Computational logic: exercise sheet 6

19/11/2008

EXERCISE 1 Consider the fragment of propositional intuitionistic sequent calculus LJ with the logical constant \top (truth) and the binary connectives \land (conjunction) and \rightarrow (implication). Construct Seq(LJ) in such a way that it has formulae as objects and sequents $A \implies B$ as morphism $Hom_{Seq(LJ)}(A, B)$. Show that Seq(LJ) is a category.

EXERCISE 2 Show that the category Seq(LJ) from exercise 1 is cartesian.

EXERCISE 3 Consider the simply typed λ -calculus associated with the fragment of propositional intuitionistic natural deduction NJ with the logical constant \top (truth) and the binary connectives \wedge (conjunction) and \rightarrow (implication). Construct $\mathcal{C}(\lambda)$ in such a way that it has types A, B, C, \ldots as objects and the class of λ -terms $x: A \vdash t(x): B$ where

 $x: A \vdash t(x): B \simeq y: A \vdash t(y): B$ if t(y)[x/y] = t(x)

as morphisms $Hom_{\mathcal{C}(\lambda)}(A, B)$. Show that $\mathcal{C}(\lambda)$ is a category.

EXERCISE 4 Show that the category $C(\lambda)$ from exercise 3 is cartesian.

EXERCISE 5 Show that, in any cartesian category \mathbb{C} , the object $A \times 1$ is isomorphic to the object A, i.e. that there exist morphisms $f: A \times 1 \longrightarrow A$ and $g: A \longrightarrow A \times 1$ of \mathbb{C} such that $g \circ f = \operatorname{id}_{A \times 1}: A \times 1 \longrightarrow A \times 1$ and $f \circ g = \operatorname{id}_A: A \longrightarrow A$.

EXERCISE 6 Does *Pset*, the category with sets as objects and partial functions as morphisms, have a terminal object and binary products?