Computational Logic Coursework 4

Stefano Soffia vr086731@studenti.univr.it

Exercise 1. For the first part, "write a derivation in $NJ^{\to \wedge \perp}$ of $((A \to B) \to A) \to \neg \neg A$ ", consider the following proof tree:

For the second part "every derivation d in $\mathbf{NJ}^{\to\wedge\perp}$ can be transformed into a derivation d' where all conclusions A of a \perp -int rule are atomic", remember the following definitions. Let c(A) be the logical complexity of a formula A: c(p) = 0 if p is atomic, $c(\perp) = 1$, $c(A \to B) = c(A \land B) = max\{c(a), c(b)\}+1$. Given a derivation d in $\mathbf{NJ}^{\to\wedge\perp}$, let m(d) be the maximum logical complexity c(A) of the formulas A that are conclusions of some \perp -1 in d, m(d) = 0 if there is no application of \perp -1. Let n(d) be the number of \perp -1 inferences in d whose conclusion has maximal logical complexity m(d).

If the conclusion of a \perp -I is $A = A_0 \rightarrow A_1$ then the sub-derivation <u>d</u> of d, rooted at $A_0 \rightarrow A_1$:

$$\frac{d^+}{A_0 \to A_1} \downarrow_{\perp} \quad \text{is replaced with the sub-derivation } \underline{d}^-: \quad \frac{d^+}{A_1} \downarrow_{\perp} \\ \frac{1}{A_0 \to A_1} \downarrow_{\perp} \quad \frac{1}{A_0 \to A_1} \downarrow_{\perp}$$

Let d' be the resulting derivation. Notice that d' is obtained from d by:

(i) removing one occurrence of the \perp -introduction rule of complexity $c(A_0 \rightarrow A_1)$;

(ii) adding one occurrence of the \perp -introduction rule of complexity $c(A_1)$.

But no other rules are changed or added and from the definition of complexity of terms we have $c(A_1) < c(A_0 \rightarrow A_1)$.

Now suppose that $c(A_0 \rightarrow A_1) = m(d)$ is the maximum complexity in d of any conclusion of \perp -I. Then we can conclude that:

- (i) if in d there are other inferences \perp -I of maximal complexity m(d), then m(d') = m(d), but n(d') < n(d).
- (ii) otherwise n(d) = 1 and m(d') < m(d).

In either cases we have:

$$\langle m(d'), n(d') \rangle < \langle m(d), n(d) \rangle.$$

Therefore we can apply the inductive hypothesis on d' and conclude the thesis on d.