Computational Logic
Coursework 3

Stefano Soffia
vr086731Q@studenti.univr.it

Exercise 1 (Typed Lambda Calculus). First some notational conventions. Let x
be a variable and u, v be A-terms; then we write Ax u the functional abstraction
and (u)v the functional application. Also, we assume that the generic A-terms
m, n, f, x have the following types:

A-term  Type

X AD

f A® . AC

m,n (A= A% 5 (A- AY)

To further simplify the notation of types we introduce the following convention:

{AO = A
An+1 — (An) N (An)

For example, with this convention we denote A! the type of f and A? the type
of mand n.

4 = N xx (F)(F)(F)(f)x.

{1} f: Al 21 x: A°
ay Al (F)x : A°
{1} F: A (F)(F)x : A°
fy A (FY(F)(F)x : A°
(OO (F)x : A°
Ax (F)(F)(F)(F)x : AT
A X (F)(F)(F)(F)x = A?

—

E—

I-1

suc = AnAf ax ((n)f)(F)x.

{1} n: A? {2 . Al . {2y . Al 3} x: A°
(n)f . Al (F)x : A°
(MF)(F)x: A°
Ax ((n)f)(F)x : At
A Ax ((n)F)(f)x : A2
AnXFAx ((n)F)(F)x : A®
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plus = AmAn Af Ax ((m)f)((n)f)x.

(3} n: A% {2} f: A .
{1y m: A% (21 f: Al . (n)f . A {4y x : A°
(m)f . Al ((n)f)x : A
((m)F)((n)f)x: A°
Ax ((m)F)((n)f)x : A
A Ax ((m)F)((n)f)x : A?
AnXFAx (M)F)((n)f)x : A®
AmMAN N Ax (m)F)((n)f)x : A% — A3

E—

-2

-1

times = AmAnAf (m)(n)f.

2y n: A? (3} f: A
{1y m: A? (n)f : A
(m)(n)f : At
A (m)(n)f : A2
AnXf (m)(n)f @ A3 !
AmAnAf (m)(n)f : A? » A3

E—

-1
Consider the term:
(suc)l = (AnXf Ax ((n)f)(f)x) 1
EFAx (1)F)(F)x
=2 Ax ((AF Ax (F)x) £)(f)x
Bnfax (x (F)x) (F)x
EONFAx (F)(F)x = 2.
This sequence of B-reductions corresponds to the following sequence of trees:
su(.:-:-A3 1-:”A2
An A Ax ((n)f)(f)x A x (F)x
AN XFAx ((n)F)(F)x)1 : A

1:A°
A x (F)x {1y f: Al e {1y f: Al 2y x: A° -
(1)f . A (F)x : A°
(WA F)x: A

A Ax ((1)F)(F)x : A

E—
1-1,2

{1y f: Al 2y x: A° .
(F)x : A° - (ayf A {2} x: A°
Ax (F)x : A (Fx: A°
(Ox (F)x)(f)x : A°

A x (x (F)x)(f)x + A2

E—
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1y A 2y x: A°
(ay f A (Fx : A° -
(F)(F)x : A°
A Ax (F)(F)x + A?

—

1-1,2

Consider the term:
((plus)2)1 =( (Am An X f Xx ((m)F)((n)f)x) 2)1
L O AFax ((2)F)((n)f)x) 1
LA ax ((2)F)((1)F)x
=2 Ax (A Ax (F)(F)x) ) (MF Ax (F)x) )x
BNFax (x (F)(F)x) (Ax (F)x) x
ZNFax (O (F)(F)x) (F)x
ENF X (F)(F)(F)x = 3.

This sequence of B-reductions corresponds to the following sequence of trees:

plus:./.\é - A? 2-:”A2
AmAn X f Ax ((m)f)((n)f)x A x (F)(F)x . 1: A2
Om AR A Ax (M)A () F)x)2 - A® T A AX()x

—

((AmAnXE Ax ((m)F)((n)f)x)2)1 : A2

2 A2 2y n: A7 [y f Al -
A A (F)(F)x {1} f: A e (n)f : A {3} x : A .
(2)f : A ((mMf)x . A° .
(@n0(mH A 1.2
AnXFAx ((2)F)((n)f) : A3 A Ax (F)x

—

(A XFAx ((2)F)((n) )1 : Al
1: 42
2. A2 MM Ax(f)x {1} f: A .
A Ax (F)(F)x {1} f: A . (1)f : A - {3} x : A°
(2)f : Al - (WAx A

(Q)H)((V)F) - A°
A ax ((2)F)(1)F) : A?

E—

1-1,3

1y F: AY {2y x: A°
E— 13 F A {23 x; A
(F)x . A0 1t { }0 Eo
5 -t . = (Fx: A
A Ax (F)x A {1} A — 71 =1
E— Ax (f)x 1 A
Ax (f)x @ Al
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1y i AY 2y x: A°

—

(ay f A (f)x . A° .
(DA mfA @ x:A =
Ax (F)(F)x : A? (Fx: A°

O (F)(F)x) (F)x - A° -
{1y f: Al {21 x: A°
{1y F: A (F)x : A°
ay Al (F)(F)x : A -
(A (F)(F)x : A° I
A X (F)(F)(F)x : A

—

E—

Consider the term:
((times)2)3 =( (AmAn Af (m)(n)f) 2)3

L (AnXf(2)(n)f) 3
EAF(2)(3)F
=MF (M Ax (F)(F)x) (AF Ax (F)(F)(F)x) f
LNF (MF Ax (F)(F)x) Ax (F)(F)(F)x
LnF ax (O (F)(F)(F)x) O (F)(F)(F)x) x
B x O ((F)(F)x) (F(F)(Fx
BNFAx (F)(F)(F)(F)(F)(F)x = 6.

This sequence of B-reductions corresponds to the following sequence of trees:

2yn: A’ (3} f: A

{1y m: A? (n)f : A
(m)(n)f A e 2
AmAnAE (m)(n)f . A® - A2 M Ax (F)(F)x e 3. A2
(AmAnXf (m)(n)f)2: A® M Ax (F)(F)(f)x e
((AmAnXf (m)(n)f)2)3 : A2
2. A2 {1y n: A’ {2y f: A" ..
A x (F)(F)x (n)f : A
@A 3.4
AnXF (2)(n)f : A® A Ax (F)(A)(F)x
(AnXf (2)(n)f)3 : A?
o 3: A
2. A2 M Ax (F)(F)(F)x {1y f: Al .
A Ax (F)(F)x (3)f . A
(2)3)f : AT -

M@ A
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1y A 2y x: A°
(ay f A (F)x : A° .
(F)(F)x: A° 12 Al
A x (F)(F)x + A? Ax (F)(F)(F)x .
(A 2x (F)(F)x)x (F)(F)(F)x : Al
A O Ax (F)(F)x)Ax (F)(F)(F)x : A?

Al

" M (AFFx 2 x: A
Ax (F)(F)(F)x (Ax (A)(F)(F)x)x : A0

(Ax (F)(F)(F)x)(x (F)(F)(F)x)x = A°
A X (x (F)(F)(F)x) (Ax (F)(F)(F)x)x : A

1y fAY 2 xc A°

() f A (Fx : A°
{1y f: A (F)(F)x - A° h
OO A o
Mx (F)(F)(F)x : A (AHE)x

Ax (F)(F)(E)) () (F)(F)x - A°
XX (A (F)(F)(F)x)(F)(F)(F)x @ A?

a0
WA (AR
ay £ AN (A F)(F)x : A°
WA OOOOOA
(AOOO A
A (F)(F)(F)(F)(F)(f)x : A?

I-1,...

Exercise 2 (Strong Normalization). In what follows we denote NJ™ the theory
of natural deduction restricted to the use of the implication only; we write F to
refer to the set of the formulas in NJ7.

For convention of notation, we improperly say that a proof D in NJ™ contains
a maximum -y, where v € F, to mean that D contains at least one occurrence
of 7y and at least one of these occurrences is a maximum. When not ambiguous,
we identify the occurrence that is the maximum with the formula.

Definition 1 (Maximum). Let D be a proof in NJ7. We call maximum of D
every occurrence of a formula in D such that:

(i) it is the conclusion of an implication introduction step;
(ii) it is the major premise of an implication elimination step.
Notice that from this definition it follows that every maximum ¢ of D:

(i) is of the form a — B and the premise of the implication introduction step
is B

(ii) being the major premise of an implication elimination step we have that the
minor premise is a and the conclusion is 3.



S. Soffia 6

For convenience of notation we write:

e D, to represent the subtree of D rooted at the minor premise of the
elimination step;

e Dpg to represent the subtree of D rooted at the premise of the introduction
step;

e D'g to represent the subtree of D rooted at the conclusion of the elimina-
tion step.

With this notation, it is possible to graphically represent a maximum as follows:

[]

Dg
76 - Da
a—pB o

B

Definition 2 (Reduction Step). Let D be a proof of NJ7. We call reduction
step the transformation that, with the above notation, returns a new proof G
obtained from D as follows.

(i) Let D" be the result of the replacement of the leaves of Dg that are
discharged by the removed implication introduction step (which contains
the formula a) with the tree Dg.

(i) The subtree D'g of D is replaced with the subtree D"g defined in the
previous point.

Definition 3 (Linear Deduction Tree). Let D be a deduction tree in NJ7. We
say that D is linear if in D every occurrence of the implication introduction rule
discharges exactly one leaf.

To prove that in linear natural deduction strong normalization holds, we need
to show the following facts:

(1) every deduction tree resulting from a linear deduction tree by a reduction
step is linear;

Moreover we need to find a measure s(D) of derivations such that
(2) every reduction step reduces the measure s.

To prove (1) it is enough to notice that no new implication introduction is
created by a reduction, hence if D' results from a reduction step from D and D
is linear, then so is D'.

To prove (2), consider that in deduction tree may be may be regarded as a
tree whose nodes are labelled with formulae and edges with inference rules, or,
dually, we may label edges with formulae and nodes with inferences. Taking the
first viewpoint, notice that in a reduction step applied to the proof in the figure
above one node is cancelled and two pairs of nodes are identified:

e the node labelled with the maximum formula o — 3 is erased;

e the premise B of the implication introduction is identified with the conclu-
sion of the implication elimination imediately below it;
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e the minor premise a of the implication elimination is identified with the
only assumption discharged by the implication introduction above it.

Let s(D) be the number of nodes in D. It is clear that if D reduces in one
step to D', then s(D') = s(D) — 3. It follows that no matter which reduction
strategy is applied, the reduction process will eventually terminate (there is no
infinite descending sequence of natural numbers).



