\ \xrightarrow{\Rightarrow \neg A \lor (\neg B \land \neg C), (A \land B) \lor C} \lor \operatorname{-R} \text{ twice} \end{array}$$

$$\begin{array}{ccc} \operatorname{axiom} & \operatorname{axiom} \\ \Rightarrow \neg A, \neg B, A, C & \Rightarrow \neg A, \neg B, B, C \\ \hline \Rightarrow \neg A, \neg B, A \land B, C & \wedge - \mathbf{R} \\ \hline \Rightarrow \neg A \lor \neg B, A \land B, C & \vee - \mathbf{R} & \operatorname{axiom} \\ \hline \Rightarrow \neg A \lor \neg B, A \land B, C & \vee - \mathbf{R} & \Rightarrow \neg C, A \land B, C \\ \hline \Rightarrow (\neg A \lor \neg B) \land C, A \land B, C & \vee - \mathbf{R} \\ \hline \hline \Rightarrow (\neg A \lor \neg B) \land C, (A \land B) \lor C & \vee - \mathbf{R} \end{array}$$

15 marks

Consider the sequent calculus for classical logic (one sided) G1C (provably equivalent to G3C) with *explicit rules of Contraction and Weakening* and with *axioms* and *cut rule* of the following forms:

$$\underbrace{ \begin{array}{c} \operatorname{axiom} \\ \Rightarrow A, \neg A \end{array} }_{\Rightarrow A, \neg A} \underbrace{ \begin{array}{c} \Rightarrow \Gamma, \neg A \\ \Rightarrow \Gamma, \Delta \end{array} }_{\Rightarrow \Gamma, \Delta} cut$$

Consider the derivation \mathcal{D} :

$$\begin{array}{c} \Rightarrow B, \neg B \\ \hline \Rightarrow B, \neg B, \neg A \end{array} weakening \quad \begin{array}{c} \Rightarrow C, \neg C \\ \hline \Rightarrow A, C, \neg C \end{array} weakening \\ \hline B, \neg B, C, \neg C \end{array} cut$$

(b) **Question:** How many ways are there to eliminate the indicated *cut*? **Write** all the cut-free derivations.

Answer: [Remember that each step in the algorithm of cut-elimination consists either (i) in replacing a *cut* inference with *cuts* of lower complexity (*logical reductions*) or (ii) permuting a *cut* inference with the final inference \mathcal{I}_i in one of the two derivations of the sequent-premises of the *cut* (*permutative conversion*), if a logical reduction cannot be applied because \mathcal{I}_i does not introduce a cut-formula, or (iii) in eliminating the *cut* inference altogether, if one of the premises of the *cut* is an axiom or the conclusion of a *weakening*. Notice also that steps (ii) and (iii) are *non-deterministic* when the lowermost inferences \mathcal{I} in both derivations of the *cut* premises do not introduce the cut formula, or are axioms or *weakenings*. Figuratively, we can say that in these cases we have a choice between *pushing the cut up in the left or in the right sub-derivation*.]

In our example, we can either *push the cut up* in the left or in the right premise we obtain two distinct derivations:

$$\begin{array}{ccc} \mathcal{D}_{1} & \mathcal{D}_{2} \\ axiom \\ B, \neg B \\ \hline B, \neg B, C, \neg C \end{array} weakening twice & \begin{array}{c} \mathcal{D}_{2} \\ axiom \\ C, \neg C \\ \hline B, \neg B, C, \neg C \end{array} weakening twice$$

Since we do not have a generalized weakening rule, introducing several formulas, derivation \mathcal{D}_1 really corresponds to two derivations $\mathcal{D}_{1,1}$ and $\mathcal{D}_{1,2}$, depending on whether it is C or $\neg C$ that is introced first, and similarly for \mathcal{D}_2 : thus in conclusion we do have four cut-free derivations.

The difference between $\mathcal{D}_{1,1}$ and $\mathcal{D}_{1,2}$ is relatively unimportant: it is about the order in which we introduce irrelevance. On the contrary, \mathcal{D}_1 and \mathcal{D}_2 are essentially different, as they differ for what is relevant, namely the two formulas whose connection defines a logical axiom, and what is irrelevant, i.e., introduced by *weakening*.

10 marks

(c) **Does** cut-elimination for **C1C** enjoy the Church-Rosser property? **Ex-**plain.

Answer: [Notice that here the computation process is *cut-elimination*, as in the lambda calculus it is β -reduction.] To say that cut-elimination has the Church-Rosser property is to say that given a derivation \mathcal{D} which reduces by cut-elimination to either \mathcal{D}_1 and \mathcal{D}_2 , we can find a \mathcal{D}_3 such that both \mathcal{D}_1 and \mathcal{D}_2 reduce to \mathcal{D}_3 by cut-elimination. But for the derivations \mathcal{D} , \mathcal{D}_1 and \mathcal{D}_2 considered above we have that \mathcal{D}_1 and \mathcal{D}_2 are cut-free and essentially different. Thus there can be no \mathcal{D}_3 which \mathcal{D}_1 and \mathcal{D}_2 reduce to. This shows that the process of cut-elimination in classical logic **G1C** does not enjoy the Church-Rosser property.

> 10 marks TOTAL: 35 marks

QUESTION 3. Consider the language of **MLL** classical *multiplicative linear logic* (without units):

$$A := P \mid P^{\perp} \mid A_1 \otimes A_2 \mid A_1 \otimes A_2$$

Consider the sequent calculus system for classical **MLL** with the following rules:

$$\begin{array}{ll} \text{STRUCTURAL RULE} & \text{IDENTITY} \\ \hline \Rightarrow \Gamma, B, A, \Delta \\ \hline \Rightarrow \Gamma, A, B, \Delta \end{array} Exchange & \hline \Rightarrow A, A^{\perp} \end{array}$$

$$\begin{array}{c} \xrightarrow{} \rightarrow \Gamma, A \xrightarrow{} \Rightarrow \Delta, B \\ \xrightarrow{} \Rightarrow \Gamma, \Delta, A \otimes B \end{array} \otimes - \mathbf{R} \end{array} \begin{array}{c} \text{LOGICAL RULES} \\ \xrightarrow{} \Rightarrow \Gamma, A, B \\ \xrightarrow{} \Rightarrow \Gamma, A \otimes B \end{array} \wp - \mathbf{R}$$

Consider the following sequents:

(vi)
$$S_6: \Rightarrow A^{\perp}\wp(B^{\perp}\otimes C^{\perp}), (A\otimes B)\wp(A\otimes C)$$

(vii)
$$S_7: \Rightarrow (A^{\perp} \wp A^{\perp}) \wp (B^{\perp} \otimes C^{\perp}), (A \otimes B) \wp (A \otimes C)$$

(viii)
$$S_8: \Rightarrow A^{\perp}\wp(B^{\perp}\otimes C^{\perp}), (A\otimes B)\wp C$$

(a) Are they derivable? For each of S_6 - S_8 answer yes or no.

Answer: S_6 is not derivable: this can be seen as a corollary of the cutelimination theorem for **MLL**, but the proof is not required. S_7 and S_8 are derivable.

6 marks

(b) If any one of S_6 - S_8 is derivable, write a derivation of it.

$$\begin{array}{c} \operatorname{axiom} & \operatorname{axiom} & \operatorname{axiom} & \operatorname{axiom} & \operatorname{axiom} \\ \hline \Rightarrow A^{\perp}, A & \Rightarrow B^{\perp}, B \\ \hline \Rightarrow A^{\perp}, B^{\perp}, A \otimes B & \otimes^{-\mathrm{R}} & \xrightarrow{\Rightarrow A^{\perp}, A} & \Rightarrow C^{\perp}, C \\ \hline \Rightarrow A^{\perp}, B^{\perp}, A \otimes B & \otimes^{-\mathrm{R}} & \xrightarrow{\Rightarrow A^{\perp}, C^{\perp}, A \otimes C} \\ \hline \hline \Rightarrow A^{\perp}, A^{\perp}, B^{\perp} \otimes C^{\perp}, A \otimes B, A \otimes C \\ \hline \Rightarrow (A^{\perp} \wp A^{\perp}) \wp (B^{\perp} \otimes C^{\perp}), (A \otimes B) \wp (A \otimes C) & \varphi^{-\mathrm{R}} \end{array}$$

$$\begin{array}{c} \stackrel{\text{dation}}{\longrightarrow} A^{\perp}, A \xrightarrow{\Rightarrow} B^{\perp}, B \\ \hline \xrightarrow{\Rightarrow} A^{\perp}, B^{\perp}, A \otimes B \xrightarrow{\otimes} -\mathbf{R} \xrightarrow{\text{axiom}} A^{\perp}, A \\ \hline \xrightarrow{\Rightarrow} A^{\perp}, B^{\perp} \otimes C^{\perp}, A \otimes B, C \\ \hline \xrightarrow{\Rightarrow} A^{\perp} \wp (B^{\perp} \otimes C^{\perp}), (A \otimes B) \wp C \end{array}$$
 where ρ is the set of the set

10 marks

(c) Consider the fragment of the above sequent calculus for (one sided) **MLL** containing only *axioms* and the *cut rule* in the following form:

$$\frac{\Rightarrow \Gamma, A^{\perp} \Rightarrow A, \Delta}{\Rightarrow \Gamma, \Delta} cut$$

Does cut-elimination for this fragment enjoy the strong normalization and the Church Rosser property? **Explain** informally your answer.

Solution: We need a Lemma:

Lemma 1: Every derivation in the axiom-cut fragment of MLL (without units) consists of occurrences of the same sequent $\Rightarrow A^{\perp}, A$, for a given formula A.

The proof is by induction on the proof-tree: in the base case, the derivation is an axiom and the result is clear. Assuming the Lemma true for the derivations of the premises $\Rightarrow X^{\perp}, X$ and $\Rightarrow Y^{\perp}, Y$ of a cut, since the cut-formulas must be one the linear negation of the other we must have X = Y. Hence there is a formula A such that X = A = Y for all formula occurrences in the derivation.

From the Lemma it follows that any step of cut-elimination in the *axiom*cut fragment reduces the number of sequents, and eventually the derivation reduces to exactly one sequent $\Rightarrow A^{\perp}, A$. Hence the Church-Rosser property follows.

9 marks

(d) Extend the fragment in (c) adding the new *structural rule* of MIX:

$$\frac{\Rightarrow \Gamma \Rightarrow \Delta}{\Rightarrow \Gamma, \Delta} mix$$

and also the rule of Exchange.

Does cut-elimination for this fragment enjoy the strong normalization and the Church Rosser property? **Explain** informally your answer.

Solution: We need a Lemma:

Lemma 2. Every derivation in axiom-cut-mix-**MLL** can be transformed into one where all applications of mix occur below all applications of cut. The proof is by induction on the number of mix inferences occurring above a cut. It is plain that the following commutation is permissible:

A derivation \mathcal{D} resulting from an application of Lemma 2 is not necessarily unique: we can indeed permute also *mix* inferences with each others. Thus to obtain the Church-Rosser property we may need also several applications of the following Lemma:

Lemma 3. In a derivation in the fragment axiom-cut-mix-MLL any two applications of mix can be permuted with each other.

The proof is obvious, by iterating the following commutation:

(A more elegant formulation of the same results is in term of proof nets.) 10 marks

TOTAL: 35 marks

QUESTION 4 (a) What does it mean to say that a category C has binary products?

For an answer, look at the lecture notes on Categorical Logic.

7 marks

(b) Verify that the collection Pset having sets as objects and *partial func*tions as morphisms forms a category. [*Hint:* Notice that for any sets A and B there is a totally undefined partial function empty : $A \rightarrow B$. Can the identity id_A be partial?]

Solution: Given sets A, B, C, the composition $g \circ f : A \to C$ of two partial functions $f : A \to B$ and $g : B \to C$ is defined as usual in set theory and is a partial function. Set-theoretic composition is associative for partial functions as well as for total functions. The total identity function is also a partial function and is the identity for composition:

$$id_B \circ f = f = f \circ id_A : A \rightharpoonup B.$$

8 marks

(c) Does **Pset** have binary products? [*Hint:* Consider the pair of functions $f: C \to A$ and empty $: C \to \emptyset$, where f is not totally undefined. What is $A \times \emptyset$? Can we have $f = \pi_0 \circ \langle f, \text{empty} \rangle$?]

Answer: No. In set theory, $A \times \emptyset = \emptyset$, and the only partial function $h: A \rightharpoonup \emptyset$ is empty. Hence

$$\pi_A \circ \langle f, \texttt{empty} \rangle = \pi_A \circ \texttt{empty} = \texttt{empty} \neq f$$

Hence the cartesian product of two sets is not a categorical product in \mathbf{Pset} .

10 marks TOTAL: 25 marks

END OF PRE-EXAM