
Q

Lecture Notes on

Denotational Semantics

for Part II of the Computer Science Tripos

Dr Andrew M. Pitts
Cambridge University Computer Laboratory

c A. M. Pitts, 1997-9

First edition 1997.
Revised 1998, 1999.

Contents

Learning Guide ii

1 Introduction 1
1.1 Example:while-loops as fixed points 3
1.2 Exercises . 8

2 Least Fixed Points 9
2.1 Cpo’s and continuous functions . 9
2.2 Tarski’s fixed point theorem . 15
2.3 Exercises . 19

3 Constructions on Domains 21
3.1 Products of domains . 21
3.2 Function domains . 25
3.3 Flat domains . 28
3.4 Exercises . 30

4 Scott Induction 31
4.1 Chain-closed and admissible subsets 31
4.2 Examples . 32
4.3 Exercises . 37

5 PCF 39
5.1 Terms and types . 39
5.2 Free variables, bound variables and substitution 40
5.3 Typing . 41
5.4 Evaluation . 44
5.5 Contextual equivalence versus equality in denotation 48
5.6 Exercises . 52

6 Denotational Semantics of PCF 55
6.1 Denotation of types . 55
6.2 Denotation of terms . 55
6.3 Compositionality . 61
6.4 Soundness . 63
6.5 Exercises . 64

i

7 Relating Denotational and Operational Semantics 65
7.1 Formal approximation relations .65
7.2 Proof of the Fundamental Property ofC 67
7.3 Extensionality . 70
7.4 Exercises . 73

8 Full Abstraction 75
8.1 Failure of full abstraction . 75
8.2 PCF+por . 78
8.3 Fully abstract semantics for PCF 80
8.4 Exercises . 81

Postscript 82

References 84

Lectures Appraisal Form 85

Learning Guide

These notes are designed to accompany 8 lectures on denotational semantics for
Part II of the Cambridge University Computer Science Tripos. This is a relatively
new course, although some of the material it contains (roughly, the first half) used
to form part of courses on semantics of programming languages for Parts IB/II. The
Part IB course onSemantics of Programming Languagesis a prerequisite.

Tripos questions

Of the many past Tripos questions on programming language semantics, here are
those which are relevant to the current course.

Year 98 98 97 97 96 95 94 93 92 91 90 90 88 88 87 87 86
Paper 7 9 7 9 6 5 8 8 8 8 7 9 2 4 2 3 1

Question 5 10 5 10 12 12 12 10 10 10 4 11 2 3 2 13 3

Recommended books� Winskel, G. (1993).The Formal Semantics of Programming Languages. MIT
Press.

ii

This is an excellent introduction to both the operational and denotational semanticsof
programming languages. As far as this course is concerned, the relevant chapters are
5, 8, 9, 10 (Sections 1 and 2), and 11.� Tennent, R. D. (1991).Semantics of Programming Languages. Prentice-Hall.

Parts I and II are relevant to this course.

Further reading� Gunter, C. A. (1992).Semantics of Programming Languages. Structures and
Techniques. MIT Press.

This is a graduate-level text containing much material not covered in this course. As
far as this course is concerned, the relevant chapters are 1, 2, and 4–6.

Note!

The material in these notes has been drawn from several different sources, including
the books mentioned above, previous versions of this courseby the author and by
others, and similar courses at some other universities. Anyerrors are of course all
the author’s own work. A list of corrections will be available from the course web
page (follow links fromwww.cl.cam.ac.uk/Teaching/). A lecture(r) appraisal form
is included at the end of the notes. Please take time to fill it in and return it. Alterna-
tively, fill out an electronic version of the form via the URLwww.cl.cam.ac.uk/cgi-
bin/lr/login.

Andrew Pitts
ap@cl.cam.ac.uk

iii

iv

1

1 Introduction

Slide 1 gives a reminder of various approaches to giving formal semantics for
programming languages. The operational approach was introduced in the Part IB
course onSemantics of Programming Languagesand the axiomatic approach is
illustrated in the Part II course onSpecification and Verification I. This course gives
a brief introduction to some of the techniques of the denotational approach. One of
the aims of Denotational Semantics is to specify programming language constructs
in as abstract and implementation-independent way as possible: in this way one may
gain insight into the fundamental concepts underlying programming languages, their
inter-relationships, and (sometimes) new ways of realising those concepts in language
designs. Of course, it is crucial to verify that denotational specifications of languages
are implementable—in other words to relate denotational semantics to operational
semantics: we will illustrate how this is done later in the course.

Styles of semantics

Operational. Meanings for program phrases defined in terms of

the steps of computation they can take during program

execution.

Axiomatic. Meanings for program phrases defined indirectly via

the axioms and rules of some logic of program properties.

Denotational . Concerned with giving mathematical models of

programming languages. Meanings for program phrases

defined abstractly as elements of some suitable mathematical

structure.

Slide 1

2 1 INTRODUCTION

Characteristic features of a

denotational semantics� Each phrase (= part of a program), P , is given a denotation,[[P]] — a mathematical object representing the contribution ofP to the meaning of any complete program in which it occurs.� The denotation of a phrase is determined just by the

denotations of its subphrases (one says that the semantics is

compositional).

Slide 2

A simple example of compositionality

Given partial functions [[C]]; [[C 0]] : State * State and a

function [[B]] : State !ftrue; falseg, we can define[[if B then C else C 0]] =�s 2 State:if ([[B]](s); [[C]](s); [[C 0]](s))
where if (b; x; x0) = (x if b = truex0 if b = false

Slide 3

1.1 Example:while-loops as fixed points 3

Denotational semantics of sequential composition

Denotation of sequential compositionC;C 0 of two commands[[C;C 0]] = [[C 0]] � [[C]] = �s 2 State:[[C 0]]([[C]](s))
given by composition of the partial functions from states to states[[C]]; [[C 0]] : State * State which are the denotations of the

commands.

Cf. operational semantics of sequential composition:C; s + s0 C 0; s0 + s00C;C 0; s + s00 :
Slide 4

1.1 Example:while-loops as fixed points

The requirement ofcompositionalitymentioned on Slide 2 is quite a tough one.
It means that the collection of mathematical objects we use to give denotations to
program phases has to be sufficiently rich that it supports operations for modelling
all the phrase-forming constructs of the programming language in question. Some
phrase-forming constructs are easy to deal with, others less so. For example,
conditional expressions involving state-manipulating commands can be given a
denotational semantics in terms of a corresponding branching function applied to the
denotations of the immediate subexpressions: see Slide 3. Similarly, the denotational
semantics of the sequential composition of commands can be given by the operation
of composition of partial functions from states to states, as shown on slide 4.
However, a looping construct such aswhile B do C is not so easy to explain
compositionally. The transition semantics of awhile-loophwhile B do C; si ! hif B then C; (while B do C) else skip; si
suggests that its denotation as a partial functions from states to states should satisfy[[while B do C]] = [[if B then C; (while B do C) else skip]]:(1)

4 1 INTRODUCTION

Note that this cannot be used directly to define[[while B do C]], since the right-
hand side contains as a subphrase the very phrase whose denotation we are trying to
define. Using the denotational semantics of sequential composition andif (and using
the fact that the denotation ofskip is the identity function�s 2 State:s), (1) amounts
to saying that[[while B do C]] should be a solution of thefixed point equationgiven
on Slide 5.

Fixed point property of [[while B do C]][[while B do C]] = f[[B]];[[C]]([[while B do C]])
where, for each b : State !ftrue; falseg andc; w : State * State , we definefb;c(w) = �s 2 State:if (b(s); w(c(s)); s):� Why does w = f[[B]];[[C]](w) have a solution?� What if it has several solutions—which one do we take to be[[while B do C]]?

Slide 5

Such fixed point equations arise very often in giving denotational semantics to
languages with recursive features. Beginning with Dana Scott’s pioneering work
in the late 60’s, a mathematical theory calleddomain theoryhas been developed to
provide a setting in which not only can we always find solutions for the fixed point
equations arising from denotational semantics, but also wecan pick out solutions that
are minimal in a suitable sense—and this turns out to ensure agood match between
denotational and operational semantics. The key idea is to consider a partial order
between the mathematical objects used as denotations—thispartial order expresses
the fact that one object isapproximated by, or carries more information than, or
is more well-defined thananother one below it in the ordering. Then the minimal
solution of a fixpoint equation can be constructed as the limit of an increasing chain
of approximations to the solution. These ideas will be made mathematically precise
and general in the next section; but first we illustrate how they work out concretely

1.1 Example:while-loops as fixed points 5

for the particular problem on Slide 5.

For definiteness, let us consider the particularwhile-loop

while X > 0 do (Y :=X � Y ;X := X � 1)(2)

whereX andY are two distinct integer storage locations (variables). Inthis case we
can just take a state to be a pair of integers,(x; y), recording the current contents ofX
andY respectively. ThusState = Z� Z and we are trying to define the denotation
of (2) as a partial functionw : (Z � Z) * (Z � Z) mapping pairs of integers to
pairs of integers. That denotation should be a solution to the fixed point equation
on Slide 5. For the particular boolean expressionB = (X > 0) and commandC = (Y :=X � Y ;X := X � 1), the functionf[[B]];[[C]] coincides with the functionf defined on Slide 6.[[while X > 0 do (Y :=X � Y ;X := X � 1)]]

Let State def= Z� Z pairs of integersD def= State * State partial functions.

For [[while X > 0 do Y :=X � Y ;X := X � 1]] 2 D we

seek a minimal solution to w = f(w), where f : D!D is

defined by:f(w)(x; y) = ((x; y) if x � 0w(x� 1; x � y) if x > 0.

Slide 6

6 1 INTRODUCTION

State def= Z� Z D def= State * State
Partial order v on D:w v w0 if and only if for all (x; y) 2 State , ifw is defined at (x; y) then so is w0 and moreoverw(x; y) = w0(x; y).
Least element ? 2 D w.r.t. v:? def= totally undefined partial function

(satisfies? v w, all w 2 D).

Slide 7

Consider the partial order,v, between the elements ofD = State*State given
on Slide 7. Note thatv does embody the kind of ‘information ordering’ mentioned
above: ifw v w0, thenw0 agrees withw wherever the latter is defined, but it may be
defined at some other arguments as well. Note also thatD contains an element which
is least with respect to this partial order: for the totally undefined partial function,
which we will write as?, satisfies? v w for anyw 2 D.

Starting with?, we apply the functionf over and over again to build up a
sequence of partial functionsw0; w1; w2; : : : :(w0 def= ?wn+1 def= f(wn):
Using the definition off on Slide 6, one finds thatw1(x; y) = f(?)(x; y) = ((x; y) if x � 0

undefined ifx � 1w2(x; y) = f(w1)(x; y) = 8><>:(x; y) if x � 0(0; y) if x = 1
undefined ifx � 2

1.1 Example:while-loops as fixed points 7

w3(x; y) = f(w2)(x; y) = 8>>>><>>>>:(x; y) if x � 0(0; y) if x = 1(0; 2 � y) if x = 2
undefined ifx � 3

w4(x; y) = f(w3)(x; y) = 8>>>>>><>>>>>>:
(x; y) if x � 0(0; y) if x = 1(0; 2 � y) if x = 2(0; 6 � y) if x = 3
undefined ifx � 4

and in general wn(x; y) = 8><>:(x; y) if x � 0(0; (!x) � y) if 0 < x < n
undefined ifx � n

where as usual,!x is the factorial ofx. Thus we get an increasing sequence of partial
functions w0 v w1 v w2 v : : : v wn v : : :
defined on larger and larger sets of states(x; y) and agreeing where they are defined.
The union of all these partial functions is the elementw1 2 D given byw1(x; y) = ((x; y) if x � 0(0; (!x) � y) if x > 0.

Note thatw1 is a fixed point of the functionf , since for all(x; y) we havef(w1)(x; y) = ((x; y) if x � 0w1(x� 1; x � y) if x > 0 (by definition off)= 8><>:(x; y) if x � 0(0; 1 � y) if x = 1(0; !(x� 1) � x � y) if x > 1 (by definition ofw1)= w1(x; y):

8 1 INTRODUCTION

In fact one can show thatw1 is the leastfixed point off , in the sense that for allw 2 D w = f(w)) w1 v w:(3)

This least fixed point is what we take as the denotation ofwhile X >0 do (Y :=X � Y ; X := X � 1). Its construction is an instance of Tarski’s
Fixed Point Theorem to be proved in the next section. Note also thatw1 is indeed
the function from states to states that we get from the structural operational semantics
of the commandwhile X > 0 do (Y :=X � Y ; X := X � 1), as given in the
Part IB course onSemantics of Programming Languages.

1.2 Exercises

Exercise 1.2.1.Consider the functionfb;c defined on Slide 5 in caseb = [[true]] =�s 2 State:true andc = [[skip]] = �s 2 State:s. Which partial functions from
states to states are fixed points of thisfb;c? What is its least fixed point (with
respect to thev ordering defined above)? Does this least fixed point agree with
the partial function from states to states determined by theoperational semantics ofwhile true do skip?

Exercise 1.2.2.Prove the statement (3).

9

2 Least Fixed Points

This section introduces a mathematical theory,domain theory, which amongst other
things provides a general framework for constructing the least fixed points used in
the denotational semantics of various programming language features. The theory
was introduced by Dana Scott and Gordon Plotkin.

2.1 Cpo’s and continuous functions

Domain theory makes use of partially ordered sets satisfying certain completeness
properties. The definition of apartial order is recalled on Slide 8.D is called the
underlying setof the poset(D;v). Most of the time we will refer to posets just by
naming their underlying sets and use the same symbolv to denote the partial order
in a variety of different posets.

Partially ordered sets

A binary relationv on a set D is a partial order iff it is

reflexive : 8d 2 D: d v d
transitive : 8d; d0; d00 2 D: d v d0 v d00) d v d00
anti-symmetric : 8d; d0 2 D: d v d0 v d) d = d0.
Such a pair (D;v) is called a partially ordered set , or poset .

Slide 8

Definition 2.1.1. (i) SupposeD is a poset and thatS is a subset ofD. An elementd 2 S is theleastelement ofS if it satisfies8x 2 S: d v x:
Note that becausev is anti-symmetric,S has at most one least element. Note

10 2 LEAST FIXED POINTS

also that least element of a subset of a poset need not exist. (For example,Z
with its usual partial order does not have a least element.)

(ii) If it exists, we will write the least element of the wholeposetD as?D, or just? whenD is understood from the context. Thus? is uniquely determined by
the property: 8d 2 D: ? v d:
The least element of a poset is sometimes called itsbottomelement.

(iii) A countable, increasingchain in a posetD is a sequence of elements ofD
satisfying d0 v d1 v d2 v : : :
An upper boundfor the chain is anyd 2 D satisfying8n 2 N : dn v d. If it
exists, theleast upper bound, or lub, of the chain will be written asGn�0 dn:
Thus by definition:

– 8m 2 N : dm v Fn�0 dn.

– For anyd 2 D, if 8m 2 N : dm v d, then
Fn�0 dn v d.

Remark 2.1.2. The following points should be noted.

(i) We will not need to consider uncountable, or decreasing chains in a poset: so
a ‘chain’ will always mean a countable, increasing chain.

(ii) The elements of a chain do not necessarily have to be distinct. In particular, we
say that a chaind0 v d1 v d2 v : : : is eventually constantif for someN 2 N
it is the case that8n � N: dn = dN . Note that in this case

Fn�0 dn = dN .

(iii) Like the least element of any subset of a poset, the lub of a chain is unique if it
exists. (It does not have to exist: for example the chain0 � 1 � 2 � : : : in N
has no upper bound, hence no lub.)

(iv) A least upper bound is sometimes called asupremum. Some other common
notations for

Fn�0 dn are:1Gn=0 dn and
Gfdn j n � 0g:

2.1 Cpo’s and continuous functions 11

(v) If we discard any finite number of elements at the beginning of a chain, we do
not affect its set of upper bounds and hence do not change its lub:Gn�0 dn = Gn�0 dN+n; for anyN 2 N .

Cpo’s and domains

A chain complete poset , or cpo for short, is a poset (D;v) in

which all countable increasing chains d0 v d1 v d2 v : : : have

least upper bounds,
Fn�0 dn:8m � 0 : dm v Gn�0 dn(lub1) 8d 2 D : (8m � 0 : dm v d)) Gn�0 dn v d:(lub2)

A domain is a cpo that possesses a least element,?:8d 2 D :? v d:
Slide 9

In this course we will be concerned with posets enjoying certain completeness
properties, as defined on Slide 9. It should be noted that the term ‘domain’ is used
rather loosely in the literature on denotational semantics: there are many different
kinds of domain, enjoying various extra order-theoretic properties over and above the
rather minimal ones of chain-completeness and possession of a least element that we
need for this course.

Example 2.1.3.The setX * Y of all partial functions from a setX to a setY can
be made into a domain, as indicated on Slide 10. It was this domain for the caseX = Y = State (some set of states) that we used for the denotation of commands
in Section 1.1. Note that thef which is claimed to be the lub off0 v f1 v f2 v : : :
on Slide 10 is a well-defined partial function because thefn agree where they are
defined. We leave it as an exercise to check that thisf is indeed the least upper
bound off0 v f1 v f2 v : : : in the poset(X * Y ;v).

12 2 LEAST FIXED POINTS

Domain of partial functions, X * Y
Underlying set: all partial functions, f , with domain of definitiondom(f) � X and taking values in Y .

Partial order: f v g iff dom(f) � dom(g) and8x 2 dom(f): f(x) = g(x).
Lub of chain f0 v f1 v f2 v : : : is the partial function f withdom(f) = Sn�0 dom(fn) andf(x) = (fn(x) if x 2 dom(fn), some n

undefined otherwise

Least element ? is the totally undefined partial function.

Slide 10

Example 2.1.4.Any poset(D;v) whose underlying setD is finite is a cpo. For
in such a poset any chain is eventually constant (why?)—and we noted in Re-
mark 2.1.2(ii) that such a chain always possesses a lub. Of course, a finite poset need
not have a least element, and hence need not be a domain—for example, consider the
poset with Hasse diagram �� �
(TheHasse diagramof a poset is the directed graph whose vertices are the elements
of the underlying set of the poset and in which there is an edgefrom vertexx to
vertexy iff x 6= y and8z: (x v z & z v y)) (z = x _ z = y).)

Figure 1 shows two very simple, but infinite domains. Here aretwo examples of
posets that are not cpos.

Example 2.1.5.The set of natural numbersN = f0; 1; 2; : : : g equipped with the
usual partial order,�, is not a cpo. For the increasing chain0 � 1 � 2 � : : : has no
upper bound inN .

2.1 Cpo’s and continuous functions 13

The ‘flat natural numbers’, N? :0 1 2 � � � n n+ 1 � � �?��� ���
The ‘vertical natural numbers’,
: !n+ 1n210

Figure 1: Two domains

14 2 LEAST FIXED POINTS

Example 2.1.6.Consider a modified version of the second example in Figure 1 in
which we adjoin two different upper bounds,!1 6= !2, for N . In other words,

considerD def= N [f!1; !2g with partial orderv defined by:d v d0 def, 8>>>><>>>>: d; d0 2 N & d � d0;
or d 2 N & d0 2 f!1; !2g;
or d = d0 = !1;
or d = d0 = !2:

Then the increasing chain0 v 1 v 2 v : : : in D has two upper bounds (!1 and!2),
but no least one (since!1 6v !2 and!2 6v !1). So(D;v) is not a cpo.

Monotonicity, continuity, strictness� A function f : D!E between posets is monotone iff8d; d0 2 D: d v d0) f(d) v f(d0).� If D and E are cpo’s, the function f is continuous iff it is

monotone and preserves lubs of chains, i.e. for all chainsd0 v d1 v : : : in D, it is the case thatf(Gn�0 dn) = Gn�0 f(dn) in E.� If D and E have least elements, then the function f is strict

iff f(?) = ?.

Slide 11

Remark 2.1.7. Note that iff : D ! E is monotone andd0 v d1 v d2 v : : : is
a chain inD, then applyingf we get a chainf(d0) v f(d1) v f(d2) v : : : in E.
Moreover, ifd is an upper bound of the first chain, thenf(d) is an upper bound of the
second and hence is greater than its lub. Hence iff : D!E is a monotone function
between cpo’s, we always haveGn�0 f(dn) v f(Gn�0 dn)

2.2 Tarski’s fixed point theorem 15

Therefore (using the antisymmetry property ofv), to check that a monotone functionf between cpo’s is continuous, it suffices to check for each chain d0 v d1 v d2 v : : :
in D that f(Gn�0 dn) v Gn�0 f(dn)
holds inE.

Example 2.1.8.When D is the domain of partial functionsState * State
(cf. Slide 10), the functionfb;c : D ! D defined on Slide 5 in connection
with the denotational semantics ofwhile-loops is a continuous function. We leave
the verification of this as an exercise.

Example 2.1.9.Given cpo’sD andE, for eache 2 E it is easy to see that the
constant functionD! E with valuee, �d 2 D : e, is continuous.

Example 2.1.10.Let
 be the domain of vertical natural numbers, as defined in
Figure 1. Then the functionf :
!
 defined by(f(n) = 0 (n 2 N)f(!) = !:
is monotone and strict, but it is not continuous becausef(Gn�0 n) = f(!) = ! 6= 0 = Gn�0 0 = Gn�0 f(n):
2.2 Tarski’s fixed point theorem

A fixed pointfor a functionf : D!D is by definition an elementd 2 D satisfyingf(d) = d. If D is a poset, we can consider a weaker notion, ofpre-fixed point, as
defined on Slide 12.

16 2 LEAST FIXED POINTS

Least pre-fixed points

Let D be a poset and f : D!D be a function.

An element d 2 D is a pre-fixed point of f if it satisfiesf(d) v d.

The least pre-fixed point of f , if it exists, will be written�x (f)
It is thus (uniquely) specified by the two properties:f(�x (f)) v �x (f)(lfp1) 8d 2 D: f(d) v d) �x (f) v d:(lfp2)

Slide 12

Proposition 2.2.1. SupposeD is a poset andf : D!D is a function possessing a
least pre-fixed point,�x (f), as defined on Slide12. Providedf is monotone, �x (f)
is in particular a fixed point forf (and hence is the least element of the set of fixed
points forf).

Proof. By definition,�x (f) satisfies property (lfp1) on Slide 12. Iff is monotone
(Slide 11) we can applyf to both sides of (lfp1) to conclude thatf(f(�x (f))) v f(�x (f)):
Then applying property (lfp2) withd = f(�x (f)), we get that�x (f) v f(�x (f)):
Combining this with (lfp1) and the anti-symmetry property of the partial orderv, we
getf(�x (f)) = �x (f), as required.

2.2 Tarski’s fixed point theorem 17

Tarski’s Fixed Point Theorem

Let f : D!D be a continuous function on a domain D. Then� f possesses a least pre-fixed point, given by�x (f) = Gn�0 fn(?):� Moreover, �x (f) is a fixed point of f , i.e. satisfiesf(�x (f)) = �x (f), and hence is the least fixed point of f .

Slide 13

Slide 13 gives the key result about continuous functions on domains which
permits us to give denotational semantics of programs involving recursive features.
The notationfn(?) used on the slide is defined as follows:(f0(?) def= ?fn+1(?) def= f(fn(?)):(4)

Note that since8d 2 D: ? v d, one hasf0(?) = ? v f1(?); and by monotonicity
of ffn(?) v fn+1(?)) fn+1(?) = f(fn(?)) v f(fn+1(?)) = fn+2(?):
Therefore, by induction onn 2 N , it is the case that8n 2 N : fn(?) v fn+1(?). In
other words the elementsfn(?) do form a chain inD. So sinceD is a cpo, the least
upper bound used to define�x (f) on Slide 13 does make sense.

18 2 LEAST FIXED POINTS

Proof of Tarski’s Fixed Point Theorem.First note thatf(�x (f)) = f(Gn�0 fn(?))= Gn�0 f(fn(?)) by continuity off= Gn�0 fn+1(?) by (4)= Gn�0 fn(?) by Remark 2.1.2(v)= �x (f):
So �x (f) is indeed a fixed point forf and hence in particular satisfies condition
(lfp1) on Slide 12. To verify the second condition (lfp2) needed for a least pre-fixed
point, suppose thatd 2 D satisfiesf(d) v d. Then since? is least inDf0(?) = ? v d
and fn(?) v d) fn+1(?) = f(fn(?)) v f(d) monotonicity offv d by assumption ond.

Hence by induction onn 2 N we have8n 2 N : fn(?) v d. Therefored is an upper
bound for the chain and hence lies above the least such, i.e.�x (f) = Gn�0 fn(?) v d
as required for (lfp2).

Example 2.2.2.The functionf[[B]];[[C]] defined on Slide 5 is a continuous function
(Exercise 2.3.2) on the domainState* State (Slide 10). So we can apply the Fixed
Point Theorem and define[[while B do C]] to be�x (f[[B]];[[C]]). In particular, the
method used to construct the partial functionw1 at the end of Section 1.1 is an
instance of the method used in the proof of the Fixed Point Theorem to construct
least pre-fixed points.

2.3 Exercises 19

2.3 Exercises

Exercise 2.3.1.Verify the claims implicit on Slide 10: that the relationv defined
there is a partial order; thatf is indeed the lub of the chainf0 v f1 v f2 v : : : ; and
that the totally undefined partial function is the least element.

Exercise 2.3.2.Verify the claim made in Example 2.1.8 thatfb;c is continuous.
When is it strict?

20 2 LEAST FIXED POINTS

21

3 Constructions on Domains

In this section we give various ways of building domains and continuous functions,
concentrating on the ones that will be needed for a denotational semantics of the
programming language PCF studied in the second half of the course. Note that to
specify a cpo one mustdefinea set equipped with a binary relation and thenprove

(i) the relation is a partial order;

(ii) lubs exist for all chains in the partially ordered set.

Furthermore, for the cpo to be a domain, one just has to prove

(iii) there is a least element.

Note that since lubs of chains and least elements are unique if they exist, a cpo or
domain is completely determined by its underlying set and partial order. In what
follows we will give various recipes for constructing cpos and domains and leave as
an exercise the task of checking that properties (i), (ii) and (iii) do hold.

3.1 Products of domains

Binary product of cpo’s and domains

The product of two cpo’s (D1;v1) and (D2;v2) has underlying

set D1 �D2 = f(d1; d2) j d1 2 D1 & d2 2 D2g
and partial order v defined by(d1; d2) v (d01; d02) def, d1 v1 d01 & d2 v2 d02
Lubs of chains are calculated componentwise:Gn�0(d1;n; d2;n) = (Gi�0 d1;i;Gj�0 d2;j):
If (D1;v1) and (D2;v2) are domains so is (D1 �D2;v)
and ?D1�D2 = (?D1 ;?D2).

Slide 14

22 3 CONSTRUCTIONS ON DOMAINS

Proposition 3.1.1 (Projections and pairing).LetD1 andD2 be cpo’s. Theprojec-
tions �1 : D1 �D2 !D1 �2 : D1 �D2 !D2�1(d1; d2) def= d1 �2(d1; d2) def= d2
are continuous functions. Iff1 : D!D1 andf2 : D!D2 are continuous functions
from a cpoD, then hf1; f2i : D!D1 �D2hf1; f2i(d) def= (f1(d); f2(d))
is continuous.

Proof. Continuity of these functions follows immediately from thecharacterisation
of lubs of chains inD1 �D2 given on Slide 14.

We will need the following generalised version of the product construction.

Definition 3.1.2 (Dependent products).Given a setI, suppose that for eachi 2 I
we are given a cpo(Di;vi). Theproductof this whole family of cpo’s has� underlying set equal to theI-fold cartesian product,

Qi2I Di, of the setsDi—
so it consists of all functionsp defined onI and such that the value ofp at eachi 2 I is an elementp(i) 2 Di of the cpoDi;� partial orderv defined byp v p0 def, 8i 2 I: p(i) vi p0(i):

As for the binary product (which is the particular case whenI is a two-element set),
lubs in(Qi2I Di ; v) can be calculated componentwise: ifp0 v p1 v p2 v : : : is a
chain in the product cpo, its lub is the function mapping eachi 2 I to the lub inDi
of the chainp0(i) v p1(i) v p2(i) v : : : . Thus(Gn�0 pn)(i) = Gn�0 pn(i) (i 2 I):
In particular, for eachi 2 I theith projection function�i :Yi02IDi0 !Di�i(p) def= p(i)

3.1 Products of domains 23

is continuous. If all theDi are domains, then so is their product—the least element
being the function mapping eachi 2 I to the least element ofDi.

Continuous functions of two arguments

Proposition. Let D, E and F be cpo’s. A functionf : D �E! F is monotone if and only if it is monotone in each

argument separately:8d; d0 2 D; e 2 E: d v d0) f(d; e) v f(d0; e)8d 2 D; e; e0 2 E: e v e0) f(d; e) v f(d; e0):
Moreover, it is continuous if and only if it preserves lubs of chains

in each argument separately:f(Gm�0 dm ; e) = Gm�0 f(dm; e)f(d ; Gn�0 en) = Gn�0 f(d; en):
Slide 15

Proof of the Proposition on Slide15. The ‘only if’ direction is straightforward (by
considering chains constantly equal to some value). For the‘if’ direction, suppose
first thatf is monotone in each argument separately. Then given(d; e) v (d0; e0) inD � E, by definition of the partial order on the binary product we haved v d0 in D
ande v e0 in E. Hencef(d; e) v f(d0; e) by monotonicity in first argumentv f(d0; e0) by monotonicity in second argument

and therefore by transitivity,f(d; e) v f(d0; e0), as required for monotonicity off .

Now supposef is continuous in each argument separately. Then given a chain

24 3 CONSTRUCTIONS ON DOMAINS(d0; e0) v (d1; e1) v (d2; e2) v : : : in the binary product, we havef(Gn�0(dn; en)) = f(Gi�0 di ;Gj�0 ej) (cf. Slide 14)= Gi�0 f(di;Gj�0 ej) by continuity in first argument= Gi�00@Gj�0 f(di; ej)1A by continuity in second argument= Gn�0 f(dn; en) by lemma on Slide 16

as required for continuity off .

Diagonalising a double chain

Lemma. Let D be a cpo. Suppose the doubly indexed family of

elements dm;n 2 D (m;n � 0) satisfiesm � m0 & n � n0) dm;n v dm0;n0 :(y)

Then Gn�0 d0;n v Gn�0 d1;n v Gn�0 d2;n v : : :
and Gm�00@Gn�0 dm;n1A = Gk�0 dk;k:

Slide 16

Proof of the Lemma on Slide16. We make use of the defining properties of lubs of
chains—(lub1) and (lub2) on Slide 9. First note that ifm � m0 thendm;n v dm0;n by property (y) of thedm;nv Gn0�0 dm0;n0 by (lub1)

3.2 Function domains 25

for all n � 0, and hence
Fn�0 dm;n v Fn0�0 dm0;n0 by (lub2). Thus we do indeed

get a chain of lubs Gn�0 d0;n v Gn�0 d1;n v Gn�0 d2;n v : : :
and can form its lub,

Fm�0Fn�0 dm;n. Using property (lub1) twice we havedk;k v Gn�0 dk;n v Gm�0 Gn�0 dm;n
for eachk � 0, and hence by (lub2)Gk�0 dk;k v Gm�0 Gn�0 dm;n:(5)

Conversely, for eachm;n � 0, note thatdm;n v dmaxfm;ng;maxfm;ng by property (y)v Gk�0 dk;k by (lub1)

and hence applying (lub2) twice we haveGm�0 Gn�0 dm;n v Gk�0 dk;k:(6)

Combining (5) and (6) with the anti-symmetry property ofv yields the desired
result.

3.2 Function domains

The set of continuous functions between two cpo’s/domains can be made into a
cpo/domain as shown on Slide 17. The terminology ‘exponential cpo/domain’ is
sometimes used instead of ‘function cpo/domain’.

26 3 CONSTRUCTIONS ON DOMAINS

Function cpo’s and domains

Given cpo’s (D;vD) and (E;vE), the function cpo(D! E;v) has underlying setD!E def= ff j f : D!E is a continuous functiong
and partial order: f v f 0 def, 8d 2 D : f(d) vE f 0(d).
Lubs of chains are calculated ‘argumentwise’ (using lubs in E):(Gn�0 fn)(d) = Gn�0 fn(d):
If E is a domain, then so is D!E and ?D!E(d) = ?E , alld 2 D.

Slide 17

Proposition 3.2.1 (Evaluation and ‘Currying’). Given cpo’sD andE, the func-
tion ev : (D! E)�D!Eev(f; d) def= f(d)
is continuous. Given any continuous functionf : D0 �D! E (with D0 a cpo), for
eachd0 2 D0 the functiond 2 D 7! f(d0; d) is continuous and hence determines an
element of the function cpoD!E that we denote bycur(f)(d0). Thencur(f) : D0! (D!E)cur(f)(d0) def= �d 2 D : f(d0; d)
is a continuous function.1

1This ‘Curried’ version off is named in honour of the logician H. B. Curry, a pioneer of
combinatory logic and lambda calculus.

3.2 Function domains 27

Proof. For continuity ofev note thatev(Gn�0(fn; dn)) = ev(Gi�0 fi ;Gj�0 dj) lubs in products are componenwise= (Gi�0 fi) (Gj�0 dj) by definition ofev= Gi�0 fi(Gj�0 dj) lubs in function cpo’s are argumentwise= Gi�0Gj�0 fi(dj) by continuity of eachfi= Gn�0 fn(dn) by the Lemma on Slide 16= Gn�0 ev(fn; dn) by definition ofev .

The continuity of eachcur(f)(d0) and then ofcur(f) follows immediately from the
fact that lubs of chains inD1 �D2 can be calculated componentwise.

Continuity of the fixpoint operator

Proposition. Let D be a domain. By Tarski’s Fixed Point

Theorem (Slide 13) we know that each continuous functionf 2 (D!D) possesses a least fixed point, �x (f) 2 D.

Then the function �x : (D!D)!D
is continuous.

Slide 18

28 3 CONSTRUCTIONS ON DOMAINS

Proof of the Proposition on Slide18. We must first prove that�x : (D! D)! D
is a monotone function. Supposef1 v f2 in the function domainD!D. We have
to prove�x (f1) v �x (f2). But:f1(�x (f2)) v f2(�x (f2)) sincef1 v f2v �x (f2) by (lfp1) for �x (f2).
So �x (f2) is a pre-fixed point forf1 and hence by (lfp2) (for�x (f1)) we have�x (f1) v �x (f2), as required.

Turning now to the preservation of lubs of chains, supposef0 v f1 v f2 v : : :
in D!D. Recalling Remark 2.1.7, we just have to prove that�x (Gn�0 fn) v Gn�0 �x (fn)
and by the property (lfp2) of least pre-fixed points (see Slide 12), for this it suffices
to show that

Fn�0 �x (fn) is a pre-fixed point for the function
Fn�0 fn. This is the

case because:(Gm�0 fm)(Gn�0 �x (fn)) = Gm�0 fm(Gn�0 �x (fn)) function lubs are argumentwise= Gm�0 Gn�0 fm(�x (fn)) by continuity of eachfm= Gk�0 fk(�x (fk)) by the Lemma on Slide 16v Gk�0�x (fk) by (lfp1) for eachfk.

3.3 Flat domains

In order to model the PCF ground typesnat andbool , we will use the notion offlat
domaingiven on Slide 19.

3.3 Flat domains 29

Discrete cpo’s and flat domains

For any set X , the relation of equalityx v x0 def, x = x0 (x; x0 2 X)
makes (X;v) into a cpo, called the discrete cpo with underlying

set X .

Let X? def= X [f?g, where? is some element not in X . Thend v d0 def, d = d0 _ d = ? (d; d0 2 X?)
makes (X?;v) into a domain (with least element?), called the

flat domain determined by X .

Slide 19

The flat domain of natural numbers,N? , is pictured in Figure 1; the flat domain
of booleans,B? looks like: true false?
The following instances of continuous functions involvingflat domains will also be
needed for the denotational semantics of PCF. We leave the proofs as exercises.

Proposition 3.3.1. Letf : X *Y be a partial function between two sets. Thenf? : X?! Y?f?(d) def= 8><>:f(d) if d 2 X andf is defined atd? if d 2 X andf is not defined atd? if d = ?
defines a continuous function between the corresponding flatdomains.

30 3 CONSTRUCTIONS ON DOMAINS

Proposition 3.3.2. For each domainD the functionif : B? � (D �D)!Dif (x; (d; d0)) def= 8><>:d if x = trued0 if x = false?D if x = ?
is continuous.

3.4 Exercises

Exercise 3.4.1.Verify that the constructions given on Slide 14, in Definition 3.1.2,
and on Slides 17 and 19 do give cpo’s and domains (i.e. that properties (i), (ii) and
(ii) mentioned at the start of this section do hold in each case). Give the proofs of
Propositions 3.3.1 and 3.3.2.

Exercise 3.4.2.LetX andY be sets andX? andY? the corresponding flat domains,
as on Slide 19. Show that a functionf : X?! Y? is continuous if and only if one
of (a) or (b) holds:

(a) f is strict, i.e.f(?) = ?.

(b) f is constant, i.e.8x 2 X : f(x) = f(?).
Exercise 3.4.3.Let f>g be a one-element set andf>g? the corresponding flat
domain. Let
 be the domain of ‘vertical natural numbers’, pictured in Figure 1.
Show that the function domain
!f>g? is in bijection with
.

31

4 Scott Induction

4.1 Chain-closed and admissible subsets

In Section 2 we saw that the least fixed point of a continuous functionf : D!D on
a domainD can be expressed as the lub of the chain obtained by repeatedly applyingf starting with the least element? of D: �x (f) = Fn�0 fn(?) (cf. Slide 13).
This construction allows one to prove properties of�x (f) by using Mathematical
Induction forn to show that eachfn(?) has the property,providedthe property in
question satisfies the condition shown on Slide 20. It is convenient to package up
this use of Mathematical Induction in a way that hides the explicit construction of�x (f) as the lub of a chain. This is done on Slide 21. To see the validity of the
statement on that slide, note thatf0(?) = ? 2 S by theBase case; andfn(?) 2 S
implies fn+1(?) = f(fn(?)) 2 S by the Induction step. Hence by induction
on n, we have8n � 0 : fn(?) 2 S. Therefore by the chain-closedness ofS,�x (f) = Fn�0 fn(?) 2 S, as required.

Chain-closed and admissible subsets

Let D be a cpo. A subset S � D is called chain-closed iff for all

chains d0 v d1 v d2 v : : : in D(8n � 0 : dn 2 S)) (Gn�0 dn) 2 S
If D is a domain, S � D is called admissible iff it is a

chain-closed subset of D and ? 2 S.

A property �(d) of elements d 2 D is called chain-closed/admissible

iff fd 2 D j �(d)g is a chain-closed/admissible subset of D.

Slide 20

Note. The termsinclusive, or inductive, are often used as synonyms of ‘chain-
closed’.

Example 4.1.1.Consider the domain
 of ‘vertical natural numbers’ pictured in

32 4 SCOTT INDUCTION

Figure 1. Then� anyfinitesubset of
 is chain-closed;� f0; 2; 4; 6; : : : g is not a chain-closed subset of
;� f0; 2; 4; 6; : : : g [f!g is a chain-closed (indeed, is an admissible) subset of
.

Scott’s Fixed Point Induction Principle

Let f : D!D be a continuous function on a domain D.

For any admissible subset S � D, to prove that the least fixed

point of f is in S, i.e. that �x (f) 2 S
it suffices to prove8d 2 D (d 2 S) f(d) 2 S):

Slide 21

4.2 Examples

Example 4.2.1.Suppose thatD is a domain and thatf : (D � (D �D))!D is a
continuous function. Letg : (D�D)! (D�D) be the continuous function defined
by g(d1; d2) def= (f(d1; (d1; d2)); f(d1; (d2; d2))) (d1; d2 2 D):
Thenu1 = u2, where(u1; u2) def= �x (g). (Note thatg is continuous because we
can express it in terms of composition, projections and pairing and hence apply
Proposition 3.1.1 and Slide 37:g = hf � h�1; h�1; �2ii; f � h�1; h�2; �2iii.)

4.2 Examples 33

Proof. We have to show that�x (g) 2 � where� def= f(d1; d2) 2 D �D j d1 = d2g:
It is not hard to see that� is an admissible subset of the product domainD �D. So
by Scott’s Fixed Point Induction Principle, we just have to check that8(d1; d2) 2 D �D ((d1; d2) 2 �) g(d1; d2) 2 �)
or equivalently, that8(d1; d2) 2 D�D (d1 = d2) f(d1; d1; d2) = f(d1; d2; d2)),
which is clearly true.

The next example shows that Scott’s Induction Principle canbe useful for
proving (the denotational version of)partial correctnessassertions about programs,
i.e. assertions of the form ‘if the program terminates, thensuch-and-such a property
holds of the results’. By contrast, atotal correctness assertion would be ‘the program
does terminate and such-and-such a property holds of the results’. Because Scott
Induction can only be applied for properties� for which �(?) holds, it is not so
useful for proving total correctness.

Example 4.2.2.Let f : D!D be the continuous function defined on Slide 6 whose
least fixed point is the denotation of the commandwhile X > 0 do (Y :=X � Y ;X := X � 1). We will use Scott Induction to prove8x; y � 0 : �x (f)(x; y) 6= ?) �x (f)(x; y) = (0; (!x) � y)(7)

where forw 2 D = (Z� Z)* (Z� Z) we writew(x; y) 6= ? to mean ‘the partial
functionw is defined at(x; y)’. (In other words, one can identifyD with the domain
of (continuous) functions from the discrete cpoZ� Z to the flat domain(Z� Z)?.)

Proof. LetS def= fw 2 D j 8x; y � 0 : w(x; y) 6= ?) w(x; y) = (0; (!x) � y)g:
It is not hard to see thatS is admissible. Therefore, to prove (7), by Scott Induction
it suffices to check thatw 2 S implies f(w) 2 S, for all w 2 D. So supposew 2 S, that x; y � 0, and thatf(w)(x; y) 6= ?. We have to show thatf(w)(x; y) = (0; (!x) � y). We consider the two casesx = 0 andx > 0 separately.

If x = 0, then by definition off (See Slide 6)f(w)(x; y) = (x; y) = (0; y) = (0; 1 � y) = (0; (!0) � y) = (0; (!x) � y):

34 4 SCOTT INDUCTION

On the other hand, ifx > 0, then by definition offw(x� 1; x � y) = f(w)(x; y) 6= ? (by assumption)

and then sincew 2 S andx � 1; x � y � 0, we must havew(x � 1; x � y) =(0; !(x � 1) � (x � y)) and hence once againf(w)(x; y) = w(x� 1; x � y) = (0; !(x � 1) � (x � y)) = (0; (!x) � y):
The difficulty with applying Scott’s Fixed Point Induction Principle in any

particular case usually lies in identifying an appropriateadmissible subsetS (i.e. in
finding a suitably strong ‘induction hypothesis’). The nextexample illustrates this.

Example (cf. CST Pt II, 1988, p4, q3)

Let D be a domain and p : D! B? , h; k : D!D be

continuous functions, with h strict (i.e. h(?) = ?).

Let f1; f2 : (D �D)!D be the least continuous functions

such that for all d1; d2 2 Df1(d1; d2) = if (p(d1) ; d2 ; h(f1(k(d1); d2)))f2(d1; d2) = if (p(d1) ; d2 ; f2(k(d1); h(d2)))
where if (b; d1; d2) = 8><>:d1 if b = trued2 if b = false? if b = ? .

Then f1 = f2.

Slide 22

Proof of the Example on Slide22. First note that by definition off1 andf2, we have(f1; f2) = �x (g) whereg is the continuous function defined on Slide 23. (Note that
one can prove thatg is continuous either directly, or via the results of Section 3.)
Thus to prove thatf1 = f2, it suffices to show that�x (g) is in the admissible subsetf(u1; u2) 2 E � E j u1 = u2g. To use the Scott Induction Principle for this
admissible subset, we would have to prove8(u1; u2) 2 E �E ((u1; u2) 2 �) g(u1; u2) 2 �)

4.2 Examples 35

i.e. that8u 2 E : g1(u; u) = g2(u; u). It is clear from the definition ofg1 andg2 on
Slide 23 thatg1(u; u)(d1; d2) = g2(u; u)(d1; d2) holds providedh(u(k(d1); d2)) =u(k(d1); h(d2)). Unfortunately, there is no reason why the latter conditionshould be
satisfied by an arbitrary elementu of E (although it does indeed hold whenu = f1,
as we shall see).

Let D, p, h, and k be as on Slide 22. Defining E to be the

function domain (D �D)!D, letg def= hg1; g2i : (E �E)! (E �E)
where g1; g2 : (E �E)!E are the continuous functions

defined byg1(u1; u2)(d1; d2) def= 8><>:d2 if p(d1) = trueh(u1(k(d1); d2)) if p(d1) = false? if p(d1) = ?g2(u1; u2)(d1; d2) def= 8><>:d2 if p(d1) = trueu2(k(d1); h(d2)) if p(d1) = false? if p(d1) = ?
(all u1; u2 2 E and d1; d2 2 D).

Slide 23

We can circumvent this problem by applying Scott Induction to a smaller subset
thanf(u1; u2) 2 E �E j u1 = u2g, namelyS def= f(u1; u2) 2 E �E j u1 = u2 & 8(d1; d2) 2 D �Dh(u1(d1; d2)) = u1(d1; h(d2))g:

We first have to check thatS is admissible. It is chain-complete because if(u1;0; u2;0) v (u1;1; u2;1) v (u1;2; u2;2) v : : : is a chain inE � E each of whose
elements is inS, then

Fn�0(u1;n; u2;n) = (Fi�0 u1;i;Fj�0 u2;j) is also inS sinceGn�0 u1;n = Gn�0 u2;n (becauseu1;n = u2;n, eachn)

36 4 SCOTT INDUCTION

andh((Gn�0 u1;n)(d1; d2)) = h(Gn�0 u1;n(d1; d2)) function lubs are argumentwise= Gn�0h(u1;n(d1; d2)) h is continuous= Gn�0u1;n(d1; h(d2)) each(u1;n; u2;n) is in S= (Gn�0 u1;n)(d1; h(d2)) function lubs are argumentwise.

Also,S contains the least element(?;?) ofE�E, because when(u1; u2) = (?;?)
clearlyu1 = u2 and furthermore for all(d1; d2) 2 D �Dh(u1(d1; d2)) = h(?(d1; d2))= h(?) by definition of? 2 (D �D)!D= ? h is strict, by assumption= ?(d1; h(d2)) by definition of? 2 (D �D)!D= u1(d1; h(d2)):

To provef1 = f2 it is enough to show that(f1; f2) = �x (g) 2 S; and sinceS is
admissible, by Scott Induction it suffices to prove for all(u1; u2) 2 E �E that(u1; u2) 2 S) (g1(u1; u2); g2(u1; u2)) 2 S:
So suppose(u1; u2) 2 S, i.e. thatu1 = u2 and8(d1; d2) 2 D �D : h(u1(d1; d2)) = u1(d1; h(d2)):(8)

It is clear from the definition ofg1 and g2 on Slide 23 thatu1 = u2 and (8)
imply g1(u1; u2) = g2(u1; u2). So to prove(g1(u1; u2); g2(u1; u2)) 2 S, we
just have to check thath(g1(u1; u2)(d1; d2)) = g1(u1; u2)(d1; h(d2)) holds for all(d1; d2) 2 D �D. Buth(g1(u1; u2)(d1; d2)) = 8><>:h(d2) if p(d1) = trueh(h(u1(k(d1); d2))) if p(d1) = falseh(?) if p(d1) = ?g1(u1; u2)(d1; h(d2)) = 8><>:h(d2) if p(d1) = trueh(u1(k(d1); h(d2))) if p(d1) = false? if p(d1) = ?.

4.3 Exercises 37

So sinceh(h(u1(k(d1); d2))) = h(u1(k(d1); h(d2))) by (8), and sinceh(?) = ?,
we get the desired result.

4.3 Exercises

Exercise 4.3.1.Give an example of a subsetS � D � D0 of a product cpo that is
not chain-complete, but which satisfies:

(a) for all d 2 D, fd0 j (d; d0) 2 Sg is a chain-complete subset ofD0; and

(b) for all d0 2 D0, fd j (d; d0) 2 Sg is a chain-complete subset ofD.

[Hint: considerD = D0 =
, the cpo in Figure 1.]
(Compare this with the property of continuous functions given on Slide 15.)

38 4 SCOTT INDUCTION

39

5 PCF

The language PCF (‘Programming Computable Functions’) is asimple functional
programming language that has been used extensively as an example language in the
development of the theory of both denotational and operational semantics (and the
relationship between the two). Its syntax was introduced byDana Scottcirca 1969
as part of a ‘Logic of Computable Functions’1 and was studied as a programming
language in a highly influential paper by Plotkin (1977).

In this section we describe the syntax and operational semantics of the particular
version of PCF we use in these notes. In Section 6 we will see how to give it a
denotational semantics using domains and continuous function.

5.1 Terms and types

Thetypes, expressions, andtermsof the PCF language are defined on Slide 24.

PCF syntax

Types � ::= nat j bool j � ! �
ExpressionsM ::= 0 j succ(M) j pred(M) j zero(M)j true j false j if M thenM elseMj x j fnx : � :M jMM j �x(M)
where x 2 V, an infinite set of variables.

We identify expressions up to �-conversion of bound variables

(created by the fn expression-former): by definition a PCF term is

an �-equivalence class of expressions.

Slide 24

The intended meaning of the various syntactic forms is as follows.� nat is the type of the natural numbers,0; 1; 2; 3; : : : . In PCF these are
generated from0 by repeated application of the successor operation,succ(�),
whose intended meaning is to add1 to its argument. The predecessor operation

1This logic was the stimulus for the development of the ML language and LCF system for machine-
assisted proofs by Milner, Gordonet al—see Paulson 1987; Scott’s original work was eventually
published as Scott 1993.

40 5 PCFpred(�) subtracts1 from strictly positive natural numbers (and is undefined
at0).� bool is the type of booleans,true and false. The operationzero(�) tests
whether its argument is zero or strictly positive and returns true or false
accordingly. Theconditionalexpressionif M1 then M2 else M3 behaves
like eitherM2 orM3 depending upon whetherM1 evaluates totrue or false
respectively.� A PCF variable,x, stands for an unknown expression. PCF is a pure functional
language—there is no state that changes during expression evaluation and in
particular variables are ‘identifiers’ standing for a fixed expression, rather than
‘program variables’ whose contents may get mutated during evaluation.� � ! � 0 is the type of (partial) functions taking a single argument of type �
and (possibly) returning a result of type� 0. fnx : � :M is the notation we
will use for function abstraction (i.e. lambda abstraction) in PCF; note that
the type� of the abstracted variablex is given explicitly. The application of
functionM1 to argumentM2 is indicated byM1M2. As usual, the scope
of a function abstraction extends as far to the right of the dot as possible and
function application associates to the left (i.e.M1M2M3 means(M1M2)M3,
notM1 (M2M3)).� The expression�x(M) indicates an elementx recursively definedby x =M x. The lambda calculus equivalent isY M , whereY is a suitable fixpoint
combinator.

5.2 Free variables, bound variables and substitution

PCF contains one variable-binding form: free occurrences of x in M become bound
in fnx : � :M . The finite set offree variablesof an expressionM , fv(M), is defined

5.3 Typing 41

by induction on its structure, as follows:fv(0) = fv (true) = fv(false) def= ;fv(succ(M)) = fv(pred(M)) = fv(zero(M)) = fv(�x(M)) def= fv(M)fv(if M thenM 0 elseM 00) def= fv (M) [fv(M 0) [fv(M 00)fv(MM 0) def= fv (M) [fv (M 0)fv(x) def= fxgfv(fn x : � :M) def= fx0 2 fv(M) j x0 6= xg:
One says thatM is closedif fv(M) = ; andopenotherwise.

As indicated on Slide 24, we will identify�-convertible PCF expressions,
i.e. ones that differ only up to the names of their bound variables. Thus by definition,
a PCFterm is an equivalence class of PCF expressions for the equivalence relation
of �-conversion. However, we will always refer to a term via somerepresentative
expression, usually choosing one whose bound variables areall distinct from each
other and from any other variables in the context in which theterm is being used.
The operation ofsubstituting a termM for all free occurrences of a variablex in a
termM 0 will be written M 0[M=x]:
The operation is carried out by textual substitution of an expression representingM
for free occurrences ofx in an expression representingM 0 whose binding variables
are distinct from the free variables inM (thereby avoiding ‘capture’ of free variables
in M by binders inM 0).
5.3 Typing

PCF is a typed language: types are assigned to terms via the relation shown on
Slide 25 whose intended meaning is “if eachx 2 dom(�) has type�(x), thenM has
type� ”.

42 5 PCF

PCF typing relation, � `M : �� � is a type environment , i.e. a finite partial function mapping

variables to types (whose domain of definition is denoteddom(�))� M is a term� � is a type.

Relation is inductively defined by the axioms and rules in Figure 2.

Notation:M : � means M is closed and ; `M : � holds.PCF� def= fM jM : �g.

Slide 25

Proposition 5.3.1. (i) If � ` M : � holds, thenfv (M) � dom(�). If both� `M : � and� ` M : � 0 hold, then� = � 0. In particular a closed term has
at most one type.

(ii) If � ` M : � and �[x 7! �] ` M 0 : � 0 both hold, then so does� `M 0[M=x] : � 0.
Proof. These properties of the inductively defined typing relationare easily proved
by rule induction. The fact that a term has at most one type fora given assignment of
types to its free variables relies upon the fact that types ofbound variables are given
explicitly in function abstractions.

Example 5.3.2 (Partial recursive functions in PCF).Although the PCF syntax is
rather terse, the combination of increment, decrement, test for zero, condition-
als, function abstraction and application, and fixpoint recursion makes it Turing
expressive—in the sense that all partial recursive functions1 can be coded. For ex-
ample, recall that the partial functionh : N � N * N defined byprimitive recursion

1See the Part IB course onComputation Theory.

5.3 Typing 43

� ` 0 : nat(:0) � `M : nat� ` succ(M) : nat(:succ) � `M : nat� ` pred(M) : nat(:pred) � `M : nat� ` zero(M) : bool(:zero) � ` b : bool (b = true; false)(:bool) � `M1 : bool � `M2 : � � `M3 : �� ` if M1 thenM2 elseM3 : �(:if) � ` x : � if x 2 dom(�) & �(x) = �(:var) �[x 7! �] `M : � 0� ` fnx : � :M : � ! � 0 if x =2 dom(�)(:fn) � `M1 : � ! � 0 � `M2 : �� `M1M2 : � 0(:app) � `M : � ! �� ` �x(M) : �(:�x)

In rule (:fn), �[x 7! �] denotes the type environment mapping x to � and otherwise
acting like �.

Figure 2: Axioms and rules for PCF typing relation

44 5 PCF

from f : N * N andg : N � N � N * N satisfies that for allx; y 2 N(h(x; 0) = f(x)h(x; y + 1) = g(x; y; h(x; y)):
Thus if f has been coded in PCF by a termF : nat ! nat and g by a termG : nat ! (nat ! (nat ! nat)), thenh can be coded byH def= �x(fnh : nat ! (nat ! nat) : fn x : nat : fn y : nat :if zero(y) then F x else Gxy (hx y)):
Apart from primitive recursion, the other construction needed for defining partial
recursive functions isminimisation. For example, the partial functionm : N * N
defined fromk : N � N * N by minimisation satisfies that for allx 2 Nm(x) = leasty � 0 such thatk(x; y) = 0 and8z: 0 � z < y) k(x; z) > 0:
This can also be expressed using fixpoints, although not so easily as in the case of
primitive recursion. For ifk has been coded in PCF by a termK : nat!(nat!nat),
then in factm can be coded asfnx : nat :M 0 x0 whereM 0 def= �x(fnm0 : nat ! (nat ! nat) : fn x : nat : fn y : nat :if zero(K xy) then y else m0 x succ(y)):
5.4 Evaluation

We give the operational semantics of PCF in terms of an inductively defined relation
of evaluation whose form is shown on Slide 26. As indicated there, the results of
evaluation are PCF terms of a particular form, calledvalues(and sometimes also
called ‘canonical forms’). The only values of typebool aretrue and false. The
values of typenat are unary representations of natural numbers,succn(0) (n 2 N),
where (succ0(0) def= 0succn+1(0) def= succ(succn(0)):
Values at function types, being function abstractionsfnx : � :M , are more ‘in-
tensional’ than those at the ground data types, since the body M is an unevaluated
PCF term. The axioms and rules for generating the evaluationrelation are given in
Figure 3.

5.4 Evaluation 45

PCF evaluation relation

takes the form M +� V
where� � is a PCF type� M;V 2 PCF� are closed PCF terms of type �� V is a value,V ::= 0 j succ(V) j true j false j fnx : � :M .

The evaluation relation is inductively defined by the axioms and

rules in Figure 3.

Slide 26

Proposition 5.4.1. Evaluation in PCF is deterministic: if bothM +� V andM +� V 0
hold, thenV = V 0.
Proof. By rule induction: one shows thatf(M; �; V) jM +� V & 8V 0 (M +� V 0) V = V 0)g
is closed under the axioms and rules defining+. We omit the details.

Example 5.4.2.The proposition shows that every closed typeable term evaluates to
at most one value. Of course there are some typeable terms that do not evaluate to
anything. We writeM 6 +� iff M : � and 6 9V:M +� V . Then for example
� def= �x(fnx : � : x)
satisfies
� 6 +� . (For if for someV there were a proof of�x(fnx : � : x) +� V ,

46 5 PCF

V +� V (V a value of type �)(+val) M +nat Vsucc(M) +nat succ(V)(+succ) M +nat succ(V)pred(M) +nat V(+pred) M +nat 0zero(M) +bool true(+zero1) M +nat succ(V)zero(M) +bool false(+zero2) M1 +bool true M2 +� Vif M1 thenM2 elseM3 +� V(+if1) M1 +bool false M3 +� Vif M1 thenM2 elseM3 +� V(+if2) M1 +�!� 0 fnx : � :M 01 M 01[M2=x] +� 0 VM1M2 +� 0 V(+cbn) M �x(M) +� V�x(M) +� V(+�x)

Figure 3: Axioms and rules for PCF evaluation

5.4 Evaluation 47M !nat M 0op(M)!� op(M 0) (where op = succ;pred & � = nat ;
or op = zero & � = bool)pred(succ(V))!nat V (V a value of type nat)zero(0)!bool truezero(succ(V))!bool false (V a value of type nat)M1 !bool M 01if M1 thenM2 elseM3 !� if M 01 thenM2 elseM3if true thenM1 elseM2 !� M1if false thenM1 elseM2 !� M2M1 !�!� 0 M 01M1M2 !� 0 M 01M2(fnx : � :M1)M2 !� 0 M1[M2=x]�x(M)!� M �x(M)

Figure 4: Axioms and rules for PCF transition relation

choose one of minimal height. This proof, call itP, must look likefnx : � : x + fnx : � : x (+val) P 0�x(fn x : � : x) + V(fn x : � : x) (�x(fn x : � : x)) + V (+cbn)�x(fn x : � : x) + V (+�x)
whereP 0 is a strictly shorter proof of�x(fn x : � : x) +� V , which contradicts the
minimality ofP.)

Remark 5.4.3. PCF evaluation can be defined in terms of a ‘one-step’ transition
relation. Let the relationM !� M 0 (for M;M 0 2 PCF�) be inductively defined by
the axioms and rules in Figure 4. Then one can show that for all� andM;V 2 PCF�
with V a value M +� V , M(!�)�V

48 5 PCF

where(!�)� denotes the reflexive-transitive closure of the relation!� .

5.5 Contextual equivalence versus equality in denotation

We aim to give a denotational semantics to PCF that is compositional (cf. Slide 2) and
that matches its operational semantics. These requirements are made more precise
on Slide 27.

PCF denotational semantics — aims� PCF types � 7! domains [[�]].� Closed PCF terms M : � 7! elements [[M]] 2 [[�]].
(More generally, denotations of open terms will be continuous

functions.)� Compositionality—cf. Slide 2. In particular:[[M]] = [[M 0]]) [[C[M]]] = [[C[M 0]]].� Soundness: for any type � , M +� V) [[M]] = [[V]].� Adequacy : for � = bool or nat ,[[M]] = [[V]] 2 [[�]]) M +� V .

Slide 27

The soundnessandadequacyproperties make precise the connection between
the operational and denotational semantics for which we areaiming. Note that the
adequacy property only involves the ‘ground’ datatypesnat andbool . One cannot
expect such a property to hold at function types because of the ‘intensional’ nature
of values at such types (mentioned above). Indeed such an adequacy property at
function types would contradict the compositionality and soundness properties we
want for[[�]], as the following example shows.

Example 5.5.1.Consider the following two PCF value terms of typenat ! nat :V def= fn x : nat : (fn y : nat : y)0 and V 0 def= fnx : nat :0:
Now V 6 +nat!nat V 0, since by (+val), V +nat!nat V 6= V 0 and by Proposition 5.4.1
evaluation is deterministic. However, the soundness and compositionality properties

5.5 Contextual equivalence versus equality in denotation 49

of [[�]] imply that [[V]] = [[V 0]]. For using (+val) and (+cbn) we have(fn y : nat : y)0 +nat 0:
So by soundness[[(fn y : nat : y)0]] = [[0]]. Therefore by compositionality forC[�] def= fnx : nat :� we have[[C[(fn y : nat : y)0]]] = [[C[0]]]
i.e. [[V]] = [[V 0]].
Definition 5.5.2 (Contexts). As the preceding example should make clear, the nota-
tion C[M] used on Slide 27 indicates a PCF term containing occurrencesof a termM , and thenC[M 0] is the term that results from replacing these occurrences byM 0.
More precisely, thePCF contextsare generated by the grammar for PCF expressions
augmented by the symbol ‘�’ representing a place, or ‘hole’ that can be filled with a
PCF term: C ::= � j 0 j succ(C) j pred(C) j zero(C) j true j falsej if C then C else C j x j fnx : � : C j C C j �x(C)
Given such a contextC,1 we write C[M] for the PCF expression that results from
replacing all the occurrences of� in C by M . This form of substitution may well
involve the capture of free variables inM by binders inC. For example, ifC isfnx : � :�, thenC[x] is fnx : � : x. Nevertheless it is possible to show that ifM
andM 0 are�-convertible then so areC[M] andC[M 0]. Hence the operation on PCF
expressions sendingM to C[M] induces a well-defined operation on PCFterms(=�-equivalence classes of expressions).

1It is common practice to writeC[�] instead ofC to indicate the symbol being used to mark the
‘holes’ in C.

50 5 PCF

Contextual equivalence

Two phrases of a programming language are contextually

equivalent if any occurrences of the first phrase in a

complete program can be replaced by the second phrase without

affecting the observable results of executing the program.

Slide 28

Slide 28 recalls (from the CST Part IB course onSemantics of Programming
Languages) the general notion of contextual equivalence of phrases ina program-
ming language. It is really a family of notions, parameterised by the particular choices
one takes for what constitutes a ‘program’ in the language and what are the ‘ob-
servable results’ of executing such programs. For PCF it is reasonable to take the
programs to be closed terms of typenat or bool and to observe the values that result
from evaluating such terms. This leads to the definition given on Slide 29.

5.5 Contextual equivalence versus equality in denotation 51

Contextual equivalence of PCF terms

Given PCF terms M1;M2, PCF type � , and a type environment�, the relation � `M1 �=ctx M2 : � is defined to hold iff� Both the typings � `M1 : � and � `M2 : � hold.� For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type , where = nat or = bool ,
and for all values V : ,C[M1] + V , C[M2] + V:

Slide 29

Notation 5.5.3. For closed PCF terms, we writeM1 �=ctx M2 : �
for ; `M1 �=ctx M2 : � .

Although�=ctx is a natural notion of semantic equivalence for PCF given its
operational semantics, it is hard to work with, because of the universal quantification
over contexts that occurs in the definition. As the theorem stated on Slide 30 shows,
if we have a denotational semantics of PCF satisfying the properties on Slide 27,
we can use it to establish instances of contextual equivalence by showing that terms
have equal denotation. In many cases this is an easier task than proving contextual
equivalence directly from the definition. The theorem on Slide 30 generalises to open
terms: if the continuous functions that are the denotationsof two open terms (of the
same type for some type environment) are equal, then the terms are contextually
equivalent.

52 5 PCF

Theorem. For all types � and closed termsM1;M2 2 PCF� ,

if [[M1]] and [[M2]] are equal elements of the domain [[�]], thenM1 �=ctx M2 : � .

Proof.C[M1] +nat V) [[C[M1]]] = [[V]] (soundness)) [[C[M2]]] = [[V]] (compositionality

on [[M1]] = [[M2]])) C[M2] +nat V (adequacy)

and symmetrically.

Slide 30

We turn now to the task of showing that PCF has a denotational semantics with
these properties of compositionality, soundness and adequacy.

5.6 Exercises

Exercise 5.6.1.Carry out the suggested proof of Proposition 5.4.1.

Exercise 5.6.2.Recall that Church’s fixpoint combinator in the untyped lambda

calculus isY def= �f : (�x : f (xx)) (�x : f (xx)). Show that there are no PCF types�1; �2; �3 so that the typing relation; ` fn f : �1 : (fn x : �2 : f (xx)) (fn x : �2 : f (xx)) : �3
is provable from the axioms and rules in Figure 2.

5.6 Exercises 53

Exercise 5.6.3.Define the following PCF terms:plus def= �x(fn p : nat ! (nat ! nat) : fn x : nat : fn y : nat :if zero(y) then x else succ(p xpred(y)))times def= �x(fn t : nat ! (nat ! nat) : fn x : nat : fn y : nat :if zero(y) then 0 else plus (t xpred(y))x)fact def= �x(fn t : nat ! nat : fn x : nat :if zero(x) then succ(0) else times x(f pred(x))):
Show by induction onn 2 N that for allm 2 Nplus succm(0) succn(0) +nat succm+n(0)times succm(0) succn(0) +nat succm�n(0)fact succn(0) +nat succ!n(0):

54 5 PCF

55

6 Denotational Semantics of PCF

6.1 Denotation of types

For each PCF type� , we define a domain[[�]] by induction on the structure of� as
on Slide 31.

Denotational semantics of PCF types[[nat]] def= N? (flat domain)[[bool]] def= B? (flat domain)[[� ! � 0]] def= [[�]]! [[� 0]] (function domain).

where N = f0; 1; 2; : : : g and B = ftrue; falseg.

Slide 31

6.2 Denotation of terms

For each PCF termM and type environment�, recall from Proposition 5.3.1 that
there is at most one type� for which the typing relation� ` M : � is derivable
from the axioms and rules in Figure 2. We only give a denotational semantics to
such typeable terms. Specifically, given suchM and�, we will define a continuous
function between domains [[� `M]] : [[�]]! [[�]](9)

where� is the type for which� ` M : � holds, and where[[�]] is the following
dependent product domain (see Definition 3.1.2):[[�]] def= Yx2dom(�)[[�(x)]]:(10)

56 6 DENOTATIONAL SEMANTICS OF PCF

The elements of the domain (10) will be called�-environments: they are functions�
mapping each variablex in the domain of definition of� to an element�(x) 2 [[�(x)]]
in the domain which is the denotation of the type�(x) assigned tox by the type
environment�. The continuous function (9) is defined by induction on the structure
ofM , or equivalently, by induction on the derivation of the typing relation� `M : � .
The definition is given on Slides 32–35, where we show the effect of each function
on a�-environment,�.

Denotational semantics of PCF terms, I[[� ` 0]](�) def= 0 2 [[nat]][[� ` true]](�) def= true 2 [[bool]][[� ` false]](�) def= false 2 [[bool]][[� ` x]](�) def= �(x) 2 [[�(x)]] (x 2 dom(�)):
Slide 32

6.2 Denotation of terms 57

Denotational semantics of PCF terms, II[[� ` succ(M)]](�) def=([[� `M]](�) + 1 if [[� `M]](�) 6= ?? if [[� `M]](�) = ?[[� ` pred(M)]](�) def=([[� `M]](�)� 1 if [[� `M]](�) > 0? if [[� `M]](�) = 0;?[[� ` zero(M)]](�) def= 8><>:true if [[� `M]](�) = 0false if [[� `M]](�) > 0? if [[� `M]](�) = ?
Slide 33

Denotational semantics of PCF terms, III[[� ` if M1 thenM2 elseM3]](�) def=8><>:[[� `M2]](�) if [[� `M1]](�) = true[[� `M3]](�) if [[� `M1]](�) = false? if [[� `M1]](�) = ?[[� `M1M2]](�) def= ([[� `M1]](�)) ([[� `M2]](�))
Slide 34

58 6 DENOTATIONAL SEMANTICS OF PCF

Denotational semantics of PCF terms, IV[[� ` fnx : � :M]](�) def=�d 2 [[�]] : [[�[x 7! �] `M]](�[x 7! d])
(where x =2 dom(�))[[� ` �x(M)]](�) def= �x ([[� `M]](�)):�[x 7! d] 2 [[�[x 7! �]]] is the function mapping x to d 2 [[�]] and

otherwise acting like �.�x is the function assigning least fixed points to continuous functions.

Slide 35

Denotations of closed terms

If M 2 PCF� , then by definition ; `M : � holds, so we get[[; `M]] : [[;]]! [[�]].
When � = ;, the only �-environment is the totally undefined

partial function—call it ?.

So in this case [[�]] is a one-element domain, f?g. Continuous

functions f : f?g!D are in bijection with elements f(?) 2 D, and

in particular we can identify the denotation of closed PCF terms with

elements of the domain denoting their type:[[M]] def= [[; `M]](?) 2 [[�]] (M 2 PCF�)
Slide 36

6.2 Denotation of terms 59[[� ` M]] : [[�]] ! [[�]] is a well-defined continuous function because the base
cases of the definition (on Slide 32) are continuous functions and at each induction
step, in giving the denotation of a compound phrase in terms of the denotations of its
immediate subphrases, we make use of constructions preserving continuity—as we
now indicate.0, true, and false: The denotation of these terms (Slide 32) are all functions
that are constantly equal to a particular value. We noted in Example 2.1.9 that such
functions are continuous.

variables: The denotation of a variable (Slide 32) is a projection function. We
noted in Definition 3.1.2 that such functions are continuous, because of the way lubs
are computed componentwise in dependent product domains.

Composition preserves continuity

Proposition. If f : D! E and g : E! F are continuous

functions between cpo’s, then their compositiong � f : D! F(g � f)(d) def= g(f(d))
is also continuous.

Slide 37

succ, pred, and zero: We need to make use of the fact that composition of
functions preserves continuity—see the Proposition on Slide 37. We leave its proof
as a simple exercise. In particular, the denotation ofsucc(M) (Slide 33) is the

60 6 DENOTATIONAL SEMANTICS OF PCF

composition s? � [[� `M]]
where by induction hypothesis[[� ` M]] : [[�]]! N? is a continuous function, and
wheres? : N? ! N? is the continuous function on the flat domainN? induced, as
in Proposition 3.3.1, by the functions : N * N mapping eachn to n+ 1.

Similarly [[� ` pred(M)]] = p? � [[� ` M]] and[[� ` zero(M)]] = z? � [[� `M]], for suitable functionsp : N * N andz : N * B . (Only p is a properly partial
function, undefined at0; s andz are totally defined functions.)

conditional: By induction hypothesis we have continuous functions[[� ` M1]] :[[�]] ! B?, [[� ` M2]] : [[�]] ! [[�]], and [[� ` M3]] : [[�]] ! [[�]]. Then[[� ` if M1 thenM2 elseM3]] is continuous because we can express the definition
on Slide 34 in terms of composition, the pairing operation ofProposition 3.1.1, and
the continuous function: B? � ([[�]] � [[�]])! [[�]] of Proposition 3.3.2:[[� ` if M1 thenM2 elseM3]] = if � h[[� `M1]]; h[[� `M2]]; [[� `M3]]ii:
application: By induction hypothesis we have continuous functions[[� ` M1]] :[[�]]! ([[�]]! [[� 0]]) and[[� ` M2]] : [[�]]! [[�]]. Then[[� ` M1M2]] is continuous
because we can express the definition on Slide 34 in terms of composition, pairing,
and the evaluation functionev : ([[�]]! [[� 0]])� [[�]]! [[� 0]] that we proved continuous
in Proposition 3.2.1:[[� `M1M2]] = ev � h[[� `M1]]; [[� `M2]]i:
function abstraction: By induction hypothesis we have a continuous function[[�[x 7! �] `M]] : [[�[x 7! �]]]! [[� 0]] with x =2 dom(�). Note that each�[x 7! �]-
environment,�0 2 [[�[x 7! �]]], can be uniquely expressed as�[x 7! d], where� is
the restriction of the function�0 to dom(�) and whered = �0(x); furthermore the
partial order respects this decomposition:�1[x 7! d1] v �2[x 7! d2] in [[�[x 7! �]]]
iff �1 v �2 in [[�]] andd1 v d2 in [[�]]. Thus we can identify[[�[x 7! �]]] with
the binary product domain[[�]] � [[�]]. So we can apply the ‘Currying’ operation of
Proposition 3.2.1 to obtain a continuous functioncur([[�[x 7! �] `M]]) : [[�]] ! ([[�]]! [[� 0]])=[[� ! � 0]]:
But this is precisely the function used to define[[� ` fnx : � :M]] on Slide 35.

6.3 Compositionality 61

fixpoints: By induction hypothesis we have a continuous function[[� ` M]] :[[�]]! [[�!�]]. Now [[�!�]] is the function domain[[�]]! [[�]] and from the definition
on Slide 35 we have that[[� ` �x(M)]] = �x � [[� ` M]] is the composition with
the function�x : ([[�]] ! [[�]]) ! [[�]] assigning least fixpoints, which we proved
continuous in the Proposition on Slide 18.

6.3 Compositionality

The fact that the denotational semantics of PCF terms iscompositional—i.e. that the
denotation of a compound term is a function of the denotations of its immediate
subterms—is part and parcel of the definition of[[� ` M]] by induction on the
structure ofM . So in particular, each of the ways of constructing terms in PCF
respects equality of denotations: this is summarised in Figure 5. Then the property
of closed terms stated on Slide 27,viz.[[M]] = [[M 0]]) [[C[M]]] = [[C[M 0]]]
follows from this by induction on the structure of the context C[�]. More generally,
for open terms we have

Proposition 6.3.1. Suppose[[� `M]] = [[� `M 0]] : [[�]]! [[�]]
and thatC[�] is a PCF context such that�0 ` C[M] : � 0 and�0 ` C[M 0] : � 0 hold
for some some type� 0 and some type environment�0. Then[[�0 ` C[M]]] = [[�0 ` C[M 0]]] : [[�0]]! [[� 0]]:

62 6 DENOTATIONAL SEMANTICS OF PCF

� If [[� `M]] = [[� `M 0]] : [[�]]! [[nat]], then[[� ` op(M)]] = [[� ` op(M 0)]] : [[�]]! [[�]]
(where op = succ;pred and � = nat , or op = zero and � = bool).� If [[� ` M1]] = [[� ` M 01]] : [[�]]! [[bool]], [[� ` M2]] = [[� ` M 02]] : [[�]]! [[�]], and[[� `M3]] = [[� `M 03]] : [[�]]! [[�]], then[[� ` if M1 thenM2 elseM3]] = [[� ` if M 01 thenM 02 elseM 03]] : [[�]]:� If [[� `M1]] = [[� `M 01]] : [[�]]! [[� ! � 0]] and [[� `M2]] = [[� `M 02]] : [[�]]! [[�]],
then [[� `M1M2]] = [[� `M 01M 02]] : [[�]]! [[� 0]]:� If [[�[x 7! �] `M]] = [[�[x 7! �] `M 0]] : [[�[x 7! �]]]! [[� 0]], then[[� ` fnx : � :M]] = [[� ` fnx : � :M 0]] : [[�]]! [[� ! � 0]]:� If [[� `M]] = [[� `M 0]] : [[�]]! [[� ! �]], then[[� ` �x(M)]] = [[� ` �x(M 0)]] : [[�]]! [[�]]:

Figure 5: Compositionality properties of [[�]]

6.4 Soundness 63

Substitution property of [[�]]
Proposition. Suppose � `M : ��[x 7! �] `M 0 : � 0
(so that by Proposition 5.3.1(ii) we also have� `M 0[M=x] : � 0). Then for all � 2 [[�]][[� `M 0[M=x]]](�) =[[�[x 7! �] `M 0]](�[x 7! [[� `M]]]):
In particular when � = ;, [[x 7! � `M 0]] : [[�]]! [[� 0]] and[[M 0[M=x]]] = [[x 7! � `M 0]]([[M]])

Slide 38

The substitution property stated on Slide 38 gives another aspect of the composi-
tional nature of the denotational semantics of PCF. It can beproved by induction on
the structure of the termM 0.
6.4 Soundness

The second of the aims mentioned on Slide 27 is to show that if aclosed PCF termM evaluates to a valueV in the operational semantics, thenM andV have the same
denotation.

Theorem 6.4.1.For all PCF types� and all closed termsM;V 2 PCF� with V a
value, ifM +� V is derivable from the axioms and rules in Figure3 then[[M]] and[[V]] are equal elements of the domain[[�]].
Proof. One uses Rule Induction for the inductively defined relation+. Specifically,
defining �(M; �; V) def, [[M]] = [[V]] 2 [[�]]
one shows that the property�(M; �; V) is closed under the axioms and rules in
Figure 3. We give the argument for rules (+cbn) and (+�x), and leave the others as
easy exercises.

64 6 DENOTATIONAL SEMANTICS OF PCF

Case (+cbn). Suppose[[M1]] = [[fn x : � :M 01]] 2 [[� ! � 0]](11) [[M 01[M2=x]]] = [[V]] 2 [[� 0]]:(12)

We have to prove that[[M1M2]] = [[V]] 2 [[� 0]]. But[[M1M2]] = [[M1]]([[M2]]) by Slide 34= [[fnx : � :M 01]]([[M2]]) by (11)= (�d 2 [[�]] : [[x 7! � `M 01]](d))([[M2]]) by Slide 35= [[x 7! � `M 01]]([[M2]])= [[M 01[M2=x]]] by Slide 38= [[V]] by (12).

Case (+�x). Suppose [[M �x(M)]] = [[V]] 2 [[�]]:(13)

We have to prove that[[�x(M)]] = [[V]] 2 [[�]]. But[[�x(M)]] = �x ([[M]]) by Slide 35= [[M]](�x ([[M]])) by fixed point property of�x= [[M]] [[�x(M)]] by Slide 35= [[M �x(M)]] by Slide 34= [[V]] by (13).

We have now established two of the three properties of the denotational semantics
of PCF stated on Slide 27 (and which in particular are needed to use denotational
equality to prove PCF contextual equivalences). The third property,adequacy, is not
so easy to prove as are the first two. We postpone the proof until we have introduced
a useful principle of induction tailored to reasoning aboutleast fixed points. This is
the subject of the next section.

6.5 Exercises

Exercise 6.5.1.Prove the Propositions on Slides 37 and 38.

Exercise 6.5.2.Defining
� def= �x(fnx : � : x), show that[[
�]] is the least element? of the domain[[�]]. Deduce that[[fnx : � :
�]] = [[
�!�]].

65

7 Relating Denotational and Operational Semantics

We have already seen (in Section 6.4) that the denotational semantics of PCF given
in Section 6 issoundfor the operational semantics, in the sense defined on Slide 27.
Here we prove the property ofadequacydefined on that slide. So we have to prove
for any closed PCF termsM andV of type� = nat or bool with V a value, that[[M]] = [[V]]) M +� V:
Perhaps surprisingly, this is not easy to prove. We will employ a method due to
Plotkin (although not quite the one used in his original paper on PCF, Plotkin 1977)
and Mulmuley (1987) making use of the following notion of ‘formal approximation’
relations.

7.1 Formal approximation relations

We define a certain family of binary relationsC� � [[�]]� PCF�
indexed by the PCF types,� . Thus eachC� relates elements of the domain[[�]] to
closed PCF terms of type� . We use infix notation and writed C� M instead of(d;M) 2 C� . The definition of these relationsC� proceedsby induction on the
structure of the type� and is given on Slide 39. (Read the definition in conjunction
with the definition of[[�]] given on Slide 31.)

The key property of the relationsC� is that they are respected by the various
syntax-forming operations of the PCF language. This is summed up by the Proposi-
tion on Slide 40 which makes use of the following terminology.

Definition 7.1.1. For each typing environment� (= a finite partial function from
variables to PCF types), a�-substitution� is a function mapping each variablex 2 dom(�) to a closed PCF term�(x) of type�(x). Recall from Section 6.2 that
a�-environment� is a function mapping each variablex 2 dom(�) to an element�(x) of the domain[[�(x)]]. We define� C� � def, 8x 2 dom(�) : �(x) C�(x) �(x):

66 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

Definition of d C� M (d 2 [[�]];M 2 PCF�)d Cnat M def, (d 2 N) M +nat succd(0))d Cbool M def, (d = true) M +bool true)& (d = false) M +bool false)d C�!� 0 M def, 8e;N (e C� N) d(e) C� 0 M N)
Slide 39

Fundamental property of the relations C�
Proposition. If � `M : � is a valid PCF typing, then for all�-environments � and all �-substitutions �� C� �) [[� `M]](�) C� M [�]
� � C� � means that �(x) C�(x) �(x) holds for eachx 2 dom(�).� M [�] is the PCF term resulting from the simultaneous substitution

of �(x) for x in M , each x 2 dom(�).
Slide 40

7.2 Proof of the Fundamental Property ofC 67

Note that the Fundamental Property ofC� given on Slide 40 specialises in case� = ; to give [[M]] C� M
for all types� and all closed PCF termsM : � . (Here we are using the notation for
denotations of closed terms introduced on Slide 36.) Using this, we can complete the
proof of the adequacy property, as shown on Slide 41.

Proof of [[M]] = [[V]]) M +� V (� = nat ; bool)
Case � = nat .V = succn(0) for some n 2 N and hence[[M]] = [[succn(0)]]) n = [[M]] C� M by Fundamental Property (Slide 40))M + succn(0) by definition of Cnat
Case � = bool is similar.

Slide 41

7.2 Proof of the Fundamental Property ofC
To prove the Proposition on Slide 40 we need the following properties of the formal
approximation relations.

Lemma 7.2.1. (i) ? C� M holds for allM 2 PCF� .

(ii) For eachM 2 PCF� , fd j d C� Mg is a chain-closed subset of the domain[[�]]. Hence by (i), it is also an admissible subset (cf. Slide20).

(iii) If d2 v d1, d1 C� M1, and8V (M1 +� V) M2 +� V), thend2 C� M2.

68 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

Proof. Each of these properties follows easily by induction on the structure of� ,
using the definitions ofC� and of the evaluation relation+� .

Proof of the Proposition on Slide40 [Non-examinable]. We use Rule Induction for
the inductively defined typing relation� `M : � . Define�(�;M; �) def, � `M : � & 8�; � (� C� �) [[� `M]](�) C� M [�])
Then it suffices to show that� is closed under the axioms and rules in Figure 2 inductively
defining the typing relation.

Case (:0). �(�;0; nat) holds because0 Cnat 0.

Case (:succ). We have to prove that�(�;M; nat) implies�(�; succ(M); nat). But this
follows from the easily verified fact thatd Cnat M) s?(d) Cnat succ(M)
wheres? : N?!N? is the continuous function used in Section 6.2 to describe the denotation
of successor terms,succ(M).
Cases (:pred) and (:zero) are similar to the previous case.

Case (:bool). �(�; true; bool) holds becausetrue Cbool true. Similarly for�(�; false; bool).
Case (:if). It suffices to show that ifd1 Cbool M1, d2 C� M2, andd3 C� M3, thenif (d1; (d2; d3)) C� if M1 thenM2 elseM3(14)

whereif is the continuous function: B? � ([[�]]� [[�]])! [[�]] of Proposition 3.3.2 that was
used in Section 6.2 to describe the denotation of conditional terms. Ifd1 = ? 2 B? , thenif (d1; (d2; d3)) = ? and (14) holds by Lemma 7.2.1(i). So we may assumed1 6= ?, in
which case eitherd1 = true or d1 = false. We consider the cased1 = true; the argument
for the other case is similar.

Sincetrue = d1 Cbool M1, by the definition ofCbool (Slide 39) we haveM1+bool true.
It follows from rule (+if1) in Figure 3 that8V (M2 +� V) if M1 thenM2 elseM3 +� V):
So Lemma 7.2.1(iii) applied tod2 C� M2 yields thatd2 C� if M1 thenM2 elseM3
and then sinced2 = if (true; (d2; d3)) = if (d1; (d2; d3)), we get (14), as required.

7.2 Proof of the Fundamental Property ofC 69

Case (:var). �(�; x;�(x)) holds because if� C� �, then for allx 2 dom(�) we have[[� ` x]](�) def= �(x) C�(x) �(x) def= x[�].
Case (:fn). Suppose�(�[x 7! �];M; � 0) and � C� � hold. We have to show that[[� ` fnx : � :M]](�) C�!� 0 (fnx : � :M)[�], i.e. thatd C� N implies[[� ` fnx : � :M]](�)(d) C� 0 ((fnx : � :M)[�])N:(15)

From Slide 35 we have[[� ` fnx : � :M]](�)(d) = [[�[x 7! �] `M]](�[x 7! d]):(16)

Since(fnx : � :M)[�] = fnx : � :M [�] and (M [�])[N=x] = M [�[x 7! N]], by rule
(+cbn) in Figure 3 we have8V (M [�[x 7! N]] +� 0 V) ((fnx : � :M)[�])N +� 0 V):(17)

Since� C� � andd C� N , we have�[x 7! d] C�[x7!�] �[x 7! N]; so by�(�[x 7!�];M; � 0) we have [[�[x 7! �] `M]](�[x 7! d]) C� 0 M [�[x 7! N]]:
Then (15) follows from this by applying Lemma 7.2.1(iii) to (16) and (17).

Case (:app). It suffices to show that ifd1 C�!� 0 M1 andd2 C� M2, thend1(d2) C� 0M1M2. But this follows immediately from the definition ofC�!� 0 .
Case (:�x). Suppose�(�;M; � ! �) holds. For any� C� �, we have to prove that[[� ` �x(M)]](�) C� �x(M)[�]:(18)

Referring to Slide 35, we have[[� ` �x(M)]](�) = �x (f), wheref def= [[� ` M]](�). By
Lemma 7.2.1(ii) S def= fd j d C� �x(M)[�]g
is an admissible subset of the domain[[�]]. So by Scott’s Fixed Point Induction Principle
(Slide 21) to prove (18) it suffices to prove8d 2 [[�]] (d 2 S) f(d) 2 S):
Now since� C� �, by�(�;M; � ! �) and by definition off we havef C�!� M [�]. So ifd 2 S, i.e.d C� �x(M)[�], then by definition ofC�!� , it is the case thatf(d) C� (M [�])(�x(M)[�]):(19)

Rule (+�x) in Figure 3 implies8V ((M [�])(�x(M)[�]) +� V) �x(M)[�] +� V):(20)

Then applying Lemma 7.2.1(iii) to (19) and (20) yieldsf(d) C� �x(M)[�], i.e.f(d) 2 S,
as required.

70 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

7.3 Extensionality

Recall the notion of contextual equivalence of PCF terms from Slide 29. The
contextual preorderis the one-sided version of this relation defined on Slide 42.
Clearly

� `M1 �=ctx M2 : � , (� `M1 �ctx M2 : � & � `M2 �ctx M1 : �):
As usual we writeM1 �ctx M2 : � for ; `M1 �ctx M2 : � in caseM1 andM2 are
closed terms.

The formal approximation relationsC� actually characterise the PCF contextual
preorder between closed terms, in the sense shown on Slide 43.

Contextual preorder between PCF terms

Given PCF terms M1;M2, PCF type � , and a type environment�, the relation � `M1 �ctx M2 : � is defined to hold iff� Both the typings � `M1 : � and � `M2 : � hold.� For all PCF contexts C for which C[M1] and C[M2] are

closed terms of type , where = nat or = bool ,
and for all values V : ,C[M1] + V) C[M2] + V:

Slide 42

7.3 Extensionality 71

Contextual preorder from formal approximation

Proposition. For all PCF types � and all closed termsM1;M2 2 PCF�M1 �ctx M2 : � , [[M1]] C� M2:
Slide 43

Proof of the Proposition on Slide43. It is not hard to prove that for closed termsM1;M2 2 PCF� , M1 �ctx M2 : � holds if and only if for allM 2 PCF�!boolMM1 +bool true) MM2 +bool true:
Now if [[M1]] C� M2, then for anyM 2 PCF�!bool since by the Fundamental

Property ofC we have[[M]] C�!bool M , the definition ofC�!bool implies that[[MM1]] = [[M]]([[M1]]) Cbool MM2:(21)

So if MM1 +bool true, then [[MM1]] = true (by the Soundness property) and
hence by definition ofCbool from (21) we getMM2 +bool true. Thus using the
characterisation of�ctx mentioned above, we haveM1 �ctx M2 : � .

This establishes the right-to-left implication on Slide 43. For the converse, it is
enough to prove (d C� M1 &M1 �ctx M2 : �)) d C� M2:(22)

For then ifM1 �ctx M2 : � , since[[M1]] C� M1 (by the Fundamental Property),
(22) implies[[M1]] C� M2. Property (22) follows by induction on the structure of the
type� , using the following easily verified properties of�ctx:

72 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS� If � = nat or bool , thenM1 �ctx M2 : � implies 8V : � (M1 +� V)M2 +� V).� If M1 �ctx M2 : � ! � 0, thenM1M �ctx M2M : � 0, for all M : � .

The bi-implication on Slide 43 allows us to transfer the extensionality properties
enjoyed by the domain partial ordersv to the contextual preorder, as shown on
Slide 44. (These kind of properties of PCF were first proved byMilner 1977, First
Context Lemma, page 6.)

Extensionality properties of �ctx
For � = bool or nat , M1 �ctx M2 : � holds if and only if8V : � (M1 +� V) M2 +� V):
At a function type � ! � 0, M1 �ctx M2 : � ! � 0 holds if and

only if 8M : � (M1M �ctx M2M : � 0):
Slide 44

Proof of the properties on Slide44. The ‘only if’ directions are easy consequences
of the definition of�ctx.

For the ‘if’ direction in case� = bool or nat , we have[[M1]] = [[V]])M1 +� V by the adequacy property)M2 +� V by assumption

and hence[[M1]] C� M2 by definition ofC at these ground types. Now apply the
Proposition on Slide 43.

7.4 Exercises 73

For the ‘if’ direction in case of a function type� ! � 0, we haved C� M) [[M1]](d) C� 0 M1M since[[M1]] C� M1) [[M1]](d) C� 0 M2M by (22), sinceM1M �ctx M2M : � 0
by assumption

and hence[[M1]] C�!� 0 M2 by definition ofC at type� ! � 0. So once again we can
apply the Proposition on Slide 43 to get the desired conclusion.

7.4 Exercises

Exercise 7.4.1.For any PCF type� and any closed termsM1;M2 2 PCF� , show
that 8V : � (M1 +� V , M2 +� V)) M1 �=ctx M2 : �:(23)

[Hint: combine the Proposition on Slide 43 with Lemma 7.2.1(iii).]

Exercise 7.4.2.Use (23) to show that�-conversion in valid up to contextual equiv-
alence in PCF, in the sense that for allfnx : � :M1 2 PCF�!� 0 andM2 2 PCF�(fn x : � :M1)M2 �=ctx M1[M2=x] : � 0:
Exercise 7.4.3.Is the converse of (23) valid at all types? [Hint: recall the ex-
tensionality property of�ctx at function types (Slide 44) and consider the terms�x(fn f : (nat ! nat) : f) andfnx : nat :�x(fn x0 : nat : x0) of typenat ! nat .]

74 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

75

8 Full Abstraction

8.1 Failure of full abstraction

As we saw on Slide 30, the adequacy property implies that contextual equivalence
of two PCF terms can be proved by showing that they have equal denotations:[[M1]] = [[M2]] 2 [[�]]) M1 �=ctx M2 : � . Unfortunately the converse is false:there
are contextually equivalence PCF terms with unequal denotations. In general one
says that a denotational semantics isfully abstractif contextual equivalence coincides
with equality of denotation. Thus the denotational semantics of PCF using domains
and continuous functions fails to be fully abstract. The classic example demonstrating
this failure is due to Plotkin (1977) and involves theparallel-or function shown on
Slide 45.

Parallel-or function

is the continuous function por : B? ! (B? ! B?) defined bypor true false ?true true true truefalse true false ?? true ? ?
Slide 45

Contrastpor with the ‘sequential-or’ function shown on Slide 46. Both functions
give the usual boolean ‘or’ function when restricted toftrue; falseg, but differ in
their behaviour at arguments involving the element? denoting ‘non-termination’.
Note thatpor(d1; d2) = true if eitherof d1 or d2 is true, even if the other argument
is?; whereasorelse(d1; d2) = true impliesd1 6= ?.

76 8 FULL ABSTRACTION

Left sequential-or function

The function orelse : B? ! (B? ! B?) defined byorelse true false ?true true true truefalse true false ?? ? ? ?
is the denotation of the PCF termfnx : bool : fn x0 : bool : if x then true else x0
of type bool ! (bool ! bool).

Slide 46

As noted on Slide 46,orelse can be defined in PCF, in the sense that there is a
closed PCF termM : bool ! (bool ! bool) with [[M]] = orelse. This termM tests
whether its first argument istrue or false (and so diverges if that first argument
diverges), in the first case returningtrue (leaving the second argument untouched)
and in the second case returning the second argument. By contrast, forpor we have
the Proposition stated on Slide 47. We will not give the proofof this proposition here.
Plotkin (1977) proves it via an ‘Activity Lemma’, but there are alternative approaches
using ‘stable’ continuous functions (Gunter 1992, p 181), or using ‘sequential logical
relations’ (Sieber 1992). The key idea is that evaluation inPCF proceedssequentially.
So whateverP is, evaluation ofP M1M2 must at some point involve full evaluation
of eitherM1 orM2 (P cannot ignore its arguments if it is to returntrue in some cases
andfalse in others); whereas an algorithm to computepor at a pair of arguments must
compute the values of those arguments ‘in parallel’ in case one diverges whilst the
other yields the valuetrue.

One can exploit the undefinability ofpor in PCF to manufacture a pair of
contextually equivalent closed terms in PCF with unequal denotations. Such a pair is
given on Slide 48.

8.1 Failure of full abstraction 77

Undefinability of parallel-or

Proposition. There is no closed PCF termP : bool ! (bool ! bool)
satisfying [[P]] = por :

Slide 47

Failure of full abstraction

Proposition. For i = 1; 2 defineTi def= fn f : bool ! (bool ! bool) :if (f true
) thenif (f
 true) thenif (f false false) then
 else Bielse
else

where B1 def= true, B2 def= false, and
 def= �x(fn x : bool : x). ThenT1 �=ctx T2 : (bool ! (bool ! bool))! bool[[T1]] 6= [[T2]] 2 (B? ! (B? ! B?))! B?

Slide 48

78 8 FULL ABSTRACTION

Proof of the Proposition on slide48. From the definition ofpor on Slide 45 and the
definition of[[�]] in Section 6.2, it is not hard to see that[[Ti]](por) = (true if i = 1false if i = 2.

Thus[[T1]](por) 6= [[T2]](por) and therefore[[T1]] 6= [[T2]].
To see thatT1 �=ctx T2 : (bool!(bool!bool))!bool we use the extensionality

results on Slide 44. Thus we have to show for allM : bool ! (bool ! bool) andV 2 ftrue; falseg that T1M +bool V , T2M +bool V:(24)

But the definition ofTi is such thatTiM +bool V only holds ifM true
 +bool true; M
 true +bool true; M false false +bool false:
By the soundness property of Slide 27 this means that[[M]](true)(?) = true; [[M]](?)(true) = true; [[M]](false)(false) = false:
(Recall from Exercise 6.5.2 that[[
]] = ?.) It follows in that case that the continuous
function [[M]] : (B? � B?)! B? coincides withpor (see Exercise 8.4.1). But this
is impossible, by the Proposition on Slide 47. Therefore (24) is trivially satisfied for
all M , and thusT1 andT2 are indeed contextually equivalent.

8.2 PCF+por

The failure of full abstraction for the denotational semantics of PCF can be repaired
by extending PCF with extra terms for those elements of the domain-theoretic model
that are not definable in the language as originally given. Wehave seen thatpor is
one such element ‘missing’ from PCF, and one of the remarkable results in (Plotkin
1977) is that this is the only thing we need add to PCF to obtainfull abstraction. This
is stated without proof on Slides 49 and 50.

8.2 PCF+por 79

PCF+por

Expressions M ::= � � � j por(M;M)
Typing

� `M1 : bool � `M2 : bool� ` por(M1;M2) : bool
EvaluationM1 +bool truepor(M1;M2) +bool true M2 +bool truepor(M1;M2) +bool trueM1 +bool false M2 +bool falsepor(M1;M2) +bool false

Slide 49

Plotkin’s full abstraction result

The denotational semantics of PCF+por terms is given by

extending the definition on Slides 32–35 with the clause[[� ` por(M1;M2)]](�) def=por([[� `M1]](�))([[� `M2]](�))
where por : B? ! (B? ! B?) is as on Slide 45.

This denotational semantics is fully abstract for contextual

equivalence of PCF+por terms:� `M1 �=ctx M2 : � , [[� `M1]] = [[� `M2]]:
Slide 50

80 8 FULL ABSTRACTION

8.3 Fully abstract semantics for PCF

The evaluation of PCF terms involves a form of ‘sequentiality’ which is not reflected
in the denotational semantics of PCF using domains and continuous functions: the
continuous functionpor does not denote any PCF term and this results in a mis-
match between denotational equality and contextual equivalence. But what precisely
does ‘sequentiality’ mean in general? Can we characterise it in an abstract way,
independent of the particular syntax of PCF terms, and hencegive a more refined
form of denotational semantics thatis fully abstract for contextual equivalence for
PCF (and for other types of language besides the simple, purefunctional language
PCF)? These questions have motivated the development much domain theory and
denotational semantics since the appearance of (Plotkin 1977): see the survey by
Ong (1995), for example.

It is only within the last couple of years that definitive answers have emerged even
for such an apparently simple language as PCF. O’Hearn and Riecke (1994) construct
a fully abstract model of PCF by using certain kinds of ‘logical relation’ to repair
the deficiencies of the standard model we have described here. Although this does
provide a solution, it does not seem to give much insight intothe nature of sequential
computation. By contrast, Abramsky, Jagadeesan, and Malacaria (1997) and Hyland
and Ong (1997) solve the problem by introducing what appearsto be a radically
different and very promising approach to giving semantics to programming languages
(not just PCF), based upon certain kinds of two-player game:see (Abramsky 1997)
and (Hyland 1997) for introductions to this ‘game semantics’.

Finally, a recent negative result by Loader should be mentioned. Note that the
material in Section 8.1 does not depend upon the presence of numbers and arithmetic
in PCF. Let PCF2 denote the fragment of PCF only involvingbool and the function
types formed from it,true, false, conditionals, variables, function abstraction and
application, and a divergent term
bool : bool . SinceB? is a finite domain and
since the function domain formed from finite domains is againfinite, the domain
associated to each PCF2 type is finite.1 The domain model is adequate for PCF2 and
hence there are only finitely many different PCF2 terms of each type, up to contextual
equivalence. Given these finiteness properties, and the terribly simple nature of the
language, one might hope that the following questions are decidable (uniformly in
the PCF2 type�):� Which elements of[[�]] are definable by PCF2 terms?

1A further simplification arises from the fact that if the domainsD andD0 are finite, then they
contain no non-trivial chains and hence the continuous functionsD ! D0 are just the monotone
functions.

8.4 Exercises 81� When are two PCF2 of type� contextually equivalent?

Quite remarkably Loader (1996) shows that these are recursively undecidable
questions.

8.4 Exercises

Exercise 8.4.1.Suppose that a monotonic functionp : (B? � B?)! B? satisfiesp(true;?) = true; p(?; true) = true; and p(false; false) = false:
Show thatp coincides with the parallel-or function on Slide 45 in the sense thatp(d1; d2) = por(d1)(d2), for all d1; d2 2 B?.

Exercise 8.4.2.Show that even though there are two evaluation rules on Slide49
with conclusionpor(M1;M2) +bool true, nevertheless the evaluation relation for
PCF+por is still deterministic (in the sense of Proposition5.4.1).

Exercise 8.4.3.Give the axioms and rules for an inductively defined transition
relation for PCF+por. This should take the form of a binary relation M ! M 0
between closed PCF+por terms. It should satisfyM + V , M !� V
(where!� is the reflexive-transitive closure of!).

Postscript

The main mathematical idea introduced in these notes is the use of order-theoretic
structures (domains and continuous functions) to provide asetting for solving fixed
point equations and thereby providing compositional denotational semantics of
various programming language constructs involving recursion. However, it turns
out that the domains required to give denotational semantics for many programming
languages more complicated than PCF are themselves specified by fixed point
equations. A usefully wide range of such ‘domain equations’have solutions (indeed,
have solutions that are sufficiently minimal to admit the kind of adequacy results
discussed here for PCF). It is beyond the scope of these notesto describe any of the
various methods for constructing suchrecursively defined domains: the interested
reader is referred to (Winskel 1993, Chapter 12), (Gunter 1992, Chapter 10), or to
(Pitts 1996, Section 3) for a brief overview of a modern approach.

82

References

Abramsky, S. (1997). Semantics of interaction: an introduction to game seman-
tics. In A. M. Pitts and P. Dybjer (Eds.),Semantics and Logics of Computation,
Publications of the Newton Institute, pp. 1–31. Cambridge University Press.

Abramsky, S., R. Jagadeesan, and P. Malacaria (1997). Full abstraction for PCF.
Information and Computation ?, ?–? to appear.

Gunter, C. A. (1992).Semantics of Programming Languages: Structures and
Techniques. Foundations of Computing. MIT Press.

Hyland, J. M. E. (1997). Game semantics. In A. M. Pitts and P. Dybjer (Eds.),
Semantics and Logics of Computation, Publications of the Newton Institute,
pp. 131–184. Cambridge University Press.

Hyland, J. M. E. and C.-H. L. Ong (1997). On full abstraction for PCF: I, II and
III. Information and Computation ?, ?–? to appear.

Loader, R. (1996, October). Finitary PCF is not decidable. Available from
http://mc46.merton.ox.ac.uk/ loader/.

Milner, R. (1977). Fully abstract models of typed lambda-calculi. Theoretical
Computer Science 4, 1–22.

Mulmuley, K. (1987).Full Abstraction and Semantic Equivalence. MIT Press.

O’Hearn, P. W. and J. G. Riecke (1994). Kripke logical relations and PCF. To
appear.

Ong, C.-H. L. (1995). Correspondence between operational and denotational se-
mantics. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum (Eds.), Handbook
of Logic in Computer Science, Vol 4, pp. 269–356. Oxford University Press.

Paulson, L. C. (1987).Logic and Computation. Cambridge University Press.

Pitts, A. M. (1996). Relational properties of domains.Information and Computa-
tion 127, 66–90.

Plotkin, G. D. (1977). LCF considered as a programming language.Theoretical
Computer Science 5, 223–255.

Scott, D. S. (1993). A type-theoretical alternative to ISWIM, CUCH, OWHY.
Theoretical Computer Science 121, 411–440.

Sieber, K. (1992). Reasoning about sequential functions via logical relations.
In M. P. Fourman, P. T. Johnstone, and A. M. Pitts (Eds.),Applications of
Categories in Computer Science, Proceedings LMS Symposium, Durham, UK,

83

84 REFERENCES

1991, Volume 177 ofLMS Lecture Note Series, pp. 258–269. Cambridge
University Press.

Tennent, R. D. (1991).Semantics of Programming Languages. Prentice Hall
International (UK) Ltd.

Winskel, G. (1993).The Formal Semantics of Programming Languages. Founda-
tions of Computing. Cambridge, Massachusetts: The MIT Press.

Lectures Appraisal Form

If lecturing standards are to be maintained where they are high, and improved where they
are not, it is important for the lecturers to receive feedback about their lectures.
Consequently, we would be grateful if you would complete this questionnaire, and either
return it to the lecturer in question, or to Jenni Cartwright in Austin 415. Thank you.

1. Name of Lecturer:Dr Andrew M. Pitts

2. Title of Course:CST Part II Denotational Semantics

3. How many lectures have you attended in this series so far?

Do you intend to go to the rest of them? Yes/No/Series finished

4. What do you expect to gain from these lectures? (Underline as appropriate)

Detailed coverage of selected topicsor Advanced material
Broad coverage of an area or Elementary material
Other (please specify)

5. Did you find the content: (place a vertical mark across the line)

Too basic -- Too complex
Too general -- Too specific
Well organised -- Poorly organised
Easy to follow -- Hard to follow

6. Did you find the lecturer’s delivery: (place a vertical mark across the line)

Too slow -- Too fast
Too general -- Too specific
Too quiet -- Too loud
Halting -- Smooth
Monotonous -- Lively

Other comments on the delivery:

7. Was a satisfactory reading list provided? Yes/No
How might it be improved.

8. Apart from the recommendations suggested by your answers above, how else might
these lectures be improved? Do any specific lectures in this series require attention?
(Continue overleaf if necessary)

