
1 Computational Logic 2008 - Dr G.Bellin

Solution of Pre-Examination

17th December 2008

Answer the following four questions. Questions 1 and 4 carry 25 marks.

Questions 2 and 3 carry 35 marks. Marks above 100 are bonus for the final

mark.

QUESTION 1. Consider the language of modal logic

A := P | ⊥ | A1 → A2 | 2A

Extend the sequent calculus system for classical logic G3C with the following
rules for the modal system S4:

2Γ ⇒ A
2-R

Π, 2Γ ⇒ 2A, Λ
A, 2A, Γ ⇒ ∆

2-L
2A, Γ ⇒ ∆

(a) Consider a Kripke model M = (W, R, 
), where W is a set of possible
worlds, R ⊆ W × W is the accessibility relation and 
⊆ W × Atoms.
Answer the following questions:

(a.1) What is the frame of M?

1 mark

Answer: The frame of M is the structure (W, R), the set of possible worlds
and the accessibility relation.

(a.2) What does it mean to say that a sentence A is valid in (or true in) M?

2 marks

Answer: A is valid in (or true in) M if for all w ∈ W we have w 
 A

(equivalently, V(w, A) = T , where V is a valuation relatiized to the possible
world w). [The relation w forces A is defined inductively as a propositional
valuation V relativized to each possible world, setting w 
 2B if and only if
for all w′ ∈ W such that wRw′ we have w′


 B.]

(a.3) What does it mean to say that a sentence A is valid in K?

2 marks

Answer: A is valid in K if for all models M A is true in M.
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(a.4) What does it mean to say that a sentence A is valid in S4?

2 marks

Answer: A is valid in S4 if A is true in all models M = (W, R, 
) where R

is reflexive and transitive (a preorder).

Consider the following sequents:

(i) S1: ⇒ 2

(

2(2A → B) → A
)

→ A

(ii) S2: ⇒ 2

(

2(2A → B) → A
)

→ 2¬2¬A

(a) Question: are S1 or S2 valid in S4? (yes or no answer)
2 marks

Answer: S1 is not valid, S2 is valid.

(b) If the sequent S1 or S2 is falsifiable, define a Kripke model (W, R, 
)
with a world w ∈ W such that w 6
 Si. Otherwise, write a derivation of Si

in the sequent calculus for S4.
16 marks

Answer: (i) We need a model (W, R, 
) and a world w0 ∈ W such that

(a) w0 
 2

(

2(2A → B) → A
)

and

(b) w0 6
 A.

Since w0 6
 A and R is reflexive, we have w0 6
 2A hence w0 
 2A → B.

Since we have w0 6
 A, the only possibility for 2(2A → B) → A to be true
in w0 is that in some world w′ accessible from w0 we have w′ 6
 2A → B.
But w′ cannot be w0. Hence suppose there exists w1 such that w0Rw1 and

(c) w1 
 2A and w1 6
 B.

Since w1Rw1, we must have

(d) w1 
 A.

Thus we can let (W, R, 
) where W = {w0, w1}, R is the reflexive and tran-
sitive closure of w0Rw1 and 
 satisfies (b), (c) and (d).

Answer (ii): ⇒ 2

(

2(2A → B) → A
)

→ 2¬2¬A is derivable as follows:
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axiom

. . . A ⇒ A . . .
¬-L

2

(

2(2A → B) → A
)

,¬A,2¬A,A,2A ⇒ B
2-L twice

2

(

2(2A → B) → A
)

,2¬A,2A ⇒ B
→-R

2

(

2(2A → B) → A
)

,2¬A,⇒ 2A → B
2-R

2

(

2(2A → B) → A
)

,2¬A,⇒ 2(2A → B)

axiom

A ⇒ A
A,¬A ⇒

→-L
2(2A → B) → A,2

(

2(2A → B) → A
)

,¬A,2¬A ⇒
2-L twice

2

(

2(2A → B) → A
)

,2¬A ⇒
¬-R

2

(

2(2A → B) → A
)

⇒ ¬2¬A
2-R

2

(

2(2A → B) → A
)

⇒ 2¬2¬A
→-R

⇒ 2

(

2(2A → B) → A
)

→ 2¬2¬A

TOTAL: 25 marks

QUESTION 2. (a) Consider the language of classical logic in the form:

A := P | ¬P | A1 ∧ A2 | A1 ∨ A2

Consider the sequent calculus system for classical logic (one sided) G3C with
the following axioms and rules:

STRUCTURAL RULE IDENTITY
⇒ Γ, B, A, ∆

Exchange
⇒ Γ, A, B, ∆

axiom
⇒ Γ, A,¬A

LOGICAL RULES
⇒ Γ, A ⇒ Γ, B

∧-R
⇒ Γ, A ∧ B

⇒ Γ, A, B
∨-R

⇒ Γ, A ∨ B

Consider the following sequents:

(iii) S3: ⇒ ¬A ∨ (¬B ∧ ¬C), (A ∧ B) ∨ (A ∧ C);

(iv) S4: ⇒ ¬A ∨ (¬B ∧ ¬C), (A ∧ B) ∨ C);

(v) S5: ⇒ (¬A ∨ ¬B) ∧ ¬C, (A ∧ B) ∨ C.

Are they derivable? If yes, write a derivation; otherwise, write a truth value
assignment that makes the sequent false.
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Answer: The following are proofs of (iii), (iv) and (v):

axiom
⇒ ¬A, . . . , A

axiom
⇒ ¬B, . . . , B

∧-R
⇒ ¬A,¬B,A ∧ C,A ∧ B

axiom
⇒ ¬A, . . . , A

axiom
⇒ ¬C, . . . , C

∧-R
⇒ ¬A,¬C,A ∧ B,A ∧ C

∧-R
⇒ ¬A,¬B ∧ ¬C,A ∧ B,A ∧ C

∨-R twice
⇒ ¬A ∨ (¬B ∧ ¬C), (A ∧ B) ∨ (A ∧ C)

axiom
⇒ ¬A,¬B,A,C

axiom
⇒ ¬A,¬B,B,C

∧-R
⇒ ¬A,¬B,A ∧ B,C

axiom
⇒ ¬A,¬C,A ∧ B,A

∧-R
⇒ ¬A,¬B ∧ ¬C,A ∧ B,C

∨-R twice
⇒ ¬A ∨ (¬B ∧ ¬C), (A ∧ B) ∨ C

axiom
⇒ ¬A,¬B,A,C

axiom
⇒ ¬A,¬B,B,C

∧-R
⇒ ¬A,¬B,A ∧ B,C

∨-R
⇒ ¬A ∨ ¬B,A ∧ B,C

axiom
⇒ ¬C,A ∧ B,C

∧-R
⇒ (¬A ∨ ¬B) ∧ C,A ∧ B,C

∨-R
⇒ (¬A ∨ ¬B) ∧ C, (A ∧ B) ∨ C

15 marks

Consider the sequent calculus for classical logic (one sided) G1C (provably
equivalent to G3C) with explicit rules of Contraction and Weakening and
with axioms and cut rule of the following forms:

axiom
⇒ A,¬A

⇒ Γ,¬A ⇒ A, ∆
cut

⇒ Γ, ∆

Consider the derivation D:

⇒ B,¬B
weakening

⇒ B,¬B,¬A

⇒ C,¬C
weakening

⇒ A, C,¬C
cut

B,¬B, C,¬C

(b) Question: How many ways are there to eliminate the indicated cut?
Write all the cut-free derivations.

Answer: [Remember that each step in the algorithm of cut-elimination con-
sists either (i) in replacing a cut inference with cuts of lower complexity
(logical reductions) or (ii) permuting a cut inference with the final inference
Ii in one of the two derivations of the sequent-premises of the cut (permuta-

tive conversion), if a logical reduction cannot be applied because Ii does not
introduce a cut-formula, or (iii) in eliminating the cut inference altogether, if
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one of the premises of the cut is an axiom or the conclusion of a weakening.
Notice also that steps (ii) and (iii) are non-deterministic when the lowermost
inferences I in both derivations of the cut premises do not introduce the cut
formula, or are axioms or weakenings. Figuratively, we can say that in these
cases we have a choice between pushing the cut up in the left or in the right

sub-derivation.]

In our example, we can either push the cut up in the left or in the right
premise we obtain two distinct derivations:

D1

axiom
B,¬B

weakening twice
B,¬B, C,¬C

D2

axiom
C,¬C

weakening twice
B,¬B, C,¬C

Since we do not have a generalized weakening rule, introducing several for-
mulas, derivation D1 really corresponds to two derivations D1,1 and D1,2,
depending on whether it is C or ¬C that is introced first, and similarly for
D2: thus in conclusion we do have four cut-free derivations.

The difference between D1,1 and D1,2 is relatively unimportant: it is about
the order in which we introduce irrelevance. On the contrary, D1 and D2

are essentially diferent, as they differ for what is relevant, namely the two
formulas whose connection defines a logical axiom, and what is irrelevant,
i.e., introduced by weakening.

10 marks

(c) Does cut-elimination for C1C enjoy the Church-Rosser property? Ex-

plain.

Answer: [Notice that here the computation process is cut-elimination, as in
the lambda calculus it is β-reduction.] To say that cut-elimination has the
Church-Rosser property is to say that given a derivation D which reduces
by cut-elimination to either D1 and D2, we can find a D3 such that both
D1 and D2 reduce to D3 by cut-elimination. But for the derivations D, D1

and D2 considered above we have that D1 and D2 are cut-free and essentially
different. Thus there can be no D3 which D1 and D2 reduce to. This shows
that the process of cut-elimination in classical logic G1C does not enjoy the
Church-Rosser property.

10 marks

TOTAL: 35 marks
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QUESTION 3. Consider the language of MLL classical multiplicative lin-

ear logic (without units):

A := P | P⊥ | A1 ⊗ A2 | A1℘A2

Consider the sequent calculus system for classical MLL with the following
rules:

STRUCTURAL RULE IDENTITY
⇒ Γ, B, A, ∆

Exchange
⇒ Γ, A, B, ∆

axiom
⇒ A, A⊥

LOGICAL RULES
⇒ Γ, A ⇒ ∆, B

⊗-R
⇒ Γ, ∆, A ⊗ B

⇒ Γ, A, B
℘-R

⇒ Γ, A℘B

Consider the following sequents:

(vi) S6: ⇒ A⊥℘(B⊥ ⊗ C⊥), (A ⊗ B)℘(A ⊗ C)

(vii) S7: ⇒ (A⊥℘A⊥)℘(B⊥ ⊗ C⊥), (A ⊗ B)℘(A ⊗ C)

(viii) S8: ⇒ A⊥℘(B⊥ ⊗ C⊥), (A ⊗ B)℘C

(a) Are they derivable? For each of S6-S8 answer yes or no.

Answer: S6 is not derivable: this can be seen as a corollary of the cut-
elimination theorem for MLL, but the proof is not required. S7 and S8 are
derivable.

6 marks

(b) If any one of S6-S8 is derivable, write a derivation of it.

axiom

⇒ A⊥, A

axiom

⇒ B⊥, B
⊗-R

⇒ A⊥, B⊥, A ⊗ B

axiom

⇒ A⊥, A

axiom

⇒ C⊥, C
⊗-R

⇒ A⊥, C⊥, A ⊗ C
⊗-R

⇒ A⊥, A⊥, B⊥ ⊗ C⊥, A ⊗ B,A ⊗ C
℘-R three times

⇒ (A⊥℘A⊥)℘(B⊥ ⊗ C⊥), (A ⊗ B)℘(A ⊗ C)

axiom

⇒ A⊥, A

axiom

⇒ B⊥, B
⊗-R

⇒ A⊥, B⊥, A ⊗ B

axiom

⇒ A⊥, A
⊗-R

⇒ A⊥, B⊥ ⊗ C⊥, A ⊗ B,C
℘-R twice

⇒ A⊥℘(B⊥ ⊗ C⊥), (A ⊗ B)℘C

10 marks
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(c) Consider the fragment of the above sequent calculus for (one sided) MLL

containing only axioms and the cut rule in the following form:

⇒ Γ, A⊥ ⇒ A, ∆
cut

⇒ Γ, ∆

Does cut-elimination for this fragment enjoy the strong normalization and
the Church Rosser property? Explain informally your answer.

Solution: We need a Lemma:

Lemma 1: Every derivation in the axiom-cut fragment of MLL (without
units) consists of occurrences of the same sequent ⇒ A⊥, A, for a given

formula A.

The proof is by induction on the proof-tree: in the base case, the derivation
is an axiom and the result is clear. Assuming the Lemma true for the deriva-
tions of the premises ⇒ X⊥, X and ⇒ Y ⊥, Y of a cut, since the cut-formulas
must be one the linear negation of the other we must have X = Y . Hence
there is a formula A such that X = A = Y for all formula occurrences in the
derivation.

From the Lemma it follows that any step of cut-elimination in the axiom-

cut fragment reduces the number of sequents, and eventually the derivation
reduces to exactly one sequent ⇒ A⊥, A. Hence the Church-Rosser property
follows.

9 marks

(d) Extend the fragment in (c) adding the new structural rule of MIX:

⇒ Γ ⇒ ∆
mix

⇒ Γ, ∆

and also the rule of Exchange.

Does cut-elimination for this fragment enjoy the strong normalization and
the Church Rosser property? Explain informally your answer.

Solution: We need a Lemma:

Lemma 2. Every derivation in axiom-cut-mix-MLL can be transformed

into one where all applications of mix occur below all applications of cut.

The proof is by induction on the number of mix inferences occurring above
a cut. It is plain that the following commutation is permissible:

D1

⇒ Γ

D2

⇒ ∆, A
mix

⇒ Γ,∆, A

D3

⇒ Π, A⊥

cut
⇒ Γ,∆,Π

reduces to

D1

⇒ Γ

D2

⇒ ∆, A

D3

⇒ Π, A⊥

cut
⇒ ∆,Π

mix
⇒ Γ,∆,Π
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A derivation D resulting from an application of Lemma 2 is not necessarily
unique: we can indeed permute also mix inferences with each others. Thus
to obtain the Church-Rosser property we may need also several applications
of the following Lemma:

Lemma 3. In a derivation in the fragment axiom-cut-mix-MLL any two

applications of mix can be permuted with each other.

The proof is obvious, by iterating the following commutation:

D1

⇒ Γ
D2

⇒ ∆
mix

⇒ Γ, ∆

D3

⇒ Π
mix

⇒ Γ, ∆, Π

reduces to

D1

⇒ Γ

D2

⇒ ∆
D3

⇒ Π
cut

⇒ ∆, Π
mix

⇒ Γ, ∆, Π

(A more elegant formulation of the same results is in term of proof nets.)
10 marks

TOTAL: 35 marks
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QUESTION 4 (a) What does it mean to say that a category C has binary
products?

For an answer, look at the lecture notes on Categorical Logic.
7 marks

(b) Verify that the collection Pset having sets as objects and partial func-

tions as morphisms forms a category. [Hint: Notice that for any sets A and B

there is a totally undefined partial function empty : A ⇀ B. Can the identity
idA be partial?]

Solution: Given sets A, B, C, the composition g ◦ f : A ⇀ C of two partial
functions f : A ⇀ B and g : B ⇀ C is defined as usual in set theory
and is a partial function. Set-theoretic composition is associative for partial
functions as well as for total functions. The total identity function is also a
partial function and is the identity for composition:

idB ◦ f = f = f ◦ idA : A ⇀ B.

8 marks

(c) Does Pset have binary products? [Hint: Consider the pair of functions
f : C → A and empty : C ⇀ ∅, where f is not totally undefined. What is
A × ∅? Can we have f = π0 ◦ 〈f, empty〉? ]

Answer: No. In set theory, A × ∅ = ∅, and the only partial function
h : A ⇀ ∅ is empty. Hence

πA ◦ 〈f, empty〉 = πA ◦ empty = empty 6= f

Hence the cartesian product of two sets is not a categorical product in Pset.
10 marks

TOTAL: 25 marks

END OF PRE-EXAM
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