1 Computational Logic 2008-Dr G.Bellin

Solution of Pre-Examination

17th December 2008

Answer the following four questions. Questions 1 and 4 carry 25 marks. Questions 2 and 3 carry 35 marks. Marks above 100 are bonus for the final mark.

QUESTION 1. Consider the language of modal logic

$$
A:=\quad P|\perp| A_{1} \rightarrow A_{2} \mid \square A
$$

Extend the sequent calculus system for classical logic G3C with the following rules for the modal system $\mathbf{S} 4$:

$$
\frac{\square \Gamma \Rightarrow A}{\Pi, \square \Gamma \Rightarrow \square A, \Lambda} \square-\mathrm{R} \quad \frac{A, \square A, \Gamma \Rightarrow \Delta}{\square A, \Gamma \Rightarrow \Delta} \square-\mathrm{L}
$$

(a) Consider a Kripke model $\mathcal{M}=(W, R, \Vdash)$, where W is a set of possible worlds, $R \subseteq W \times W$ is the accessibility relation and $\Vdash \subseteq W \times$ Atoms. Answer the following questions:
(a.1) What is the frame of \mathcal{M} ?

$$
1 \text { mark }
$$

Answer: The frame of \mathcal{M} is the structure (W, R), the set of possible worlds and the accessibility relation.
(a.2) What does it mean to say that a sentence A is valid in (or true in) \mathcal{M} ?

$$
2 \text { marks }
$$

Answer: A is valid in (or true in) \mathcal{M} if for all $w \in W$ we have $w \Vdash A$ (equivalently, $\mathcal{V}(w, A)=T$, where \mathcal{V} is a valuation relatiized to the possible world w). [The relation w forces A is defined inductively as a propositional valuation \mathcal{V} relativized to each possible world, setting $w \Vdash \square B$ if and only if for all $w^{\prime} \in W$ such that $w R w^{\prime}$ we have $w^{\prime} \Vdash B$.]
(a.3) What does it mean to say that a sentence A is valid in \mathbf{K} ?

$$
2 \text { marks }
$$

Answer: A is valid in \mathbf{K} if for all models $\mathcal{M} A$ is true in \mathcal{M}.
(a.4) What does it mean to say that a sentence A is valid in $\mathbf{S} 4$?

2 marks
Answer: A is valid in $\mathbf{S} 4$ if A is true in all models $\mathcal{M}=(W, R, \Vdash)$ where R is reflexive and transitive (a preorder).

Consider the following sequents:
(i) $S_{1}: \Rightarrow \square(\square(\square A \rightarrow B) \rightarrow A) \rightarrow A$
(ii) $S_{2}: \Rightarrow \square(\square(\square A \rightarrow B) \rightarrow A) \rightarrow \square \neg \square \neg A$
(a) Question: are S_{1} or S_{2} valid in $\mathbf{S 4}$? (yes or no answer)

2 marks
Answer: S_{1} is not valid, S_{2} is valid.
(b) If the sequent S_{1} or S_{2} is falsifiable, define a Kripke model (W, R, \Vdash) with a world $w \in W$ such that $w \Vdash S_{i}$. Otherwise, write a derivation of S_{i} in the sequent calculus for $\mathbf{S} 4$.

16 marks
Answer: (i) We need a model (W, R, \Vdash) and a world $w_{0} \in W$ such that
(a) $w_{0} \Vdash \square(\square(\square A \rightarrow B) \rightarrow A)$ and
(b) $w_{0} \Vdash A$.

Since $w_{0} \Vdash A$ and R is reflexive, we have $w_{0} \Vdash \square A$ hence $w_{0} \Vdash \square A \rightarrow B$. Since we have $w_{0} \Vdash A$, the only possibility for $\square(\square A \rightarrow B) \rightarrow A$ to be true in w_{0} is that in some world w^{\prime} accessible from w_{0} we have $w^{\prime} \Vdash \square A \rightarrow B$. But w^{\prime} cannot be w_{0}. Hence suppose there exists w_{1} such that $w_{0} R w_{1}$ and
(c) $w_{1} \Vdash \square A$ and $w_{1} \Vdash B$.

Since $w_{1} R w_{1}$, we must have
(d) $w_{1} \Vdash A$.

Thus we can let (W, R, \Vdash) where $W=\left\{w_{0}, w_{1}\right\}, R$ is the reflexive and transitive closure of $w_{0} R w_{1}$ and \Vdash satisfies (b), (c) and (d).
Answer (ii): $\Rightarrow \square(\square(\square A \rightarrow B) \rightarrow A) \rightarrow \square \neg \square \neg A$ is derivable as follows:

$$
\begin{aligned}
& \text { axiom } \\
& \frac{\ldots A \Rightarrow A \ldots}{\square(\square(\square A \rightarrow B) \rightarrow A), \neg A, \square \neg A, A, \square A \Rightarrow B} \neg-\mathrm{L} \\
& \begin{array}{cc}
\square(\square(\square A \rightarrow B) \rightarrow A), \square \neg A, \square A \Rightarrow B \\
\hline \square(\square(\square A \rightarrow B) \rightarrow A), \square \neg A, \Rightarrow \square A \rightarrow B & -\mathrm{R} \\
\square(\square(\square A \rightarrow B) \rightarrow A), \square \neg A, \Rightarrow \square(\square A \rightarrow B) & \square-\mathrm{R}
\end{array}
\end{aligned}
$$

TOTAL: 25 marks

QUESTION 2. (a) Consider the language of classical logic in the form:

$$
A:=\quad P|\neg P| A_{1} \wedge A_{2} \mid A_{1} \vee A_{2}
$$

Consider the sequent calculus system for classical logic (one sided) G3C with the following axioms and rules:

$$
\begin{aligned}
& \text { STRUCTURAL RULE } \\
& \frac{\Rightarrow \Gamma, B, A, \Delta}{\Rightarrow \Gamma, A, B, \Delta} \text { Exchange } \\
& \text { LOGICAL RULES } \\
& \begin{array}{ll}
\Rightarrow \Gamma, A \quad \Rightarrow \Gamma, B \\
\Rightarrow \Gamma, A \wedge B & \Rightarrow-\mathrm{R}
\end{array} \frac{\Rightarrow \Gamma, A, B}{\Rightarrow \Gamma, A \vee B} \vee-\mathrm{R}
\end{aligned}
$$

Consider the following sequents:
(iii) $S_{3}: \Rightarrow \neg A \vee(\neg B \wedge \neg C),(A \wedge B) \vee(A \wedge C)$;
(iv) $\left.S_{4}: \Rightarrow \neg A \vee(\neg B \wedge \neg C),(A \wedge B) \vee C\right)$;
(v) $S_{5}: \Rightarrow(\neg A \vee \neg B) \wedge \neg C,(A \wedge B) \vee C$.

Are they derivable? If yes, write a derivation; otherwise, write a truth value assignment that makes the sequent false.

Answer: The following are proofs of (iii), (iv) and (v):

15 marks
Consider the sequent calculus for classical logic (one sided) G1C (provably equivalent to G3C) with explicit rules of Contraction and Weakening and with axioms and cut rule of the following forms:

$$
\frac{\text { axiom }}{\Rightarrow A, \neg A} \quad \Rightarrow \Gamma, \neg A \quad \Rightarrow A, \Delta \text { cut }
$$

Consider the derivation \mathcal{D} :

$$
\begin{gathered}
\frac{\Rightarrow B, \neg B}{\Rightarrow B, \neg B, \neg A} \text { weakening } \quad \frac{\Rightarrow C, \neg C}{\Rightarrow A, C, \neg C} \text { weakening } \\
B, \neg B, C, \neg C
\end{gathered}
$$

(b) Question: How many ways are there to eliminate the indicated cut? Write all the cut-free derivations.

Answer: [Remember that each step in the algorithm of cut-elimination consists either (i) in replacing a cut inference with cuts of lower complexity (logical reductions) or (ii) permuting a cut inference with the final inference \mathcal{I}_{i} in one of the two derivations of the sequent-premises of the cut (permutative conversion), if a logical reduction cannot be applied because \mathcal{I}_{i} does not introduce a cut-formula, or (iii) in eliminating the cut inference altogether, if
one of the premises of the cut is an axiom or the conclusion of a weakening. Notice also that steps (ii) and (iii) are non-deterministic when the lowermost inferences \mathcal{I} in both derivations of the cut premises do not introduce the cut formula, or are axioms or weakenings. Figuratively, we can say that in these cases we have a choice between pushing the cut up in the left or in the right sub-derivation.]

In our example, we can either push the cut up in the left or in the right premise we obtain two distinct derivations:

$$
\left.\begin{array}{cc}
\mathcal{D}_{1} & \mathcal{D}_{2} \\
\text { axiom } & \text { axiom } \\
B, \neg B
\end{array}\right) \text { weakening twice } \begin{gathered}
C, \neg C \\
\hline B, \neg B, C, \neg C
\end{gathered}
$$

Since we do not have a generalized weakening rule, introducing several formulas, derivation \mathcal{D}_{1} really corresponds to two derivations $\mathcal{D}_{1,1}$ and $\mathcal{D}_{1,2}$, depending on whether it is C or $\neg C$ that is introced first, and similarly for \mathcal{D}_{2} : thus in conclusion we do have four cut-free derivations.
The difference between $\mathcal{D}_{1,1}$ and $\mathcal{D}_{1,2}$ is relatively unimportant: it is about the order in which we introduce irrelevance. On the contrary, \mathcal{D}_{1} and \mathcal{D}_{2} are essentially diferent, as they differ for what is relevant, namely the two formulas whose connection defines a logical axiom, and what is irrelevant, i.e., introduced by weakening.

10 marks
(c) Does cut-elimination for C1C enjoy the Church-Rosser property? Explain.

Answer: [Notice that here the computation process is cut-elimination, as in the lambda calculus it is β-reduction.] To say that cut-elimination has the Church-Rosser property is to say that given a derivation \mathcal{D} which reduces by cut-elimination to either \mathcal{D}_{1} and \mathcal{D}_{2}, we can find a \mathcal{D}_{3} such that both \mathcal{D}_{1} and \mathcal{D}_{2} reduce to \mathcal{D}_{3} by cut-elimination. But for the derivations $\mathcal{D}, \mathcal{D}_{1}$ and \mathcal{D}_{2} considered above we have that \mathcal{D}_{1} and \mathcal{D}_{2} are cut-free and essentially different. Thus there can be no \mathcal{D}_{3} which \mathcal{D}_{1} and \mathcal{D}_{2} reduce to. This shows that the process of cut-elimination in classical logic G1C does not enjoy the Church-Rosser property.

QUESTION 3. Consider the language of MLL classical multiplicative linear logic (without units):

$$
A:=\quad P\left|P^{\perp}\right| A_{1} \otimes A_{2} \mid A_{1} \wp A_{2}
$$

Consider the sequent calculus system for classical MLL with the following rules:

$$
\begin{aligned}
& \text { STRUCTURAL RULE } \\
& \frac{\Rightarrow \Gamma, B, A, \Delta}{\Rightarrow \Gamma, A, B, \Delta} \text { Exchange } \\
& \text { IDENTITY } \\
& \text { axiom } \\
& \Rightarrow A, A^{\perp} \\
& \begin{array}{ll}
\Rightarrow \Gamma, A \Rightarrow \Delta, B \\
\Rightarrow \Gamma, \Delta, A \otimes B
\end{array} \quad \frac{\Rightarrow \Gamma, A, B}{} \wp-\mathrm{R}
\end{aligned}
$$

Consider the following sequents:
(vi) $S_{6}: \Rightarrow A^{\perp} \wp\left(B^{\perp} \otimes C^{\perp}\right),(A \otimes B) \wp(A \otimes C)$
(vii) $S_{7}: \Rightarrow\left(A^{\perp} \wp A^{\perp}\right) \wp\left(B^{\perp} \otimes C^{\perp}\right),(A \otimes B) \wp(A \otimes C)$
(viii) $S_{8}: \Rightarrow A^{\perp} \wp\left(B^{\perp} \otimes C^{\perp}\right),(A \otimes B) \wp C$
(a) Are they derivable? For each of $S_{6}-S_{8}$ answer yes or no.

Answer: S_{6} is not derivable: this can be seen as a corollary of the cutelimination theorem for MLL, but the proof is not required. S_{7} and S_{8} are derivable.

6 marks
(b) If any one of $S_{6}-S_{8}$ is derivable, write a derivation of it.

$$
\begin{aligned}
& \text { axiom axiom axiom axiom } \\
& \begin{aligned}
\frac{\Rightarrow A^{\perp}, A \quad \Rightarrow B^{\perp}, B}{\Rightarrow A^{\perp}, B^{\perp}, A \otimes B} \otimes-\mathrm{R} \quad \frac{\Rightarrow A^{\perp}, A \quad \Rightarrow C^{\perp}, C}{\Rightarrow A^{\perp}, C^{\perp}, A \otimes C} \otimes-\mathrm{R} \\
\frac{\Rightarrow A^{\perp}, A^{\perp}, B^{\perp} \otimes C^{\perp}, A \otimes B, A \otimes C}{\Rightarrow\left(A^{\perp} \wp A^{\perp}\right) \wp\left(B^{\perp} \otimes C^{\perp}\right),(A \otimes B) \wp(A \otimes C)} \wp-\mathrm{R} \text { three times }
\end{aligned} \\
& \text { axiom axiom } \\
& \begin{array}{rl}
\frac{\Rightarrow A^{\perp}, A \quad \Rightarrow B^{\perp}, B}{\Rightarrow A^{\perp}, B^{\perp}, A \otimes B} \otimes-\mathrm{R} \quad \begin{array}{l}
\text { axiom } \\
\Rightarrow A^{\perp}, A
\end{array} \\
\frac{\Rightarrow A^{\perp}, B^{\perp} \otimes C^{\perp}, A \otimes B, C}{\Rightarrow} \otimes A^{\perp} \wp\left(B^{\perp} \otimes C^{\perp}\right),(A \otimes B) \wp C & \mathrm{R}
\end{array}
\end{aligned}
$$

(c) Consider the fragment of the above sequent calculus for (one sided) MLL containing only axioms and the cut rule in the following form:

$$
\frac{\Rightarrow \Gamma, A^{\perp} \quad \Rightarrow A, \Delta}{\Rightarrow \Gamma, \Delta} c u t
$$

Does cut-elimination for this fragment enjoy the strong normalization and the Church Rosser property? Explain informally your answer.
Solution: We need a Lemma:
Lemma 1: Every derivation in the axiom-cut fragment of MLL (without units) consists of occurrences of the same sequent $\Rightarrow A^{\perp}, A$, for a given formula A.
The proof is by induction on the proof-tree: in the base case, the derivation is an axiom and the result is clear. Assuming the Lemma true for the derivations of the premises $\Rightarrow X^{\perp}, X$ and $\Rightarrow Y^{\perp}, Y$ of a cut, since the cut-formulas must be one the linear negation of the other we must have $X=Y$. Hence there is a formula A such that $X=A=Y$ for all formula occurrences in the derivation.

From the Lemma it follows that any step of cut-elimination in the axiomcut fragment reduces the number of sequents, and eventually the derivation reduces to exactly one sequent $\Rightarrow A^{\perp}, A$. Hence the Church-Rosser property follows.

$$
9 \text { marks }
$$

(d) Extend the fragment in (c) adding the new structural rule of MIX:

$$
\frac{\Rightarrow \Gamma \quad \Rightarrow \Delta}{\Rightarrow \Gamma, \Delta} \operatorname{mix}
$$

and also the rule of Exchange.
Does cut-elimination for this fragment enjoy the strong normalization and the Church Rosser property? Explain informally your answer.
Solution: We need a Lemma:
Lemma 2. Every derivation in axiom-cut-mix-MLL can be transformed into one where all applications of mix occur below all applications of cut.
The proof is by induction on the number of mix inferences occurring above a cut. It is plain that the following commutation is permissible:

A derivation \mathcal{D} resulting from an application of Lemma 2 is not necessarily unique: we can indeed permute also mix inferences with each others. Thus to obtain the Church-Rosser property we may need also several applications of the following Lemma:
Lemma 3. In a derivation in the fragment axiom-cut-mix-MLL any two applications of mix can be permuted with each other.
The proof is obvious, by iterating the following commutation:

$$
\begin{aligned}
& \operatorname{mix} \frac{\begin{array}{c}
\mathcal{D}_{1} \quad \Rightarrow \Delta \quad \Rightarrow \Pi \\
\Rightarrow \Gamma
\end{array} \quad \Rightarrow \Gamma, \Delta, \Pi}{\Rightarrow \Delta, \Pi}
\end{aligned}
$$

(A more elegant formulation of the same results is in term of proof nets.)

QUESTION 4 (a) What does it mean to say that a category \mathcal{C} has binary products?
For an answer, look at the lecture notes on Categorical Logic.

$$
7 \text { marks }
$$

(b) Verify that the collection Pset having sets as objects and partial functions as morphisms forms a category. [Hint: Notice that for any sets A and B there is a totally undefined partial function empty : $A \rightharpoonup B$. Can the identity $i d_{A}$ be partial?]
Solution: Given sets A, B, C, the composition $g \circ f: A \rightharpoonup C$ of two partial functions $f: A \rightharpoonup B$ and $g: B \rightharpoonup C$ is defined as usual in set theory and is a partial function. Set-theoretic composition is associative for partial functions as well as for total functions. The total identity function is also a partial function and is the identity for composition:

$$
i d_{B} \circ f=f=f \circ i d_{A}: A \rightharpoonup B .
$$

8 marks
(c) Does Pset have binary products? [Hint: Consider the pair of functions $f: C \rightarrow A$ and empty : $C \rightharpoonup \emptyset$, where f is not totally undefined. What is $A \times \emptyset$? Can we have $f=\pi_{0} \circ\langle f$, empty \rangle ?]
Answer: No. In set theory, $A \times \emptyset=\emptyset$, and the only partial function $h: A \rightharpoonup \emptyset$ is empty. Hence

$$
\pi_{A} \circ\langle f, \text { empty }\rangle=\pi_{A} \circ \text { empty }=\text { empty } \neq f
$$

Hence the cartesian product of two sets is not a categorical product in Pset.
10 marks
TOTAL: 25 marks
END OF PRE-EXAM

