1 Computational Logic 2008 - Dr G.Bellin

Midterm

17th November 2008 - Time allowed: 2 hours

Answer the following four questions. Each question carries 25 marks.

QUESTION 1. (a) Write a derivation tree of

 $g: A \to A, y: A \vdash ((\mathbf{2})\lambda z^{A}.(g)z)y : A$

in the simply typed λ -calculus. Here as usual **2** is $\lambda f \lambda x.(f)((f)x)$. (At each line of the derivation please indicate both the term and its type). 5 marks

(b) Write a reduction sequence starting with the derivation of

 $g: A \to A, y: A \vdash ((2)\lambda z^A.(g)z)y: A$ given in part (a). (At each line of each derivation indicate both the term and its type. Do not reduce a lambda term if you do not reduce the tree).

15 marks

(c) In each derivation written in part (b) **count all the redexes** present in it (not only the one you are reducing).

5 marks TOTAL: 25 marks

QUESTION 2. Consider the following derivation \mathcal{D} in $\mathbf{NJ}^{\to\perp}$ of $\neg A, A \vdash B$:

$$\frac{A \to \bot \quad A}{\frac{\bot}{A \to B} \bot \operatorname{-int} \quad A} \to \operatorname{E}$$

Answer the following questions:

(a) Write the definition of *Maximal Formula* in NJ^{\rightarrow} . Is \mathcal{D} normal with respect to of \rightarrow reductions (i.e., elimination of maximal formulas of the form $X \rightarrow Y$)?

5 marks

(b) Write the definition of the Subformula Property. Explain why \mathcal{D} does not enjoy the subformula property.

5 marks

(c) **Briefly describe** and **implement** a procedure that given \mathcal{D} yields a derivation \mathcal{D}^* of $\neg A, A \vdash B$ with the subformula property.

15 marks TOTAL: 25 marks **QUESTION 3 Prove** the *Weak Normalization Theorem* for intuitionistic implicative logic NJ^{\rightarrow} :

There exists a reduction strategy that transforms every derivation in NJ^{\rightarrow} into a normal derivation.

TOTAL: 25 marks

QUESTION 4. The relation ρ between λ -terms (modulo α conversion) is the smallest λ -compatible binary relation on Λ such that

 $t \ \rho \ t', u \ \rho \ u' \Rightarrow (\lambda x.u) t \ \rho \ u'[t'/x]$

Give the definition of the Church-Rosser property and **prove** that ρ enjoys it.

You may assume Lemma 11:

- (i) If $x \rho t'$, where x is a variable, then x = t'.
- (ii) If $\lambda x.u \ \rho \ t'$, then $t' \equiv \lambda x.u'$ and $u \ \rho \ u'$
- (iii) If $(v)u \rho t'$ then
 - (a) either $t' \equiv (v')u'$ with $v \rho v'$ and $u \rho u'$;
 - (b) or $v \equiv \lambda w$ and $t' \equiv w'[u'/x]$ with $u \rho u'$ and $w \rho w'$.

and also Lemma 12:

If $t \ \rho \ t'$ and $u \ \rho \ u'$ then $u[t/x] \ \rho \ u'[t'/u']$. Proceed by induction on the complexity of t_0 such that $t_0 \ \rho \ t_1$ and $t_0 \ \rho \ t_2$ $TOTAL: 25 \ marks$

END OF MIDTERM