1 Computational Logic 2008 - Dr G.Bellin

Pre-Examination

17th December 2008 - Time allowed: 2 hours
Answer the following four questions. Questions 1 and 4 carry 25 marks. Questions 2 and 3 carry 35 marks. Marks above 100 are bonus for the final mark.

QUESTION 1. Consider the language of modal logic

$$
A:=\quad P|\perp| A_{1} \rightarrow A_{2} \mid \square A
$$

Extend the sequent calculus system for classical logic G3C with the following rules for the modal system S 4 :

$$
\frac{\square \Gamma \Rightarrow A}{\Pi, \square \Gamma \Rightarrow \square A, \Lambda} \square-\mathrm{R} \quad \frac{A, \square A, \Gamma \Rightarrow \Delta}{\square A, \Gamma \Rightarrow \Delta} \square-\mathrm{L}
$$

(a) Consider a Kripke model $\mathcal{M}=(W, R, \Vdash)$, where W is a set of possible worlds, $R \subseteq W \times W$ is the accessibility relation and $\Vdash \subseteq W \times$ Atoms. Answer the following questions:
a. 1 What is the frame of \mathcal{M} ?

$$
1 \text { mark }
$$

a. 2 What does it mean to say that a sentence A is valid in (or true in \mathcal{M} ?

$$
2 \text { marks }
$$

a. 3 What does it mean to say that a sentence A is valid in \mathbf{K} ?

$$
2 \text { marks }
$$

a. 4 What does it mean to say that a sentence A is valid in $\mathbf{S} 4$?

$$
2 \text { marks }
$$

Consider the following sequents:
(i) $S_{1}: \Rightarrow \square(\square(\square A \rightarrow B) \rightarrow A) \rightarrow A$
(ii) $S_{2}: \Rightarrow \square(\square(\square A \rightarrow B) \rightarrow A) \rightarrow \square \neg \square \neg A$
(a) Answer: are S_{1} or S_{2} valid in $\mathbf{S} 4$? (yes or no answer)

2 marks
(b) If the sequent S_{1} or S_{2} is falsifiable, define a Kripke model (W, R, \Vdash) with a world $w \in W$ such that $w \Vdash S_{i}$. Otherwise, write a derivation of S_{i} in the sequent calculus for S 4 .

16 marks
TOTAL: 25 marks

QUESTION 2. (a) Consider the language of classical logic in the form:

$$
A:=\quad P|\neg P| A_{1} \wedge A_{2} \mid A_{1} \vee A_{2}
$$

Consider the sequent calculus system for classical logic (one sided) G3C with the following axioms and rules:

$$
\begin{array}{lc}
\text { STRUCTURAL RULE } & \text { IDENTITY } \\
\frac{\begin{array}{c}
\text { axiom }
\end{array}}{\Rightarrow \Gamma, B, A, \Delta} \text { Exchange } & \frac{\square \Gamma, A, B, \Delta}{\Rightarrow \Gamma, A, \neg A} \\
\Rightarrow \Gamma, A \Rightarrow \Gamma, B \\
\Rightarrow \Gamma-\mathrm{R} & \text { LOGICAL RULES }
\end{array}
$$

Consider the following sequents:
(iii) $S_{3}: \Rightarrow \neg A \vee(\neg B \wedge \neg C),(A \wedge B) \vee(A \wedge C)$;
(iv) $\left.S_{4}: \Rightarrow \neg A \vee(\neg B \wedge \neg C),(A \wedge B) \vee C\right)$;
(v) $S_{5}: \Rightarrow(\neg A \vee \neg B) \wedge \neg C,(A \wedge B) \vee C$.

Are they derivable? If yes, write a derivation; otherwise, write a truth value assignment that makes the sequent false.

15 marks
(c) Consider the sequent calculus for classical logic (one sided) G1C (provably equivalent to G3C) with explicit rules of Contraction and Weakening and with axioms and cut rule of the following forms:

$$
\frac{\text { axiom }}{\Rightarrow A, \neg A} \quad \Rightarrow \Gamma, \neg A \quad \Rightarrow A, \Delta \text { cut }
$$

Consider the derivation

$$
\begin{aligned}
& \frac{\Rightarrow B, \neg B}{\Rightarrow B, \neg B, \neg A} \text { weakening } \frac{\Rightarrow C, \neg C}{\Rightarrow A, C, \neg C} \text { weakening } \\
& B, \neg B, C, \neg C
\end{aligned}
$$

(b) How many ways are there to eliminate the indicated cut? Write all the cut-free derivations.

10 marks
(c) Does cut-elimination for C1C enjoy the Church-Rosser property? Explain.

10 marks
TOTAL: 35 marks

QUESTION 3. Consider the language of MLL classical multiplicative linear logic (without units):

$$
A:=\quad P\left|P^{\perp}\right| A_{1} \otimes A_{2} \mid A_{1} \wp A_{2}
$$

Consider the sequent calculus system for classical MLL with the following rules:

$$
\begin{aligned}
& \text { STRUCTURAL RULE } \\
& \text { IDENTITY } \\
& \frac{\Rightarrow \Gamma, B, A, \Delta}{\Rightarrow \Gamma, A, B, \Delta} \text { Exchange } \\
& \frac{\text { axiom }}{\Rightarrow A, A^{\perp}} \\
& \text { LOGICAL RULES } \\
& \begin{array}{ll}
\Rightarrow \Gamma, A \quad \Rightarrow \Delta, B \\
\Rightarrow \Gamma, \Delta, A \otimes B
\end{array} \quad \frac{\Rightarrow \Gamma, A, B}{\wp-\mathrm{R}}
\end{aligned}
$$

Consider the following sequents:
(vi) $S_{6}: \Rightarrow A^{\perp} \wp\left(B^{\perp} \otimes C^{\perp}\right),(A \otimes B) \wp(A \otimes C)$
(vii) $S_{7}: \Rightarrow\left(A^{\perp} \wp A^{\perp}\right) \wp\left(B^{\perp} \otimes C^{\perp}\right),(A \otimes B) \wp(A \otimes C)$
(viii) $S_{8}: \Rightarrow A^{\perp} \wp\left(B^{\perp} \otimes C^{\perp}\right),(A \otimes B)_{\wp} C$
(a) Are they derivable? For each of $S_{6}-S_{8}$ answer yes or no.

$$
6 \text { marks }
$$

(b) If any one of $S_{6}-S_{8}$ is derivable, write a derivation of it.

10 marks
(c) Consider the fragment of the above sequent calculus for (one sided) MLL containing only axioms and the cut rule in the following form:

$$
\frac{\Rightarrow \Gamma, A^{\perp} \quad \Rightarrow A, \Delta}{\Rightarrow \Gamma, \Delta} c u t
$$

Does cut-elimination for this fragment enjoy the strong normalization and the Church Rosser property? Explain informally your answer.

9 marks
(d) Extend the fragment in (c) adding the new structural rule of MIX:

$$
\frac{\Rightarrow \Gamma \quad \Rightarrow \Delta}{\Rightarrow \Gamma, \Delta} M I X
$$

and also the rule of Exchange.
Does cut-elimination for this fragment enjoy the strong normalization and the Church Rosser property? Explain informally your answer.

QUESTION 4 (a) What does it mean to say that a category \mathcal{C} has binary products?

7 marks
(b) Verify that the collection Pset having sets as objects and partial functions as morphisms forms a category. [Hint: Notice that for any sets A and B there is a totally undefined partial function empty : $A \rightharpoonup B$. Can the identity $i d_{A}$ be partial?]

8 marks
(c) Does Pset have binary products? [Hint: Consider the pair of functions $f: C \rightarrow A$ and empty : $C \rightharpoonup \emptyset$, where f is total. What is $C \times \emptyset$? Can we have $f=\pi_{0} \circ\langle f$, empty \rangle ?]

10 marks
TOTAL: 25 marks
END OF PRE-EXAM

