Lecture Notes on

Denotational Semantics

for Part |l of the Computer Science Tripos

Dr Andrew M. Pitts
Cambridge University Computer Laboratory

© A. M. Pitts, 1997-9

First edition 1997.
Revised 1998, 1999.

Contents

Learning Guide i
1 Introduction 1
1.1 Examplewhile-loops as fixedpoints 3
1.2 EXercises e 8
2 Least Fixed Points 9
2.1 Cpo’sandcontinuousfunctions. 9
2.2 Tarski's fixed pointtheorem L. 15
2.3 EXErCiSes e 19
3 Constructions on Domains 21
3.1 Productsofdomains 21
3.2 Functiondomains 25
3.3 Flatdomains. 28
3.4 EXEICISES o o e e e 30
4 Scott Induction 31
4.1 Chain-closed and admissible subsets 31
4.2 Examples e 32
4.3 EXEICISES . . . v v o i o e e 37
5 PCF 39
51 Termsandtypes i 39
5.2 Free variables, bound variables and substitution 40
53 Typing o e e e 41
54 Evaluation e 44
5.5 Contextual equivalence versus equality in denotation. 48
5.6 EXEICISES e e e e 52
6 Denotational Semantics of PCF 55
6.1 Denotationoftypes 55
6.2 Denotationofterms 55
6.3 Compositionality 61
6.4 Soundness e 63
6.5 EXErCISES o e e e e 64

7 Relating Denotational and Operational Semantics 65

7.1 Formal approximationrelations. 65
7.2 Proof of the Fundamental Property<of 67
7.3 Extensionality 70
7.4 EXErCISES o i e 73
8 Full Abstraction 75
8.1 Failure of full abstraction 57
8.2 PCF+por. 78
8.3 Fully abstract semanticsforPCF 0O 8
8.4 EXercises 81
Postscript 82
References 84
Lectures Appraisal Form 85

Learning Guide

These notes are designed to accompany 8 lectures on denatasemantics for
Part Il of the Cambridge University Computer Science Tripd#&is is a relatively
new course, although some of the material it contains (rtydie first half) used
to form part of courses on semantics of programming langsiégeParts IB/1l. The
Part IB course oisemantics of Programming Languagess a prerequisite.

Tripos questions

Of the many past Tripos questions on programming languageusiécs, here are
those which are relevant to the current course.

Year 98 98 97 97 96 95 94 93 92 91 90 90 88 88 87 87 86
Paper 7 9 7 9 6 5 8 8 8 8 7 9 2 4 2 3 1
Queston 5 10 5 10 12 12 12 10 10 10 4 11 2 3 2 13 3

Recommended books

e Winskel, G. (1993).The Formal Semantics of Programming Languadékl’
Press.

This is an excellent introduction to both the operational and denotational senntics
programming languages. As far as this course is concerned, the relevant chepters a
5, 8,9, 10 (Sections 1 and 2), and 11.

e Tennent, R. D. (1991Semantics of Programming LanguagPsentice-Hall.

Parts | and Il are relevant to this course.

Further reading

e Gunter, C. A. (1992)Semantics of Programming Languages. Structures and
TechniquesMIT Press.

This is a graduate-level text containing much material not covered in thise. As
far as this course is concerned, the relevant chapters are 1, 2, and 4—6.

Note!

The material in these notes has been drawn from severatahffsources, including
the books mentioned above, previous versions of this cdwsbte author and by
others, and similar courses at some other universities. &ryrs are of course all
the author’'s own work. A list of corrections will be availabirom the course web
page (follow links fromwww.cl.cam.ac.uk/Teaching/). A lecture(r) appraisal form
is included at the end of the notes. Please take time to fillaind return it. Alterna-
tively, fill out an electronic version of the form via the URbww.cl.cam.ac.uk/cgi-

bin/Ir/login.

Andrew Pitts
ap@cl.cam.ac.uk

1 Introduction

Slide 1 gives a reminder of various approaches to giving &rsemantics for
programming languages. The operational approach wasduntexd in the Part IB
course onSemantics of Programming Languagesnd the axiomatic approach is
illustrated in the Part Il course d@pecification and Verification I. This course gives
a brief introduction to some of the techniques of the deirmtat approach. One of
the aims of Denotational Semantics is to specify prograrmgnanguage constructs
in as abstract and implementation-independent way aslpessi this way one may
gain insight into the fundamental concepts underlying paogning languages, their
inter-relationships, and (sometimes) new ways of reaiiilose concepts in language
designs. Of course, itis crucial to verify that denotati@pecifications of languages
are implementable—in other words to relate denotationalasgics to operational
semantics: we will illustrate how this is done later in theise.

Styles of semantics

Operational. Meanings for program phrases defined in terms of
the steps of computation they can take during program
execution.

Axiomatic. Meanings for program phrases defined indirectly via
the axioms and rules of some logic of program properties.

Denotational . Concerned with giving mathematical models of
programming languages. Meanings for program phrases
defined abstractly as elements of some suitable mathematical
structure.

Slide 1

1 INTRODUCTION

Characteristic features of a
denotational semantics

e Each phrase (= part of a program), P, is given a denotation,
[P] — a mathematical object representing the contribution of
P to the meaning of any complete program in which it occurs.

e The denotation of a phrase is determined just by the
denotations of its subphrases (one says that the semantics is
compositional).

Slide 2

A simple example of compositionality

Given partial functions [C], [C'] : State — State and a
function [B] : State — {true, false}, we can define

[if B then C else C'] =
As € State.if ([B](s), [C](s), [C'](s))

where

x ifb= true

if (b,z,2") = { ,

x' ifb = false

Slide 3

1.1 Examplewhile-loops as fixed points 3

Denotational semantics of sequential composition

Denotation of sequential composition C'; C’ of two commands
[C;C'] = [C'] o [C] = s € State.[C']([C](s))

given by composition of the partial functions from states to states
[C],[C"] : State — State which are the denotations of the
commands.

Cf. operational semantics of sequential composition:
C,sls C,s|s"
C;C' sl s"

Slide 4

1.1 Example:while-loops as fixed points

The requirement otompositionalitymentioned on Slide 2 is quite a tough one.
It means that the collection of mathematical objects we asgive denotations to
program phases has to be sufficiently rich that it suppor&satpns for modelling
all the phrase-forming constructs of the programming lagguin question. Some
phrase-forming constructs are easy to deal with, others & For example,
conditional expressions involving state-manipulatingnogands can be given a
denotational semantics in terms of a corresponding bragdiinction applied to the
denotations of the immediate subexpressions: see SlidiendaBy, the denotational
semantics of the sequential composition of commands caivee gy the operation
of composition of partial functions from states to states,shown on slide 4.
However, a looping construct such ashile B do C is not so easy to explain
compositionally. The transition semantics oivdile-loop

(while B do C,s) — (if B then C;(while B do C) else skip, s)
suggests that its denotation as a partial functions frotesta states should satisfy

(1) [while B do C] = [if B then C;(while B do C) else skip].

4 1 INTRODUCTION

Note that this cannot be used directly to deffmehile B do C1], since the right-
hand side contains as a subphrase the very phrase whosatttamate are trying to
define. Using the denotational semantics of sequential ositipn andif (and using
the fact that the denotation skip is the identity functioms € State.s), (1) amounts
to saying thafwhile B do C] should be a solution of thiexed point equatiogiven

on Slide 5.

Fixed point property of [while B do C]

where, for each b : State — {true, false} and
c,w : State — State, we define

fo.c(w) = As € State.if (b(s), w(c(s)), s).

e Why does w = f[p o7(w) have a solution?

e What if it has several solutions—which one do we take to be

[while B do C]?

Slide 5

Such fixed point equations arise very often in giving denota semantics to
languages with recursive features. Beginning with DanattScpioneering work
in the late 60’s, a mathematical theory callgaimain theoryhas been developed to
provide a setting in which not only can we always find solwidor the fixed point
equations arising from denotational semantics, but alscamepick out solutions that
are minimal in a suitable sense—and this turns out to ensgo®d match between
denotational and operational semantics. The key idea isrieider a partial order
between the mathematical objects used as denotationspdtftial order expresses
the fact that one object igpproximated byor carries more information thanor
is more well-defined thaanother one below it in the ordering. Then the minimal
solution of a fixpoint equation can be constructed as the fnan increasing chain
of approximations to the solution. These ideas will be madéwematically precise
and general in the next section; but first we illustrate hogytivork out concretely

1.1 Examplewhile-loops as fixed points 5

for the particular problem on Slide 5.

For definiteness, let us consider the particsdrile-loop

(2) while X >0do (V:=X*Y ;X :=X —1)

whereX andY are two distinct integer storage locations (variables}hla case we
can just take a state to be a pair of integérsy), recording the current contents &f
andY respectively. ThusState = Z x 7Z and we are trying to define the denotation
of (2) as a partial functionv : (Z x Z) — (Z x Z) mapping pairs of integers to
pairs of integers. That denotation should be a solution ¢ofitked point equation
on Slide 5. For the particular boolean expressin= (X > 0) and command
C=(Y:=XxY;X:=X —1), the functionfy) ¢ coincides with the function
f defined on Slide 6.

[while X >0do (Y :=X«Y; X :=X —1)]

Let

State < 7. x 7, pairs of integers
D % State — State partial functions.
For [while X >0doY =X xY ;X :=X —1] € Dwe
seek a minimal solutionto w = f(w), where f : D — D'is
defined by:

f(w)(z,y) = {(x’y) ifz <0

w(xz—1,zxy) ifz >0,

Slide 6

6 1 INTRODUCTION

State dlef 7 X 7. D def State — State

Partial order C on D:

w C o' if and only if for all (z,y) € State, if
w is defined at (x,y) then so is w’ and moreover

w(z,y) = w'(z,y).

Least element — € D w.rt. C:

def , . .
— = totally undefined partial function

(satisfies — C w, all w € D).

Slide 7

Consider the partial order;, between the elements 6f = State — State given
on Slide 7. Note tha_ does embody the kind of ‘information ordering’ mentioned
above: ifw C w’, thenw’ agrees withw wherever the latter is defined, but it may be
defined at some other arguments as well. Note alsa¥f@intains an element which
is least with respect to this partial order: for the totallydefined partial function,
which we will write as—, satisfies— C w foranyw € D.

Starting with —, we apply the functionf over and over again to build up a
sequence of partial functionsy, w1, ws, .. .:

def
wo = —
{wTH‘I o f(wn)
Using the definition off on Slide 6, one finds that
(x,y) if <0
undefined ifzr >1

wl(x’y) = f(—)(:v,y) = {

(z,y) ifz <0

wa(z,y) = f(w)(z,y) =1 (0,y) if 2 =1
undefined ifr > 2

1.1 Examplewhile-loops as fixed points 7
((z,y) ifz <0
(0,y) ifz=1
(0,2xy) ifz=2
| undefined ifz > 3

w3(z,y) = f(w2)(z,y) = <

((z,7) if z <0

0,y) ifz=1
0,2xy) ifx=2
0,6xy) ifx=3
(undefined ifr > 4

wa(z,y) = fws)(z,y) = 4

(
(
(
(

and in general

(z,y) ifz <0
wp(z,y) = ¢ (0,(lx)xy) f0<z<n
undefined ifr >n

where as usualg is the factorial ofr. Thus we get an increasing sequence of partial
functions
woCLw CwC...Cw, C...

defined on larger and larger sets of stdteg/) and agreeing where they are defined.
The union of all these partial functions is the element € D given by

) (z,y) ifz <0
WY =\ 0. (le) xy) x>0

Note thatw, is a fixed point of the functiorf, since for all(z, y) we have

if r <
Fws)(@,y) = { Y "o =0 by definition of f)
Woo(x — Lz xy) ifz>0
(2,9) if 2 <0
=4 (0,1xy) if =1 (by definition ofw,,)

O, x—=1)xzxy) fz>1

= Weo(x, y).

8 1 INTRODUCTION

In fact one can show that., is theleastfixed point of f, in the sense that for all
we D

(3) w=f(w) = 1w, w.

This least fixed point is what we take as the denotationwdiile X >

0 do (Y:=X=*Y ; X:=X —1). Its construction is an instance of Tarski’s
Fixed Point Theorem to be proved in the next section. Note thlatw,, is indeed
the function from states to states that we get from the siratbperational semantics
of the commandvhile X > 0 do (Y:=Xx*Y ; X := X — 1), as given in the
Part IB course oisemantics of Programming Languages

1.2 Exercises

Exercise 1.2.1.Consider the functiorf;, . defined on Slide 5 in cage= [true] =

As € State.true andc = [skip] = As € State.s. Which partial functions from
states to states are fixed points of tifis.? What is its least fixed point (with
respect to the ordering defined above)? Does this least fixed point agrele wit
the partial function from states to states determined byoffexational semantics of
while true do skip?

Exercise 1.2.2.Prove the statement (3).

2 Least Fixed Points

This section introduces a mathematical thedgmain theorywhich amongst other
things provides a general framework for constructing trestdixed points used in
the denotational semantics of various programming langueagtures. The theory
was introduced by Dana Scott and Gordon Plotkin.

2.1 Cpo’s and continuous functions

Domain theory makes use of partially ordered sets satigfgegrtain completeness
properties. The definition of partial order is recalled on Slide 8D is called the
underlying sebf the pose{ D, C). Most of the time we will refer to posets just by

naming their underlying sets and use the same symbol denote the partial order
in a variety of different posets.

Partially ordered sets

A binary relation C on a set D is a partial order iff it is

reflexive : Vd € D.d C d
transitive : Vd,d',d" €e D.dCd Cd'"=dCd"

anti-symmetric : Vd,d' € D.dCd Cd=d=4d'.

Such a pair (D, E) is called a partially ordered set, or poset.

Slide 8
Definition 2.1.1. (i) SupposeD is a poset and that is a subset oD. An element
d € S is theleastelement ofS if it satisfies
Ve e S . dC x.

Note that becausg is anti-symmetric,S has at most one least element. Note

10 2 LEAST FIXED POINTS

also that least element of a subset of a poset need not ex@texampleZ
with its usual partial order does not have a least element.)

(i) If it exists, we will write the least element of the whgb®setD as—p, or just

— whenD is understood from the context. Thusis uniquely determined by
the property:

Vde D. — Cd.
The least element of a poset is sometimes calleldateomelement.

(ii) A countable, increasinghainin a posetD is a sequence of elements bf
satisfying

doEdi Cda ...

An upper boundor the chain is anyl € D satisfyingvVn € N. d,, C d. Ifit
exists, thdeast upper boundr lub, of the chain will be written as

| | dn.
n>0

Thus by definition:

- VmeN. d, C |—|n20 d,,.
— Foranyd € D, if Vm € N. d,,, C d, then|_|nZO d, Cd

Remark 2.1.2. The following points should be noted.

(i) We will not need to consider uncountable, or decreasimgrts in a poset: so
a ‘chain’ will always mean a countable, increasing chain.

(i) The elements of a chain do not necessarily have to bandistin particular, we
say that a chaidy C d; C dy C ... is eventually constant for some/N € N
it is the case thatn > N. d,, = dx. Note that in this casg|n20 d, = dy.

(i) Like the least element of any subset of a poset, the lidba@hain is unique if it
exists. (It does not have to exist: for example thecltain1 <2 < ... InN
has no upper bound, hence no lub.)

(iv) A least upper bound is sometimes calledupremum Some other common
notations foll |, d,, are:

|j d, and | |{d.|n>0}.
n=0

2.1 Cpo’s and continuous functions 11

(v) If we discard any finite number of elements at the begigmiha chain, we do
not affect its set of upper bounds and hence do not changebits |

|_| d, = |_| dnin, foranyN €N,
n>0 n>0

Cpo’s and domains

A chain complete poset, or cpo for short, is a poset (D, C) in
which all countable increasing chains dy C dy C do C ... have
least upper bounds, | |~ dn:

(ubl) VYm >0.d, C |_| d,
n>0

(wb2) VdeD.(Ym>0.dy, Cd) = | |d,Cd.

n>0

A domain is a cpo that possesses a least element, —:

Vde D.— LCd.

Slide 9

In this course we will be concerned with posets enjoyingatercompleteness
properties, as defined on Slide 9. It should be noted thatetime ‘domain’ is used
rather loosely in the literature on denotational semantibsre are many different
kinds of domain, enjoying various extra order-theoretiogarties over and above the
rather minimal ones of chain-completeness and posseskoleast element that we
need for this course.

Example 2.1.3. The setX — Y of all partial functions from a seX to a setY” can

be made into a domain, as indicated on Slide 10. It was thisadofor the case
X =Y = State (some set of states) that we used for the denotation of comsnan
in Section 1.1. Note that thewhich is claimedtobethelubgy C f1 C fo C ...

on Slide 10 is a well-defined partial function because theagree where they are
defined. We leave it as an exercise to check that fhis indeed the least upper
bound offy C f; C fo C ... inthe posetX — Y, C).

12 2 LEAST FIXED POINTS

Domain of partial functions, X —Y

Underlying set: all partial functions, f, with domain of definition
dom(f) C X and taking values in Y.

Partial order: f C giff dom(f) C dom(g) and
Vo € dom(f). f(z) = g(z).

Lub of chain fy C fi C fo C ... is the partial function f with
dom(f) = U,>o dom(fn) and

f(a) = {fn(x) itz € dom(f,), somen

undefined otherwise

Least element — is the totally undefined partial function.

Slide 10

Example 2.1.4. Any poset(D, C) whose underlying seb is finite is a cpo. For
in such a poset any chain is eventually constant (why?)—aadhoted in Re-
mark 2.1.2(ii) that such a chain always possesses a lub. $epa finite poset need
not have a least element, and hence need not be a domain—-afopéx consider the

poset with Hasse diagram
[]
[J / \ []

(TheHasse diagranof a poset is the directed graph whose vertices are the etsmen
of the underlying set of the poset and in which there is an doga vertexz to
vertexy iff Zyandvz. (zCz2& zCy) = (z =2V z=1y).)

Figure 1 shows two very simple, but infinite domains. Heretax@examples of
posets that are not cpos.

Example 2.1.5. The set of natural numbet$ = {0,1,2,...} equipped with the
usual partial orders, is not a cpo. For the increasing chéirk 1 <2 < ... hasno
upper bound irN.

2.1 Cpo’s and continuous functions

13

The ‘flat natural numbers’, N :

0

%g

The ‘vertical natural numbers’, €2:

N
—_

Figure 1: Two domains

14 2 LEAST FIXED POINTS

Example 2.1.6. Consider a modified version of the second example in Figure 1 i
which we adjoin two different upper bounds; # ws, for N. In other words,

considerD & N U {w1,ws } with partial orderC defined by:

.

ddeN & d<d,
or deN & d € {wy,wq},
or d=d =uw,
or d=d = ws.

dc d &

Then the increasing chainC 1 C 2 C ... in D has two upper bounds/{ andw-),
but no least one (sinee; IZ wy andws IZ wy). So(D, C) is not a cpo.

Monotonicity, continuity, strictness

e Afunction f : D — FE between posets is monotone iff
Vd,d € D.dCd = f(d) C f(d).

e If D and F are cpo’s, the function f is continuous iff it is
monotone and preserves lubs of chains, i.e. for all chains
do T dy C ... inD,itis the case that

(| | dn) =] f(dn) inE.

n>0 n>0

e If D and E have least elements, then the function f is strict

iff f(—)=—.

Slide 11

Remark 2.1.7. Note that if f : D — E is monotone andy C d; C dy C ... isS
a chain inD, then applyingf we get a chairf(dy) C f(d1) C f(d2) C ... in E.
Moreover, ifd is an upper bound of the first chain, théfd) is an upper bound of the
second and hence is greater than its lub. Henge iD — FE is a monotone function
between cpo’s, we always have

|| £(dn) € £([] dn)

n>0 n>0

2.2 Tarski’s fixed point theorem 15

Therefore (using the antisymmetry propertycof, to check that a monotone function
f between cpo’sis continuous, it suffices to check for eadmele_ di C ds C ...
in D that

holds inE.

Example 2.1.8.When D is the domain of partial functionsState — State
(cf. Slide 10), the functionf,. : D — D defined on Slide 5 in connection
with the denotational semantics wthile-loops is a continuous function. We leave
the verification of this as an exercise.

Example 2.1.9.Given cpo’sD and E, for eache € FE it is easy to see that the
constant functiorD — E with valuee, \d € D . e, is continuous.

Example 2.1.10.Let 2 be the domain of vertical natural numbers, as defined in
Figure 1. Then the functiofi : 2 — 2 defined by

{ﬂmo (n € N)

is monotone and strict, but it is not continuous because

f(ln) =fw=wto=|]o=]]fn).

n>0 n>0 n>0

2.2 Tarski’s fixed point theorem

A fixed pointfor a functionf : D — D is by definition an element € D satisfying
f(d) = d. If D is a poset, we can consider a weaker notionpretfixed pointas
defined on Slide 12.

16 2 LEAST FIXED POINTS

Least pre-fixed points

Let D be aposetand f : D — D be a function.

An elementd € D is a pre-fixed point of f if it satisfies
f(d) C d.

The least pre-fixed point of f, if it exists, will be written

fiz(f)

It is thus (uniquely) specified by the two properties:

(Ifp1) f(fix(f)) E fix(f)
(Ifp2) Vde D. f(d)CTd = fiz(f) Cd.

Slide 12

Proposition 2.2.1. Suppose) is a poset and : D — D is a function possessing a
least pre-fixed pointfiz(f), as defined on Slidé2. Providedf is monotonefiz(f)

Is in particular a fixed point forf (and hence is the least element of the set of fixed
points for f).

Proof. By definition, fiz(f) satisfies property (Ifp1) on Slide 12. ffis monotone
(Slide 11) we can apply to both sides of (Ifp1) to conclude that

f(f(fiz(f))) E ffiz(f)).
Then applying property (Ifp2) witd = f(fiz(f)), we get that

fix(f) T f(fix(f))-

Combining this with (Ifp1) and the anti-symmetry properfytlee partial ordeZ, we
getf(fiz(f)) = fiz(f), as required.]

2.2 Tarski’s fixed point theorem 17

Tarski’s Fixed Point Theorem

Let f : D — D be a continuous function on a domain ID. Then

e f possesses a least pre-fixed point, given by

fir(f)= | | r*(-).

n>0

e Moreover, fiz(f) is a fixed point of f, i.e. satisfies
f(fix(f)) = fir(f), and hence is the least fixed point of f.

Slide 13

Slide 13 gives the key result about continuous functions omains which
permits us to give denotational semantics of programs winglrecursive features.
The notationf™(—) used on the slide is defined as follows:

) =
4
@ {f”“() L 1))

Note that sinc&/d € D. — C d, one hag’(—) = — C f!(—); and by monotonicity
of f

AU E 7)) =) = F () E U () = 772 ().

Therefore, by induction on € N, itis the case thatn € N. f7(—) C f**1(-). In
other words the elemenj8’(—) do form a chain inD. So sinceD is a cpo, the least
upper bound used to defiffiz (f) on Slide 13 does make sense.

18 2 LEAST FIXED POINTS

Proof of Tarski’'s Fixed Point Theorenkirst note that

f(fie(£) = F(|] £(=))
n>0

= || fF(f"(-)) by continuity of f
n>0

= L] by (4)
n>0

- f(-) by Remark 2.1.2(v)
nEO

= fiz(f)

So fiz(f) is indeed a fixed point fof and hence in particular satisfies condition
(Ifpl) on Slide 12. To verify the second condition (Ifp2) ded for a least pre-fixed
point, suppose that € D satisfiesf(d) C d. Then since- is least inD

() = - cd

and

(=) Cd = f""H(=)=f(f"(-)) C f(d) monotonicity of f
Cd by assumption od.

Hence by induction on € N we havevn € N. f(—) C d. Therefored is an upper
bound for the chain and hence lies above the least such, i.e.

fir(f)=| | (=) cd

n>0

as required for (Ifp2). H

Example 2.2.2. The function fizy 17 defined on Slide 5 is a continuous function
(Exercise 2.3.2) on the domalfftate — State (Slide 10). So we can apply the Fixed
Point Theorem and definpvhile B do CT] to be fiz(fizy,c7)- In particular, the
method used to construct the partial function, at the end of Section 1.1 is an
instance of the method used in the proof of the Fixed Poinbifidra to construct
least pre-fixed points.

2.3 Exercises 19

2.3 Exercises

Exercise 2.3.1.Verify the claims implicit on Slide 10: that the relatian defined
there is a partial order; thdtis indeed the lub of the chaify C fi C fo C ...; and
that the totally undefined partial function is the least edatn

Exercise 2.3.2.Verify the claim made in Example 2.1.8 thg . is continuous.
When is it strict?

20

2 LEAST FIXED POINTS

21

3 Constructions on Domains

In this section we give various ways of building domains aadtimuous functions,
concentrating on the ones that will be needed for a denoi@tisemantics of the
programming language PCF studied in the second half of theseo Note that to
specify a cpo one musiefinea set equipped with a binary relation and tipgove

() the relation is a partial order;
(i) lubs exist for all chains in the partially ordered set.
Furthermore, for the cpo to be a domain, one just has to prove
(i) there is a least element.

Note that since lubs of chains and least elements are unidbeyi exist, a cpo or
domain is completely determined by its underlying set andigdaorder. In what
follows we will give various recipes for constructing cpagladomains and leave as
an exercise the task of checking that properties (i), (i @i do hold.

3.1 Products of domains

Binary product of cpo’s and domains

The product of two cpo’s (D1, C1) and (D2, C2) has underlying
set

Dy x Dy = {(dl,dg) | di € D1 & dy € DQ}

and partial order L defined by

(di,d2) T (d},dy) & i T d} & da Co d

Lubs of chains are calculated componentwise:
|_| (din,dop) = (|_| d i, |_| da ;)
n>0 i>0 720

If (D1, C1) and (D2, Co) are domains sois (D X Do, L)
and —DixDy — (_Dla _DQ)-

Slide 14

22 3 CONSTRUCTIONS ON DOMAINS

Proposition 3.1.1 (Projections and pairing). Let D, and D, be cpo’s. Therojec-
tions

m Dy x Dy — Dy 9 1 D1 X D9 — Doy

mi(dy,do) € dy ma(di,d2) % do

are continuous functions. I, : D — D, and f5 : D — Dy are continuous functions
from a cpoD, then

<f1,f2> :D—)Dl X D2
def

(f1, f2)(d) = (f1(d), f2(d))
is continuous.

Proof. Continuity of these functions follows immediately from tblearacterisation
of lubs of chains inD; x D5 given on Slide 14. O

We will need the following generalised version of the pradtanstruction.

Definition 3.1.2 (Dependent products).Given a setl, suppose that for eache 1
we are given a cp@D;, C;). Theproductof this whole family of cpo’s has

e underlying set equal to thefold cartesian product],.; D;, of the setsD,—
so it consists of all functiong defined on/ and such that the value pfat each
i € Iisan elemenp(i) € D; of the cpoD;;

e partial orderC defined by
pCp & VielLp(i) Cip(i).

As for the binary product (which is the particular case wligs a two-element set),
lubsin(]];c; Di, E) can be calculated componentwisepdfC py T p2 C ... isa
chain in the product cpo, its lub is the function mapping eaehl to the lub inD;
of the chainp (i) C p1(¢) E pa(é) E Thus

(|_|pn)(2) = Llpn(l) (iEI)'

n>0 n>0

In particular, for each € I theith projection function

T - H Di’ — Di
el

mi(p) < p(i)

3.1 Products of domains 23

is continuous. If all theD; are domains, then so is their product—the least element
being the function mapping eacle I to the least element db;.

Continuous functions of two arguments

Proposition. Let D, E and F' be cpo’s. A function
f : D x E — F is monotone if and only if it is monotone in each
argument separately:

Vd,d € D,ee E.dCd = f(d,e) C f(d,e)
Vd € D,e, €e E.eCe = f(d,e) C f(d,é).

Moreover, it is continuous if and only if it preserves lubs of chains
in each argument separately:

f(|_| dm’e): |_| f(dmﬂe)

m>0 m>0
f(da |_| en) = |_| f(da en)'
n>0 n>0
Slide 15

Proof of the Proposition on Slides. The ‘only if’ direction is straightforward (by
considering chains constantly equal to some value). Fofifthdirection, suppose
first that f is monotone in each argument separately. Then gides) C (d', €') in
D x E, by definition of the partial order on the binary product weédé C d' in D
ande C ¢’ in E. Hence

I
I

) by monotonicity in first argument

f(d,e)

d, e
d,e) by monotonicity in second argument

11

and therefore by transitivityf (d, e) C f(d', ¢'), as required for monotonicity of.
Now supposef is continuous in each argument separately. Then given a chai

24 3 CONSTRUCTIONS ON DOMAINS

(do,eq) E (d1,e1) C (do,e2) E ... in the binary product, we have

f(|_| dna en = |_| dz s |_| (Cf Slide 14)
n>0 1>0 7>0
=| | £(di, | | e by continuity in first argument
120 7=0

= |_| (|_| f(d;, ej)> by continuity in second argument

i>0 \j>0
= |_| F(dn, en) by lemma on Slide 16
n>0
as required for continuity of . W

Diagonalising a double chain

Lemma. Let D be acpo. Suppose the doubly indexed family of
elements d,,, , € D (m,n > 0) satisfies

) m<m&n<n = A © diyt -

|_| dO,n ; |_| dl,n ; |_| d2,n ;

n>0 n>0 n>0

and

e L

Slide 16

Proof of the Lemma on Slids. We make use of the defining properties of lubs of
chains—(lub1) and (lub2) on Slide 9. First note thatif< m’ then

dinn E dis o by property) of thed,,, ,,
C |_| - by (lubl)

n/>0

3.2 Function domains 25

foralln > 0, and hence¢ |, dm.n T | l,,~¢ dm v DY (lub2). Thus we do indeed
get a chain of lubs - -

|_|d0,ng udl,ng |_|d2,ng

n>0 n>0 n>0

and can formits lub), |,,,~ Ll,,.>¢ dm.n- Using property (lubl) twice we have

di i C |_| di., C |_| |_| A

n>0 m>0n>0

for eachk > 0, and hence by (lub2)

k>0 m>0n>0

Conversely, for eacm,n > 0, note that

dm,n C dmax{m,n},max{m,n} by property q-)

and hence applying (lub2) twice we have

(6) |_| |_| dm,n E |_| dk,k-

m>0n>0 k>0

Combining (5) and (6) with the anti-symmetry property ©Ofyields the desired
result. H

3.2 Function domains

The set of continuous functions between two cpo’s/domaars lme made into a
cpo/domain as shown on Slide 17. The terminology ‘expoaérpo/domain’ is
sometimes used instead of ‘function cpo/domain’.

26 3 CONSTRUCTIONS ON DOMAINS

Function cpo’s and domains

Given cpo's (D,Cp) and (E, Cg), the function cpo
(D — E, C) has underlying set

DE Y {f | f: D — Eisacontinuous function}

f
and partial order: f C f' Y vd e D.f(d) Cg f'(d).
Lubs of chains are calculated ‘argumentwise’ (using lubs in E):

(L] £)(@ = |] u(a.

n>0 n>0
If £ is a domain, thensois D — E and —p_,g(d) = —g, all
de D.
Slide 17

Proposition 3.2.1 (Evaluation and ‘Currying’). Given cpo’sD and E, the func-
tion

ev:(D—>E)xD—E
def

ev(f,d) = f(d)

is continuous. Given any continuous functipn D’ x D — E (with D’ a cpo), for
eachd’ € D’ the functiond € D — f(d’,d) is continuous and hence determines an
element of the function cpb — E that we denote byur(f)(d’). Then

cur(f): D' = (D — E)

cur(F)(d) ¥ Nd e D. f(d,d)

is a continuous functioh.

This ‘Curried’ version of f is named in honour of the logician H. B. Curry, a pioneer of
combinatory logic and lambda calculus.

3.2 Function domains

Proof. For continuity ofev note that

ev(| | (fardn)) = eo(| | £i, | | dy)

n>0 i>0 §>0

= (L a4y

i>0 >0
= |f(| |4
i>0 >0
= ||| fi(d))

120720

n>0
= J ev(fna dn)

n>0

27

lubs in products are componenwise

by definition ofev

lubs in function cpo’s are argumentwise
by continuity of eacty;

by the Lemma on Slide 16

by definition ofev.

The continuity of eacleur(f)(d’) and then ofcur(f) follows immediately from the
fact that lubs of chains i; x D, can be calculated componentwise.]

Continuity of the fixpoint operator

Then the function

is continuous.

Proposition. Let IJ be a domain. By Tarski’'s Fixed Point
Theorem (Slide 13) we know that each continuous function
f € (D — D) possesses a least fixed point, fix(f) € D.

fir : (D—D)— D

Slide 18

28 3 CONSTRUCTIONS ON DOMAINS

Proof of the Proposition on Slide8. We must first prove thafiz : (D — D) — D
Is a monotone function. Suppoge C f5 in the function domairD — D. We have

to provefiz(f1) C fiz(f2). But:

fi(fiz(f2)) C fa(fiz(f2)) sincefi C fo
C fiz(f2) by (Ifp1) for fiz(f2).

So fix(f2) is a pre-fixed point forf; and hence by (Ifp2) (forfiz(f1)) we have
fiz(f1) C fiz(f2), as required.

Turning now to the preservation of lubs of chains, suppfse f1 C fo C ...
in D — D. Recalling Remark 2.1.7, we just have to prove that

fir(| | f2) C | | fix(fn)

n>0 n>0

and by the property (Ifp2) of least pre-fixed points (see&li@), for this it suffices
to show that | -, fiz(f,) is a pre-fixed point for the functiop|, -, f». This is the
case because: -

(|_| fm)(|_| fix(fn)) = |_| fm(|_| fiz(f,)) function lubs are argumentwise

m>0 n>0 m>0 n>0

= || || fm(fiz(fa)) by continuity of eachy,

m>0n>0

= | | fr(fiz(fr)) by the Lemma on Slide 16
k>0

C | | fix(fr) by (Ifp1) for eachfy;.
k>0

3.3 Flat domains

In order to model the PCF ground typest and bool, we will use the notion oflat
domaingiven on Slide 19.

3.3 Flat domains 29

Discrete cpo’s and flat domains

For any set X, the relation of equality

rCr ¥ o=y (z,2' € X)

makes (X, E) into a cpo, called the discrete cpo with underlying
set X.

def . .
Let X| = X U{—}, where — is some element notin X . Then

dCd € d=dvd=- (d,deX))

makes (X |, C) into a domain (with least element —), called the
flat domain determined by X .

Slide 19

The flat domain of natural numbens, , is pictured in Figure 1; the flat domain
of booleansB; looks like:

true false

NP

The following instances of continuous functions involviiteg domains will also be
needed for the denotational semantics of PCF. We leave tuégas exercises.

Proposition 3.3.1. Let f : X — Y be a partial function between two sets. Then

fJ_:XJ_—>YJ_

f(d) ifde X andf is defined at/
fid & - if d € X and f is not defined atl
~ ifd=—

defines a continuous function between the correspondinddlatins.

30 3 CONSTRUCTIONS ON DOMAINS

Proposition 3.3.2. For each domairD the function

if 1B, x(DxD)—D

d if z = true
if (z,(d,d")) Crad ife= false
—D If xr = —

is continuous.

3.4 Exercises

Exercise 3.4.1.Verify that the constructions given on Slide 14, in Definiti8.1.2,
and on Slides 17 and 19 do give cpo’s and domains (i.e. thaepties (i), (i) and
(i) mentioned at the start of this section do hold in eaclefa&ive the proofs of
Propositions 3.3.1 and 3.3.2.

Exercise 3.4.2.Let X andY be sets and | andY’, the corresponding flat domains,
as on Slide 19. Show that a functign: X, — Y is continuous if and only if one
of (a) or (b) holds:

(@) fis strict,i.e.f(—) = —.
(b) fisconstant,i.eVz € X . f(z) = f(—).

Exercise 3.4.3.Let {T} be a one-element set aqd }, the corresponding flat
domain. LetQ) be the domain of ‘vertical natural numbers’, pictured in g 1.
Show that the function domaid — {T}, is in bijection with(2.

31

4 Scott Induction

4.1 Chain-closed and admissible subsets

In Section 2 we saw that the least fixed point of a continuonstfan f : D — D on
a domainD can be expressed as the lub of the chain obtained by repgatgulying
f starting with the least element of D: fiz(f) = [|,>, f"(—) (cf. Slide 13).
This construction allows one to prove propertiesfaf{ f) by using Mathematical
Induction forn to show that eaclf” (—) has the propertyprovidedthe property in
guestion satisfies the condition shown on Slide 20. It is enrant to package up
this use of Mathematical Induction in a way that hides thdiexgonstruction of
fiz(f) as the lub of a chain. This is done on Slide 21. To see the waldithe
statement on that slide, note th#(—) = — € S by theBase caspandf"(—) € S
implies f**1(—) = f(f"(-)) € S by theInduction step. Hence by induction
on n, we havevn > 0.f"(—) € S. Therefore by the chain-closedness $f

fiz(f) = U,>o f"(—) € S, as required.

Chain-closed and admissible subsets

Let D be a cpo. A subset S C D is called chain-closed iff for all
chansdg Cdi CdoCT...inD

(Yn>0.d,€8) = (| |[d) €S
n>0

If D is a domain, S C D is called admissible iff it is a
chain-closed subset of D and — € S.

A property ®(d) of elements d € D is called chain-closed/admissible
iff {d € D | ®(d)} is a chain-closed/admissible subset of D.

Slide 20

Note. The termsinclusive or inductive are often used as synonyms of ‘chain-
closed'.

Example 4.1.1. Consider the domaif of ‘vertical natural numbers’ pictured in

32 4 SCOTT INDUCTION

Figure 1. Then
e anyfinite subset of is chain-closed,;
e {0,2,4,6,...}is nota chain-closed subsetf

e {0,2,4,6,...}U{w} is achain-closed (indeed, is an admissible) subsgét of

Scott’s Fixed Point Induction Principle

Let f : D — D be a continuous function on a domain D.

For any admissible subset S C D, to prove that the least fixed
point of f isin S, i.e. that

fix(f) €S
it suffices to prove

Vie D (de S = f(d)€S).

Slide 21

4.2 Examples

Example 4.2.1. Suppose thab is a domain and that : (D x (D x D)) —» Disa
continuous function. Lej : (D x D) — (D x D) be the continuous function defined

by

g(di,ds) < (f(d, (dr,do)), f(di, (d2,d2))) (du,ds € D).

Thenu; = ug, where(uy, ug) & fiz(g). (Note thatg is continuous because we
can express it in terms of composition, projections andimpgiand hence apply
Proposition 3.1.1 and Slide 3¢:= (f o (m1, (71, m2)), f o (71, (ma,m2))).)

4.2 Examples 33

Proof. We have to show thgiz(g) € A where
AY {(d,dy) € Dx D | dy = ds).

It is not hard to see thak is an admissible subset of the product domRirxx D. So
by Scott’s Fixed Point Induction Principle, we just have heck that

V(di,d2) € D x D ((d1,da) € A = g(di1,dg) € A)

or equivalently, that/(dy,ds) € Dx D (dy = dy = f(dy,d1,ds) = f(dy,ds,ds)),
which is clearly true. W

The next example shows that Scott’s Induction Principle banuseful for
proving (the denotational version gfartial correctnessassertions about programs,
I.e. assertions of the form ‘if the program terminates, teech-and-such a property
holds of the results’. By contrasttatal correctness assertion would be ‘the program
does terminate and such-and-such a property holds of tlhitgesBecause Scott
Induction can only be applied for propertiésfor which ®(—) holds, it is not so
useful for proving total correctness.

Example 4.2.2.Let f : D — D be the continuous function defined on Slide 6 whose
least fixed point is the denotation of the commawihlile X > 0do (Y :=X xY ;
X := X —1). We will use Scott Induction to prove

(7) Va,y > 0. fir(f)(z,y) # — = fix(f)(z,y) = (0,(z) * y)

where forw € D = (Z x Z) — (Z x Z) we writew(zx, y) # — to mean ‘the partial
functionw is defined atz, y)'. (In other words, one can identiffp with the domain
of (continuous) functions from the discrete cpox Z to the flat domainZ x 7) , .)

Proof. Let

Sdéf{wED|Vx,y20.w($,y)7é— = w(z,y) = (0,(lx) *xy)}.

It is not hard to see théff is admissible. Therefore, to prove (7), by Scott Induction
it suffices to check thaty € S implies f(w) € S, forall w € D. So suppose
w € S, thatz,y > 0, and thatf(w)(z,y) # —. We have to show that
f(w)(z,y) = (0, () x y). We consider the two cases= 0 andz > 0 separately.

If z = 0, then by definition off (See Slide 6)

f(w)(z,y) = (2,y) = (0,y) = (0,1 xy) = (0,(10) * y) = (0, (lz) x y).

34 4 SCOTT INDUCTION

On the other hand, if > 0, then by definition off

w(z—1,zxy) = f(w)(z,y) # — (by assumption)
and then sincav € S andz — 1,z xy > 0, we must havav(z — 1,z x y) =
(0,!(z — 1) * (z x y)) and hence once again
flw)(z,y) =w(e —1Lzxy)=(0,1(z — 1)« (zxy)) = (0, (lz) x y).
L]
The difficulty with applying Scott’s Fixed Point Inductionrifciple in any

particular case usually lies in identifying an appropriatemissible subsef (i.e. in
finding a suitably strong ‘induction hypothesis’). The nexample illustrates this.

Example (cf. CST Pt I, 1988, p4, q3)

Let D beadomainandp: D — B, ,h,k: D — D be
continuous functions, with A strict (i.e. h(—) = —).

Let f1, fo : (D x D) — D be the least continuous functions
such that for all dy,ds € D

fi(di,da) = if (p(d1), da, h(f1(k(d1),d2)))
fa(di,da) = if (p(dyr), d2, fa(k(d1), h(d2)))

diy ifb = true
where if (b, dy,ds) = < dy ifb = false.
L ifb=_1
Then f1 = fg.
Slide 22

Proof of the Example on Slid22. First note that by definition of; and f,, we have

(f1, f2) = fix(g) whereg is the continuous function defined on Slide 23. (Note that

one can prove thaj is continuous either directly, or via the results of Section 3.
Thus to prove thaf; = fo, it suffices to show thafiz(g) is in the admissible subset
{(u1,u3) € E x E | u1 = ug}. To use the Scott Induction Principle for this
admissible subset, we would have to prove

V(up,ug) € Ex E ((u1,u2) € A = g(ug,ug) € A)

4.2 Examples 35

i.e.thatVu € E. g1(u,u) = go(u,u). Itis clear from the definition of; andg, on

Slide 23 thabl (u, u)(dl, dg) = gg(u, u)(dl, dg) holds providech(u(k:(dl), dg)) =

u(k(dy1), h(dy)). Unfortunately, there is no reason why the latter condisbauld be
satisfied by an arbitrary elementof £ (although it does indeed hold when= f1,

as we shall see).

Let D, p, h, and k be as on Slide 22. Defining E to be the
function domain (D x D) — D, let

9% (g1,90) : (E x E) = (E x E)

where g1, g2 : (E x E) — E are the continuous functions

defined by
(dy if p(dq) = true
g1 (ur, u9)(dy, do) 2 Q h(ui (k(dy),d2)) i p(di) = false
| — ifp(dy) = —
(dy if p(dy) = true
g1, us)(dn, da) = S un(k(dr), h(dz)) i p(di) = false
(— if p(di) = —

(@luy,us € Eanddy,dy € D).

Slide 23

We can circumvent this problem by applying Scott Inductioatsmaller subset
than{(uy,us) € £ x E | u; = ug}, namely

Sdéf{(ul,uQ) €EEXE|u =us & V(di,dy) € D XD

h(ui(dy, dz)) = ui(dy, h(d2))}-

We first have to check tha$ is admissible. It is chain-complete because if
(ur,0,u20) C (u1,1,u21) C (u12,u22) C ... isachaininE x E each of whose
elements is irf, then| |, - o (u1,n, u2,n) = (i 1,5 ;>0 u2,5) is @lso inS since

| |uin=||u2n (becausen, =us,, eachn)
n>0 n>0

36 4 SCOTT INDUCTION

and

h((| | w1m)(d1,da)) = h(| | u1n(d1,d)) function lubs are argumentwise
n>0 n>0

= | | A(u1n(di,dy)) his continuous
n>0

= ulan(dl, h(dg)) each(uljn, Ugm) isinS

>0

|_| u1,,)(d1,h(d2)) function lubs are argumentwise.
n>0

I
—~ 3

Also, S contains the least elemefit, —) of E' x E, because whefu;, ug) = (—, —)
clearlyu; = ug and furthermore for alid;,d2) € D x D

h(ui(dy,dz2)) = h(—(d1,d2))

= h(—) by definition of— € (D x D) — D
= — h is strict, by assumption
= —(dq, h(dy)) by definition of— € (D x D) — D

== ul(dl, h(dg))

To provef; = f» itis enough to show thdtfy, f2) = fiz(g) € S; and sinceS is
admissible, by Scott Induction it suffices to prove for(@al|, u2) € F x E that

(ur,u2) €S = (91(u1,uz2),92(u1,u2)) € S.
So supposéuy, uz) € S, i.e. thatu; = ug and
(8) V(dl,dg) eDxD. h(ul(dl,dg)) = ul(dl,h(dg)).

It is clear from the definition ofy; and g» on Slide 23 thatu; = wy and (8)
imply g1(u1,u2) = ga(ui,uz). So to prove(gi(ui,us),ga(ui,uz)) € S, we
just have to check that(g; (u1,uz)(d1,d2)) = g1(u1,us2)(d1, h(ds)) holds for all
(dl,dg) €D x D. But

(h(dy) if p(dy) = true
h(g1(u1,u2)(d1,d2)) = § h(h(ui(k(dy),ds))) if p(dy) = false
(A(=) if p(dy) = -
(h(dy) if p(dy) = true
11, uz) (dr, h(d2)) = & hlun (k(dr), h(d))) 1 p(dy) = false
(— if p(d1) = —

4.3 Exercises 37

So sinceh(h(uq(k(dy),d2))) = h(ui(k(dy),h(ds))) by (8), and sincé(—) = —,
we get the desired result. W
4.3 Exercises

Exercise 4.3.1.Give an example of a subsétC D x D’ of a product cpo that is
not chain-complete, but which satisfies:

(@) foralld € D,{d’| (d,d") € S} is a chain-complete subset bf; and
(b) foralld’ € D', {d| (d,d") € S} is a chain-complete subset bf.

[Hint: considerD = D’ = Q, the cpo in Figure 1.]
(Compare this with the property of continuous functionsegivn Slide 15.)

38

4 SCOTT INDUCTION

39

5 PCF

The language PCF (‘Programming Computable Functions’) sgrgle functional
programming language that has been used extensively agsampkxlanguage in the
development of the theory of both denotational and operatisemantics (and the
relationship between the two). Its syntax was introducedbya Scottirca 1969
as part of a ‘Logic of Computable Functiohsind was studied as a programming
language in a highly influential paper by Plotkin (1977).

In this section we describe the syntax and operational secsanf the particular
version of PCF we use in these notes. In Section 6 we will seetbhogive it a
denotational semantics using domains and continuousiumct

5.1 Terms and types

Thetypes expressionsandtermsof the PCF language are defined on Slide 24.

PCF syntax

Types T = mnat | bool | T — T

Expressions

M =0 | succ(M) | pred(M) | zero(M)
| true | false | if M then M else M
|z |z :7. M| MM | fix(M)

where € V, an infinite set of variables.

We identify expressions up to c-conversion of bound variables
(created by the fn expression-former): by definition a PCF term is
an a-equivalence class of expressions.

Slide 24

The intended meaning of the various syntactic forms is dgvisl

e nat is the type of the natural numbers, 1,2,3,.... In PCF these are
generated frond by repeated application of the successor operagiaoe(—),
whose intended meaning is to atltb its argument. The predecessor operation

This logic was the stimulus for the development of the ML language and LCF systemdbimmaa
assisted proofs by Milner, Gordogt al—see Paulson 1987; Scott’'s original work was eventually
published as Scott 1993.

40 5 PCF

pred(—) subtractsl from strictly positive natural numbers (and is undefined
ato).

e bool is the type of booleangyue and false. The operatiorzero(—) tests
whether its argument is zero or strictly positive and resutrnue or false
accordingly. Theconditionalexpressionf M; then M, else M3 behaves
like either M> or M3 depending upon whethdr; evaluates tarue or false
respectively.

e A PCF variabley, stands for an unknown expression. PCF is a pure functional
language—there is no state that changes during expresguagon and in
particular variables are ‘identifiers’ standing for a fixegbeession, rather than
‘program variables’ whose contents may get mutated dunaguation.

e 7 — 7' is the type of (partial) functions taking a single argumehtype 7
and (possibly) returning a result of typé. fnx : 7. M is the notation we
will use for function abstraction (i.e. lambda abstracfiam PCF; note that
the typer of the abstracted variable is given explicitly. The application of
function M, to argument)s is indicated byM; M,. As usual, the scope
of a function abstraction extends as far to the right of theasdopossible and
function application associates to the left (¢, My M3 meang My Msy) M3,
not M, (M2 Mg))

e The expressiorfix(M) indicates an element recursively definedy = =
M z. The lambda calculus equivalent¥sM, whereY is a suitable fixpoint
combinator.

5.2 Free variables, bound variables and substitution

PCF contains one variable-binding form: free occurrendesin M become bound
infnx : 7. M. The finite set ofree variablef an expressiod/, fu(M), is defined

5.3 Typing 41

by induction on its structure, as follows:

f0(0) = fu(true) = fo(false) % ¢

fo(succ(M)) = fu(pred(M)) = fu(zero(M)) = fu(fix(M)) = fo(M)

def

fo(if M then M’ else M") = fo(M) U fo(M") U fo(M")

def

fo(MM') = fo(M)U fo(M')
fo(w) = {a}
fofnz . M) Y {2 € (M) | 2’ # z}.

One says thad/ is closedif fv(M) = () andopenotherwise.

As indicated on Slide 24, we will identifyx-convertible PCF expressions,
I.e. ones that differ only up to the names of their bound \deiss Thus by definition,
a PCFtermis an equivalence class of PCF expressions for the equaletation
of a-conversion. However, we will always refer to a term via somgresentative
expression, usually choosing one whose bound variableallaggstinct from each
other and from any other variables in the context in whichttdren is being used.
The operation ogubstituting a term\/ for all free occurrences of a variable in a
term M’ will be written

M'[M/z).

The operation is carried out by textual substitution of apregsion representingy/
for free occurrences of in an expression representidg’ whose binding variables
are distinct from the free variables M (thereby avoiding ‘capture’ of free variables
in M by binders inM").

5.3 Typing

PCF is a typed language: types are assigned to terms via ld&t@meshown on
Slide 25 whose intended meaning is “if eacke dom(I') has typd’(z), thenM has

typer”.

42 5 PCF

PCF typing relation, I'—= M : 7

e ['is atype environment, i.e. a finite partial function mapping
variables to types (whose domain of definition is denoted
dom(T))

e M isaterm

e T is atype.

Relation is inductively defined by the axioms and rules in Figure 2.
Notation:

M : 7 means M is closed and) = M : 7 holds.

PCF, & (M| M: 7).

Slide 25

Proposition 5.3.1. (i) If ' = M : 7 holds, thenfo(M) C dom(I'). If both
I'EM:7andl' - M : 7" hold, thenr = 7. In particular a closed term has
at most one type.

mKfr+ ™M:randl[z — 7] & M : 7/ both hold, then so does
- M[M/x]: 7.

Proof. These properties of the inductively defined typing relatoa easily proved
by rule induction. The fact that a term has at most one typa fgven assignment of
types to its free variables relies upon the fact that typdsooind variables are given
explicitly in function abstractions.]

Example 5.3.2 (Partial recursive functions in PCF).Although the PCF syntax is
rather terse, the combination of increment, decrement, fteszero, condition-
als, function abstraction and application, and fixpointuremn makes it Turing
expressive—in the sense that all partial recursive funstican be coded. For ex-
ample, recall that the partial functidn: N x N — N defined byprimitive recursion

!See the Part IB course @omputation Theory.

5.3 Typing 43

(:0) I'-0: nat
Conee) I'M: nat
e [t succ(M) : nat
I'M: nat
(:pred)
[t pred(M) : nat
Crore) I'HM: nat
e I' - zero(M) : bool
(:bool) I'Eb:bool (b= true, false)
o) I'EM;:bool I'FMy:7 I'EMsg:T
‘if
I' - if M, then M else M3 : 7
(:var) 'tz:7 fzedom)&I(z) =71

Clx—71]-M:7 ‘
(:n) if 2 ¢ dom(T)
F'tfnx:7. M:7—71

'-My:7—=7 TFMy,:T1

(‘app)
PP I+ M, My : 7'
'=M:7—71
(:ﬁx)
[+ fix(M) : 7

In rule (:¢,), I'[z — 7] denotes the type environment mapping z to = and otherwise
acting like T'.

Figure 2: Axioms and rules for PCF typing relation

44 5 PCF

fromf: N—Nandg: N x N x N — N satisfies that for alk,y € N

{h(x,m = f(z)
h(.fL',y—|—1) :g($,y,h($,y)).

Thus if f has been coded in PCF by a tetfh : nat — nat and g by a term
G : nat — (nat — (nat — nat)), thenh can be coded by

Hdéfﬁx(fnh : nat — (nat — nat) .fnz : nat . fny: nat.

if zero(y) then Fz else Gz y(hzy)).

Apart from primitive recursion, the other construction ded for defining partial
recursive functions isninimisation For example, the partial functiom : N —~ N
defined fromk : N x N — N by minimisation satisfies that for all € N

m(x) = leasty > 0 such that(z,y) = 0 and
Vz2.0<z<y=k(z,z)>0.

This can also be expressed using fixpoints, although not sty e in the case of
primitive recursion. For ik has been coded in PCF by a tefm: nat— (nat— nat),
then in factm can be coded & x : nat . M’ z 0 where

M’ défﬁx(fnm' : nat — (nat — nat) .fnx : nat . fny : nat .

if zero(K zy) then y else m' z succ(y)).

5.4 Evaluation

We give the operational semantics of PCF in terms of an ineklgtdefined relation
of evaluation whose form is shown on Slide 26. As indicateztdhthe results of
evaluation are PCF terms of a particular form, calledues(and sometimes also
called ‘canonical forms’). The only values of typeol aretrue andfalse. The
values of typenat are unary representations of natural numbeng,c”(0) (n € N),
where

{succO(O) o

succ”1(0) aof succ(succ™(0)).

Values at function types, being function abstractidng: : 7. M, are more ‘in-

tensional’ than those at the ground data types, since thg bbds an unevaluated
PCF term. The axioms and rules for generating the evaluatilaion are given in
Figure 3.

5.4 Evaluation 45

PCF evaluation relation

takes the form
M _V

where

e T is aPCF type
e M,V € PCF, are closed PCF terms of type 7

e Visavalue,
V :=0|succ(V) | true | false | fnxz : 7. M.

The evaluation relation is inductively defined by the axioms and
rules in Figure 3.

Slide 26

Proposition 5.4.1. Evaluation in PCF is deterministic: if both/ |} V andM |}V’
hold, thenV = V",
Proof. By rule induction: one shows that

(M7, V) | MU, V&V (MY, V' =V =V

is closed under the axioms and rules definjngVe omit the details. W

Example 5.4.2. The proposition shows that every closed typeable term ateduo
at most one value. Of course there are some typeable termddhet evaluate to
anything. We writeM . iff M : 7 and AV. M |} V. Then for example

Q, ¢ fix(fnz: 7.2)

satisfies(2, }.. (For if for someV there were a proof ofix(fnx : 7.z) |, V,

46 5 PCF
U yar) V|,V (V avalue of type 1)
M U'ﬂ;ﬂu V
(uee) *
succ(M) |},,,; suce(V)
M, succ(V)
(U'pred) :
pred(M) {,,, V
M, 0
(Uzerol) :
zero(M) |},,,, true
M, succ(V)
(Uzero2) t
zero(M) |},,,; false
M1 ‘Ubool true M2 Ur.r \%
(Uif1) ,
if M, then M, else M3 ||V
(o) My, false Mzl V
i if M, then M, else M ||, V
My, e 7. M] Mi[My/z] |,V
(U’cbn)
My My, V
M fix(M) |,V
(U’ﬁx)
fix(M) {, V

Figure 3: Axioms and rules for PCF evaluation

5.4 Evaluation 47

M — 0 M’ (where op = succ, pred & 7 = nat,
op(M) —, op(M") or op = zero & 7 = bool)

pred(succ(V)) —,.: V' (V avalue of type nat)
zero(0) —p) true
zero(succ(V)) —4,0 false (V' avalue of type nat)

M1 — bool M{

if M, then M, else M3 —, if M| then M, else M3
if true then M; else My —, M;
if false then M, else My —, M,

Ml o7 M{
My My — M{ M,

(fl’l.’l? : T.Ml) M2 — ! Ml[Mz/x]

fix(M) —, M fix(M)

Figure 4: Axioms and rules for PCF transition relation

choose one of minimal height. This proof, calAif must look like

() P
fmz:7.2lfnx: 7.2 fix(fnz:7.2) | V

(fnz:7.2)(fix(fnz:7.2)) J V
fix(fnz:7.2)J V

(Ucbn)

(U‘ﬁx)

whereP’ is a strictly shorter proof ofix(fnz : 7.z) |, V, which contradicts the
minimality of P.)

Remark 5.4.3. PCF evaluation can be defined in terms of a ‘one-step’ triansit
relation. Let the relatiod/ —, M’ (for M, M’ € PCF,) be inductively defined by
the axioms and rules in Figure 4. Then one can show that ferald)/, V € PCF;
with V" a value

MU,V & M(—,)*V

48 5 PCF
where(—,)* denotes the reflexive-transitive closure of the relation.

5.5 Contextual equivalence versus equality in denotation

We aim to give a denotational semantics to PCF that is coriipoal (cf. Slide 2) and
that matches its operational semantics. These requirsnag@tmade more precise
on Slide 27.

PCF denotational semantics — aims

e PCFtypes 7 + domains [7].

e Closed PCFterms M : 7 +— elements [M] € [7].
(More generally, denotations of open terms will be continuous
functions.)

e Compositionality—cf. Slide 2. In particular:
[M] = [M'] = [C[M]] = [C[M].

e Soundness: forany type 7, M |}, V' = [M] = [V].

e Adequacy: for 7 = bool or nat,
[M]=[V]elr] = M|, V.

Slide 27

The soundnessind adequacyproperties make precise the connection between
the operational and denotational semantics for which weasnéng. Note that the
adequacy property only involves the ‘ground’ datatypes and bool. One cannot
expect such a property to hold at function types becauseeoiritensional’ nature
of values at such types (mentioned above). Indeed such ajuacke property at
function types would contradict the compositionality amdisdness properties we
want for [—], as the following example shows.

Example 5.5.1. Consider the following two PCF value terms of typet — nat:
def) def
V=fnz:nat.(fny:nat.y)0 and V' = fnzx: nat.0.

NoW V ¥, i snat V' Since by {o.), V Uui—nae V' 7 V' @and by Proposition 5.4.1
evaluation is deterministic. However, the soundness antpositionality properties

5.5 Contextual equivalence versus equality in denotation 49

of [—] imply that[V] = [V']. For using {,,;) and {.,,,) we have

cbn

(fny: nat.y)0,, O.

So by soundnesffny : nat.y)0] = [0]. Therefore by compositionality for
C[-] “ tna : nat. — we have

[C[(fny : nat.y) O]] = [C[O]]

ie. [V] = [V]. O

Definition 5.5.2 (Contexts). As the preceding example should make clear, the nota-
tion C[M] used on Slide 27 indicates a PCF term containing occurresfcagerm

M, and therC[M'] is the term that results from replacing these occurrencel/hy
More precisely, th& CF contextsre generated by the grammar for PCF expressions
augmented by the symbol’ representing a place, or ‘*hole’ that can be filled with a
PCF term:

C ::=—|0|succ(C) | pred(C) | zero(C) | true | false
|if CthenCelseC |z |fnz:7.C|CC|fix(C)

Given such a context,* we write C[M] for the PCF expression that results from
replacing all the occurrences ef in C by M. This form of substitution may well
involve the capture of free variables i by binders inC. For example, ifC is
fnx : 7.—, thenC[z] isfnx : 7.x. Nevertheless it is possible to show thaf\if
and M’ area-convertible then so aré[M/] andC[M’]. Hence the operation on PCF
expressions sendinty/ to C[M] induces a well-defined operation on P@Fms(=
a-equivalence classes of expressions).

Y1t is common practice to writ€[—] instead ofC to indicate the symbol being used to mark the
‘holes’ inC.

50 5 PCF

Contextual equivalence

Two phrases of a programming language are contextually
equivalent if any occurrences of the first phrase in a

complete program can be replaced by the second phrase without

affecting the observable results of executing the program.

Slide 28

Slide 28 recalls (from the CST Part IB course $amantics of Programming
Language$ the general notion of contextual equivalence of phrasespnogram-
ming language. Itis really a family of notions, parametedliby the particular choices
one takes for what constitutes a ‘program’ in the language wahat are the ‘ob-
servable results’ of executing such programs. For PCF iasonable to take the
programs to be closed terms of typet or bool and to observe the values that result
from evaluating such terms. This leads to the definitionigive Slide 29.

5.5 Contextual equivalence versus equality in denotation 51

Contextual equivalence of PCF terms

Given PCF terms M, My, PCF type T, and a type environment
I', the relation | I' = M7 Zcix Mo : 7 |is defined to hold iff

e Both the typings ' = M4 : 7and I' - My : 7 hold.

e For all PCF contexts C for which C[M1] and C[M;] are
closed terms of type v, where v = nat or v = bool,
and for all values V' : ~,

CIMi] |,V & C[My] 4, V.

Slide 29

Notation 5.5.3. For closed PCF terms, we write

M1 gctx M2 . T

fOf@l_Ml Eix Mo i T.

Although =, is a natural notion of semantic equivalence for PCF given its
operational semantics, it is hard to work with, because eiihiversal quantification
over contexts that occurs in the definition. As the theoraateston Slide 30 shows,
if we have a denotational semantics of PCF satisfying th@gnaes on Slide 27,
we can use it to establish instances of contextual equigaley showing that terms
have equal denotation. In many cases this is an easier taskptioving contextual
equivalence directly from the definition. The theorem onl&BO generalises to open
terms: if the continuous functions that are the denotatadrig’o open terms (of the
same type for some type environment) are equal, then thestare contextually
equivalent.

52 5 PCF

Theorem. For all types 7 and closed terms M1, My € PCF,,
it [M1] and [M>] are equal elements of the domain [7], then

M1 gctx MQ . T.
Proof.
C[Mi] V,0: V = [C[M;]] = [V] (soundness)

= [C[M2]] = [V] (compositionality
on [[Ml]] = [[MQ]])

= C[M3] ,,,+ V' (adequacy)

and symmetrically. O

Slide 30

We turn now to the task of showing that PCF has a denotati@maastics with
these properties of compositionality, soundness and adyqu

5.6 Exercises

Exercise 5.6.1.Carry out the suggested proof of Proposition 5.4.1.

Exercise 5.6.2.Recall that Church’s fixpoint combinator in the untyped lalab

calculus isy & Af.(Az. f(zx)) (Az. f (zx)). Show that there are no PCF types
T1, T2, T3 SO that the typing relation

PEfnf:m.(nz:n.f(zxx)(fnz:mn. f(zx)): 73

is provable from the axioms and rules in Figure 2.

5.6 Exercises

Exercise 5.6.3.Define the following PCF terms:

plus & fix(fnp : nat — (nat — nat) .fnz : nat .fmy : nat .
if zero(y) then z else succ(px pred(y)))

times < fix(fnt : nat — (nat — nat) .fnz : nat . foy: nat.

if zero(y) then 0 else plus (t z pred(y)) x)

fact of fix(fnt : nat — nat .fnz : nat .

if zero(z) then succ(0) else times z(f pred(z))).

Show by induction om € N that for allm € N

plus succ™(0) suce™(0) |},,,, succ™ "(0)

times succ™(0) succ”(0) {,,,, succ™*"(0)

fact suce™(0) |},,,; succ'™(0).

53

54

5 PCF

55

6 Denotational Semantics of PCF

6.1 Denotation of types

For each PCF type, we define a domaifir] by induction on the structure of as
on Slide 31.

Denotational semantics of PCF types

def

[nat] = Ny (flat domain)
[bool] & B, (flat domain)
[t — 7] o [7] =[] (function domain).

where N = {0,1,2,... } and B = {true, false}.

Slide 31

6.2 Denotation of terms

For each PCF termd/ and type environment, recall from Proposition 5.3.1 that
there is at most one type for which the typing relatiol” - M : 7 is derivable
from the axioms and rules in Figure 2. We only give a denotaiGemantics to
such typeable terms. Specifically, given sudhandI’, we will define a continuous
function between domains

(9) [CFM]:[0] =[]

wherer is the type for whichl' - M : 7 holds, and wherdI'] is the following
dependent product domain (see Definition 3.1.2):

(10) e I @)l

z€dom(T)

56 6 DENOTATIONAL SEMANTICS OF PCF

The elements of the domain (10) will be callBeenvironmentsthey are functiong
mapping each variablein the domain of definition of to an elemenp(z) € [I'(x)]
in the domain which is the denotation of the typér) assigned ta: by the type
environment’. The continuous function (9) is defined by induction on thiecttire
of M, or equivalently, by induction on the derivation of the tygrelationl' - M : 7.
The definition is given on Slides 32—-35, where we show thecetieeach function

on al'-environmentp.

Denotational semantics of PCF terms, |

[T+ 0](p) ¥ 0 € [nat]

[T F true](p) © true € [bool]

[T I false](p) = false € [bool]

def

[['Fz](p) = p(z) € [I(z)] (z € dom(T)).

Slide 32

6.2 Denotation of terms

Denotational semantics of PCF terms, |l

[+ suce(M)](p) <

{HFMMM+1WHFMMM#
- it [T - M](p) =

[T - pred(M)](p) <

UFFMMmliWFFMMm
- it [T+ M](p)

IV

0
0,—
true if [[' = M](p)

[T I zero(M)](p) & {false it [T - M](p)

0
0
- [T M)(p) = -

v

Slide 33

Denotational semantics of PCF terms, Il

[T - if M; then M, else Ms](p) <

[T'E Ms](p) if[T'F Mi](p) = true
[+ Ms](p) it [I'F Mi](p) = false
- it [[' = My](p) =

[T+ My Ms](p) = ([T - Mi](p)) (IT - Ms](p))

Slide 34

57

58

6 DENOTATIONAL SEMANTICS OF PCF

Denotational semantics of PCF terms, IV

[TFfnz:7.M](p) o
A € [7]. [Tz — 7] = M](p[z — d])

(where z ¢ dom(T))

I - fix(M)](p) € fix([T F M](p)).

plxr — d| € [[x —] is the function mapping = to d € 7] and
otherwise acting like p.

fiz is the function assigning least fixed points to continuous functions.

Slide 35

Denotations of closed terms

If M € PCF,, then by definition) = M : 7 holds, so we get
[0+ M]:[0] — [r].

When I = (), the only I"-environment is the totally undefined
partial function—call it —.

So in this case [I'] is a one-element domain, { L }. Continuous
functions f : { L} — D are in bijection with elements f(L) € D, and
in particular we can identify the denotation of closed PCF terms with
elements of the domain denoting their type:

[M] ¥ [0F M](-)e[r] (M € PCF,)

Slide 36

6.2 Denotation of terms 59

[T = M] : [T] — [r] is a well-defined continuous function because the base
cases of the definition (on Slide 32) are continuous funst@md at each induction
step, in giving the denotation of a compound phrase in teffittseadenotations of its
immediate subphrases, we make use of constructions pregem@ntinuity—as we
now indicate.

0, true, and false: The denotation of these terms (Slide 32) are all functions
that are constantly equal to a particular value. We notedkentple 2.1.9 that such
functions are continuous.

variables: The denotation of a variable (Slide 32) is a projection fiorct We
noted in Definition 3.1.2 that such functions are continybdesause of the way lubs
are computed componentwise in dependent product domains.

Composition preserves continuity

Proposition. 1If f : D — E and g : £ — F are continuous
functions between cpo’s, then their composition

gof:D—F
(go £)(d) = g(f(d))

is also continuous.

Slide 37

succ, pred, and zero: We need to make use of the fact that composition of
functions preserves continuity—see the Proposition oteS3i7. We leave its proof
as a simple exercise. In particular, the denotatioswéc(M) (Slide 33) is the

60 6 DENOTATIONAL SEMANTICS OF PCF

composition
S| © [[F H M]]

where by induction hypothesj$ - M] : [I'] — N_ is a continuous function, and
wheres | : N; — N, is the continuous function on the flat dom&in induced, as
in Proposition 3.3.1, by the function: N — N mapping eacl ton + 1.

Similarly [I' - pred(M)] = p, o [I' F M] and[I' F zero(M)] = z, o [I' -
M], for suitable function® : N — N andz : N — B. (Only p is a properly partial
function, undefined di; s andz are totally defined functions.)

conditional: By induction hypothesis we have continuous functigfis— M;] :

[T] - B, [T v Ms] : [I] — [r], and[I' Ms] : [I] — [r]. Then

[T - if M; then M, else Ms] is continuous because we can express the definition
on Slide 34 in terms of composition, the pairing operatiofadposition 3.1.1, and
the continuous functionB; x ([7] x [r]) — [r] of Proposition 3.3.2:

[T F if M; then M, else Ms] = if o ([T + M;], ([T + M>], [T F Ms])).

application: By induction hypothesis we have continuous functipfis— M;] :
[T] — ([r] = [7']) and[T" + Ms] : [T] — [r]. Then[I' = M; Ms] is continuous
because we can express the definition on Slide 34 in termsnopasition, pairing,
and the evaluation functio#v : ([7] — [7']) x [r] — [7] that we proved continuous
in Proposition 3.2.1:

[[F + M1 MQ]] = €ev o <[[F H Ml]], [[F + M2H>

function abstraction: By induction hypothesis we have a continuous function
[Tz — 7] M] : [C[x — 7]] — [7'] with z ¢ dom(T"). Note that eacli'[z — 7]-
environmenty’ € [I'[z — 7]], can be uniquely expressed gls — d], wherep is
the restriction of the functiop’ to dom(I') and whered = p'(z); furthermore the
partial order respects this decompositignfx — di] C ps[z — da] in [I'[z — 7]]

iff p1 C poin [I'] andd; C dy in [r]. Thus we can identifyfT’[z — 7]] with
the binary product domaifl’] x [r]. So we can apply the ‘Currying’ operation of
Proposition 3.2.1 to obtain a continuous function

cur([Clz = 7| = M]) : [T] — ([7] = []D=[r — 7]

But this is precisely the function used to defffiet fnz : 7. M] on Slide 35.

6.3 Compositionality 61

fixpoints: By induction hypothesis we have a continuous funcffont+ M] :
[T]— [r—7]. Now[r— 7] is the function domaiifir] — [7] and from the definition
on Slide 35 we have thdl" - fix(M)] = fiz o [I' = M] is the composition with
the functionfiz : ([7] — [7]) — [r] assigning least fixpoints, which we proved
continuous in the Proposition on Slide 18.

6.3 Compositionality

The fact that the denotational semantics of PCF termengpositionati.e. that the

denotation of a compound term is a function of the denotatiohits immediate

subterms—is part and parcel of the definition [6f - AM] by induction on the

structure of M. So in particular, each of the ways of constructing terms GFP
respects equality of denotations: this is summarised inr€i®. Then the property
of closed terms stated on Slide 2/z.

[M] = [M'] = [C[M]] = [C[M"]]

follows from this by induction on the structure of the coriték—|. More generally,
for open terms we have

Proposition 6.3.1. Suppose

[TFM]=[C+M]:[T]—][]

and thatC[—] is a PCF context such thdt + C[M] : 7' andI” + C[M'] : 7’ hold
for some some typ€ and some type environmdrt Then

[T"=C[M]] = [T FC[M']] : [T'] — [7']-

62

6 DENOTATIONAL SEMANTICS OF PCF

If [T - M] = [T - M'] : [T] — [nat], then
[I'Fop(M)] = [I'-op(M')] : [IT— [7]

(where op = succ, pred and 7 = nat, or op = zero and 7 = bool).

If [T - M,] = [T+ M!] : [T] — [bool], [T + M,] = [T + MJ] : [T] — [r], and
[C'F M;] = [T F M.] : [I] — [r], then

[T+ if My then M, else M3] = [I' b if M| then M} else Mj] : [I'].

If [['+ M| =[CFM{]:[IT]—=[r—7]and [I'F M| =[T'F M;]:] — [r],
then

[T My M,] = [T - M. M}« [T] — [].
If [Tz — 7] = M] = [T[z — 7] - M"] : [T]z — 7]] — ['], then
[MFfnz:r. M]=[TFfoz:r. M]:[I]—[r— 7]
If [T+ M] = [T - M'] : [T] — [—], then

[T+ fix(M)] = [T F fix(M")] : [T] — [7].

Figure 5: Compositionality properties of [—]

6.4 Soundness 63

Substitution property of [[—]]

Proposition. Suppose

'-M:r
INES Sl VA

(so that by Proposition 5.3.1(ii) we also have
'+ M'[M/x]: 7). Thenforall p € [I']

[T+ M'[M/]](p) =
[Tz — 7] - M](plz — [T + M])).

In particular when I =), [z — 7 = M'] : [r] — [7'] and

[M'[M /2] = [& = = = M[([M])

Slide 38

The substitution property stated on Slide 38 gives anothgeet of the composi-
tional nature of the denotational semantics of PCF. It caprbeed by induction on
the structure of the termy/”.

6.4 Soundness

The second of the aims mentioned on Slide 27 is to show thatldsed PCF term
M evaluates to a valuE in the operational semantics, théh andV have the same
denotation.

Theorem 6.4.1. For all PCF typesr and all closed termd/,V € PCF, with V' a
value, if M |} V is derivable from the axioms and rules in Figu8e¢hen[M] and
[V] are equal elements of the dom4ir].

Proof. One uses Rule Induction for the inductively defined relatjorSpecifically,
defining

o(M,7,V) & [M]=[V]€lr]
one shows that the property(M,r,V) is closed under the axioms and rules in
Figure 3. We give the argument for rule$.(,,) and (J4,), and leave the others as
easy exercises.

64 6 DENOTATIONAL SEMANTICS OF PCF

Case (}op,)- Suppose

(11) [Mi] = [fnz: 7. M{] € [t — 7]

(12) [Mi[M; /=] = [V] € [7].

We have to prove thdt\/; M,] = [V] € [7]. But

[My Ma] = [M:]([M=]) by Slide 34

= [fna : r. M{]([Ms]) by (11)
= (Md €[] . [z — 7+ M](d))([Mz]) by Slide 35
= [z~ 7 = M{]([M:])
= [M{[M3/ z]] by Slide 38
=[v] by (12).

Case (Jg,). Suppose

(13) [M fix(M)] =[V] € [7].
We have to prove thdfix(M)] = [V] € [r]. But
[fix(M)] = fix([M]) by Slide 35
= [M](fix([M])) by fixed point property ofiz
= [M] [fix(M)] by Slide 35
= [M fix(M)] by Slide 34
= [V] by (13).

[

We have now established two of the three properties of thetdénnal semantics
of PCF stated on Slide 27 (and which in particular are needadgsé denotational
equality to prove PCF contextual equivalences). The thiogperty,adequacyis not
SO easy to prove as are the first two. We postpone the prodfumtiave introduced
a useful principle of induction tailored to reasoning ableaist fixed points. This is
the subject of the next section.

6.5 Exercises
Exercise 6.5.1.Prove the Propositions on Slides 37 and 38.

Exercise 6.5.2.Defining(2, o fix(fnz : 7. z), show thaf[<2,] is the least element
— of the domain|r]. Deduce thaffnz : 7. Q] = [Q;-.]-

65

7 Relating Denotational and Operational Semantics

We have already seen (in Section 6.4) that the denotati@nahistics of PCF given
in Section 6 issoundfor the operational semantics, in the sense defined on Slide 2
Here we prove the property @dequacydefined on that slide. So we have to prove
for any closed PCF term& andV of typer = nat or bool with V' a value, that

[MI=[V] = M4,V

Perhaps surprisingly, this is not easy to prove. We will esyp method due to
Plotkin (although not quite the one used in his original pagePCF, Plotkin 1977)
and Mulmuley (1987) making use of the following notion ofrifeal approximation’
relations.

7.1 Formal approximation relations

We define a certain family of binary relations
<d, C [r] x PCF,

indexed by the PCF types, Thus each«, relates elements of the domdin] to
closed PCF terms of type. We use infix notation and writé <, M instead of
(d,M) € <,. The definition of these relations, proceedsby induction on the
structure of the type and is given on Slide 39. (Read the definition in conjunction
with the definition of|r] given on Slide 31.)

The key property of the relations, is that they are respected by the various
syntax-forming operations of the PCF language. This is sachap by the Proposi-
tion on Slide 40 which makes use of the following terminology

Definition 7.1.1. For each typing environmerit (= a finite partial function from
variables to PCF types), B-substitutiono is a function mapping each variable
x € dom(T") to a closed PCF termi(z) of typeT'(z). Recall from Section 6.2 that
aT'-environmentp is a function mapping each variahtec dom(I") to an element
p(x) of the domai['(z)]. We define

p<r o W vre dom(TL') . p(x) <p(y) o(z).

66 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

Definitonof d <, M (d € [r], M € PCF,)

d <ty M E(deN = M, succt(0))

d <o M & (d = true = M,,, true)

& (d = false = M |,,,, false)

d<,r M EVe,N(e<, N = d(e) < M N)

Slide 39

Fundamental property of the relations <1,

Proposition. 1f I' = M : 7 is a valid PCF typing, then for all
I"-environments p and all I'-substitutions o

p<ro = [T+ M](p) < M[o]

e p <Ir o means that p(z) <Ip(,) o(x) holds for each
xz € dom(T).

e M o] is the PCF term resulting from the simultaneous substitution
of o(x) for z in M, each 2z € dom(T).

Slide 40

7.2 Proof of the Fundamental Property<of 67

Note that the Fundamental Property<of given on Slide 40 specialises in case
I' = () to give

[M] <, M

for all types and all closed PCF term& : . (Here we are using the notation for
denotations of closed terms introduced on Slide 36.) Udiig) tve can complete the
proof of the adequacy property, as shown on Slide 41.

Proofof [M] =[V] = M|,V (7 = nat, bool)

Case T = nat.

V = succ”(0) for some n € N and hence

[M] = [succ™(0)]
= n = [[M]] <, M by Fundamental Property (Slide 40)

= M |} succ”(0) by definition of <1t

Case 7 = bool is similar.

Slide 41

7.2 Proof of the Fundamental Property of<

To prove the Proposition on Slide 40 we need the followingprtes of the formal
approximation relations.

Lemma7.2.1. (i) — <, M holdsforallpM € PCF,.

(i) ForeachM € PCF,,{d | d <, M} is a chain-closed subset of the domain
[7]. Hence by (i), it is also an admissible subset (cf. Sh@e

@i) If dy C dq, dy <, My, andVV (M1 I,V = Myl V), thend, <, Ms.

68 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

Proof. Each of these properties follows easily by induction on ttnecsure ofr,
using the definitions ok, and of the evaluation relatialp,_. O

Proof of the Proposition on Slid#0 [Non-examinable] We use Rule Induction for
the inductively defined typing relatidn M : 7. Define

o, M, 1) Hrrm:r& Vp,o (p<po = [I'F M](p) <. M|o])

Then it suffices to show thait is closed under the axioms and rules in Figure 2 inductively
defining the typing relation.

Case (y). @(T',0, nat) holds because <,,,; 0.

Case (succ)- We have to prove thab(T", M, nat) implies® (T, succ(M), nat). But this
follows from the easily verified fact that

d <pat M = s, (d) <per suce(M)

wheres | : N; —N; isthe continuous function used in Section 6.2 to describe the denotation
of successor termsucc(M).

Cases {preq) and (:,ero) are similar to the previous case.

Case (hoo1).- (T, true, bool) holds becauselrue <., true. Similarly for
O (T, false, bool).

Case (ir). It suffices to show that ifl; <140, M1, do < Mo, andds <1, M3, then
(14) lf(dl, (dg, dg)) <, if M; then M, else M3

whereif is the continuous functionB, x ([r] x [r]) — [r] of Proposition 3.3.2 that was
used in Section 6.2 to describe the denotation of conditional termg. #f 1 € B, , then
if (dy, (de,d3)) = L and (14) holds by Lemma 7.2.1(i). So we may assulmne‘ 1, in
which case eitheil; = true or d, = false. We consider the casf = true; the argument
for the other case is similar.

Sincetrue = dy <poor M1, by the definition okiy,,,; (Slide 39) we havé/, |,,,, true.
It follows from rule (};) in Figure 3 that

YV (M3}, V = if M; then M, else M3 | V).
So Lemma 7.2.1(iii) applied td, <, M, yields that
dy <, if M; then M, else M;

and then sincésy = if (true, (ds, d3)) = if (d1, (d2, d3)), we get (14), as required.

7.2 Proof of the Fundamental Property<of 69

Case (yar). @(I',z,I'(x)) holds because if <r o, then for allz € dom(T") we have

[T+ 2l(p) = p(e) <riey o(@) = alo]

Case (). Supposed(I'lz — 7],M,7') andp <r o hold. We have to show that
[CFfnz:7.M](p) <y (fnz:7.M)[o],i.e. thatd <, N implies

(15) [THfz: 7. M](p)(d) <z (fanz:7.M)[o])N.

From Slide 35 we have

(16) [TEfz: 7. M](p)(d) =[x — 7] - M](p[z — d]).

Since(fnx : 7. M)[o] = fnz : 7. M[o] and (M|[c])[N/z] = M|o[z — N]|, by rule
(lh,) in Figure 3 we have

(17) YV (M[olz — N)J . V = ((faz:7.M)[o])N ., V).

Sincep <ir o andd <, N, we havep[r — d] <rpq. oz — NJ; so by®l[z —
7], M, ") we have

[Tz — 7| F M](plz — d]) <, Moz — NI]|.
Then (15) follows from this by applying Lemma 7.2.1(iii) to (16) and (17).

Case (app). It suffices to show that ifly <,_,,» My anddy <, M, thend(ds) <.
M M,. But this follows immediately from the definition ef,, _, ..

Case (5¢). Supposed(T', M, T — 7) holds. For any <ir o, we have to prove that
(18) [T - fix(M)](p) <, fix(M)[o].

Referring to Slide 35, we havg' i fix(M)](p) = fiz(f), wheref aof

Lemma 7.2.1(ii)

[+ M](p). By

S ' {d|d <, fix(M)[o]}

is an admissible subset of the doméirj. So by Scott’s Fixed Point Induction Principle
(Slide 21) to prove (18) it suffices to prove

Vde|[r] (de S = f(d)e?S).

Now sincep <r o, by ®(T', M, 7 — 7) and by definition off we havef <,._,, M|[o]|. So if
de S,i.e.d <, fix(M)[o], then by definition ok, ,, it is the case that

(19) f(d) Q- (M|o])(fix(M)[o]).
Rule (Jg,) in Figure 3 implies
(20) vV (M[o])(fix(M)[o]) .V = fix(M)[o] I, V).

Then applying Lemma 7.2.1(iii) to (19) and (20) yielf&l) <, fix(M)|[o], i.e. f(d) € S,
as required.]

70 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

7.3 Extensionality

Recall the notion of contextual equivalence of PCF termsnfislide 29. The
contextual preordelis the one-sided version of this relation defined on Slide 42.
Clearly

Fl‘MlgCtXMQIT = (F"MlgctnglT & F|_M2§ctxM1:7-)-

As usual we writeM; <. x Moy : 7 for 0 F My <.x My : 7 in caseM; and M are
closed terms.

The formal approximation relations, actually characterise the PCF contextual
preorder between closed terms, in the sense shown on Slide 43

Contextual preorder between PCF terms

Given PCF terms My, M5, PCF type 7, and a type environment
I', the relation | I' = M7 <i.ix Mo : 7 |is defined to hold iff

e Both the typings ' = M7 : Tand I' = M5 : 7 hold.

e For all PCF contexts C for which C[M7] and C[M3] are
closed terms of type 7y, where v = nat or v = bool,
and for all values V' : ~,

C[Mi] |,V = C[Ms] |, V.

Slide 42

7.3 Extensionality 71

Contextual preorder from formal approximation

Proposition. For all PCF types 7 and all closed terms
My, My € PCF.;

M1 Sctx MQ T & [[Ml]] <r MQ.

Slide 43

Proof of the Proposition on Slid&3. It is not hard to prove that for closed terms
My, My € PCF,, M; <.x M5 : 7 holds if and only if for allM € PCF,_ 001

M My o true = M My |4, true.

Now if [M1] <, M, then for anyM € PCF,_,;,,; Since by the Fundamental
Property of< we have[M| <1, 001 M, the definition of<,_,,,; implies that

(21) [M M) = [M]([M1]) <poor M M.

So if M My |, true, then[M M;] = true (by the Soundness property) and
hence by definition ok, from (21) we getM M, |;,,; true. Thus using the
characterisation of.;x mentioned above, we havd; <. Ms : 7.

This establishes the right-to-left implication on Slide 4r the converse, it is
enough to prove

(22) (d <r Mi & My <cix Mo ZT) = d <, Ms.

For then if My <.x Ms : 7, since[M;] <, M; (by the Fundamental Property),
(22) implies[M;] < M,. Property (22) follows by induction on the structure of the
typer, using the following easily verified properties €f.;:

72 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS
o If 7 = nat or bool, thenM; <.y My : 7 impliesVV : 7(My ||,V =
My . V).
o If My <iitx Mo : 17— 7', thenM; M < x MM : 7, forall M : 7.
O

The bi-implication on Slide 43 allows us to transfer the astenality properties
enjoyed by the domain partial orders to the contextual preorder, as shown on
Slide 44. (These kind of properties of PCF were first provedvliper 1977, First
Context Lemma, page 6.)

Extensionality properties of < ix

For 7 = bool or nat, M1 <.ix Mo : 7 holds if and only if

VVir (M, V = My, V).

At a function type 7 — 7', M1 <.ix Mo : T — 7’ holds if and
only if

VM :7 (My M < My M 2 7").

Slide 44

Proof of the properties on Slid&d. The ‘only if’ directions are easy consequences
of the definition of< .
For the ‘if’ direction in caser = bool or nat, we have

M) =[V]= M |,V by the adequacy property
= Myl V by assumption

and hencd M| <, M> by definition of < at these ground types. Now apply the
Proposition on Slide 43.

7.4 Exercises 73

For the ‘if’ direction in case of a function type— 7/, we have

d <, M = [Mi](d) <,» My M since[M;] <, M;
= [M1](d) <7 Mo M by (22), sinceMy M <cix My M : 7'
by assumption

and hencgM;] <,_,,» M- by definition of< at typer — 7’. So once again we can
apply the Proposition on Slide 43 to get the desired conmfusi H

7.4 Exercises

Exercise 7.4.1.For any PCF type and any closed term&/,, My € PCF,, show
that

(23) VV:T(MluTV<:>M2llTV) = M Zux Moy @ T.
[Hint: combine the Proposition on Slide 43 with Lemma 7.Ri)1)

Exercise 7.4.2.Use (23) to show that-conversion in valid up to contextual equiv-
alence in PCF, in the sense that forfallx : 7. M, € PCF,_,,» andM, € PCF,

(fnz: 7. M) My =, Mi[My/z]: 7.

Exercise 7.4.3.Is the converse of (23) valid at all types? [Hint: recall the e
tensionality property oK. at function types (Slide 44) and consider the terms
fix(fn f : (nat — nat) . f) andfnz : naet . fix(fn 2’ : nat . 2') of typenat — nat.]

74 7 RELATING DENOTATIONAL AND OPERATIONAL SEMANTICS

75

8 Full Abstraction

8.1 Failure of full abstraction

As we saw on Slide 30, the adequacy property implies thatestudl equivalence
of two PCF terms can be proved by showing that they have eqerbtdtions:
[My] = [Ms] € [7] = M1 Zx M,y : 7. Unfortunately the converse is faldhere
are contextually equivalence PCF terms with unequal ddrmts. In general one
says that a denotational semantickuily abstractif contextual equivalence coincides
with equality of denotation. Thus the denotational sentanti PCF using domains
and continuous functions fails to be fully abstract. Thesiaexample demonstrating
this failure is due to Plotkin (1977) and involves tparallel-or function shown on
Slide 45.

Parallel-or function

is the continuous function por : B, — (B, — B,) defined by

por | true false — —

true | true true true
false | true false —

— true — —

Slide 45

Contrastpor with the ‘sequential-or’ function shown on Slide 46. Botinétions
give the usual boolean ‘or’ function when restricted{tue, false}, but differ in
their behaviour at arguments involving the elementienoting ‘non-termination’.
Note thatpor(dy, ds) = true if eitherof dy or ds is true, even if the other argument
is —; whereasorelse(dy, dy) = true impliesd;, # —.

76 8 FULL ABSTRACTION

Left sequential-or function

The function orelse : B — (B, — B) defined by

orelse | true false — —

true true true true

false | true false — —

is the denotation of the PCF term
fnx : bool .fnz’ : bool .if z then true else z’

of type bool — (bool — bool).

Slide 46

As noted on Slide 46¢relse can be defined in PCF, in the sense that there is a
closed PCF ternd/ : bool — (bool — bool) with [M] = orelse. This termM tests
whether its first argument isrue or false (and so diverges if that first argument
diverges), in the first case returningue (leaving the second argument untouched)
and in the second case returning the second argument. Bsasgrforpor we have
the Proposition stated on Slide 47. We will not give the prafdhis proposition here.
Plotkin (1977) proves it via an ‘Activity Lemma’, but thereeaalternative approaches
using ‘stable’ continuous functions (Gunter 1992, p 181 g ‘sequential logical
relations’ (Sieber 1992). The key idea is that evaluatidA@t proceedsequentially
So whateverP is, evaluation ofP M; M, must at some point involve full evaluation
of either M or M, (P cannotignore its arguments if it is to retunue in some cases
andfalse in others); whereas an algorithm to compgiée at a pair of arguments must
compute the values of those arguments ‘in parallel’ in cas=diverges whilst the
other yields the valuérue.

One can exploit the undefinability gior in PCF to manufacture a pair of
contextually equivalent closed terms in PCF with unequabtiEtions. Such a pair is
given on Slide 48.

8.1 Failure of full abstraction

Undefinability of parallel-or

Proposition. There is no closed PCF term
P : bool — (bool — bool)
satisfying

[P] = por.

Slide 47

Failure of full abstraction

Proposition. For? = 1, 2 define

T ' fn f : bool — (bool — bool).

if (f true() then
if (f Qtrue) then
if (f false false) then Q else B;
else (2
else (2

where Bj def true, By def false, and

o fix(fnz : bool . z). Then

T Zetx To 1 (bool — (bool — bool)) — bool
[[Tl]] 75 [[TQ]] € (]Bg¢ — (]Bg¢ —)IB%L)) — B,

Slide 48

78 8 FULL ABSTRACTION

Proof of the Proposition on slid48. From the definition opor on Slide 45 and the
definition of [—] in Section 6.2, it is not hard to see that

true ifi=1
[T (por) = {false if 1 = 2.
Thus[Ti](por) # [12](por) and thereford 7] # [13].

To see thafl} =ix Tb : (bool — (bool — bool)) — bool we use the extensionality
results on Slide 44. Thus we have to show forMll: bool — (bool — bool) and
V € {true, false} that

(24) TyM oo Ve To MYy, V.
But the definition off; is such that'; M {,,,; V only holds if
M true2 |;,,; true, M Qtrue |},;,, true, M false false |},,,; false.
By the soundness property of Slide 27 this means that
[M](true)(—) = true, [M](—)(true) = true, [M](false)(false) = false.

(Recall from Exercise 6.5.2 thg®] = —.) It follows in that case that the continuous
function[M] : (B, x B,) — B, coincides withpor (see Exercise 8.4.1). But this
is impossible, by the Proposition on Slide 47. Thereforg {&4rivially satisfied for
all M, and thusl’; and7» are indeed contextually equivalent. H

8.2 PCF+por

The failure of full abstraction for the denotational senmesbf PCF can be repaired
by extending PCF with extra terms for those elements of timeaiio-theoretic model
that are not definable in the language as originally given.h&lee seen thator is
one such element ‘missing’ from PCF, and one of the remaekegsults in (Plotkin
1977) is that this is the only thing we need add to PCF to olftdiiabstraction. This
is stated without proof on Slides 49 and 50.

8.2 PCF+por

PCF+por
Expressions M :=--- | por(M, M)
. I'= My : bool T Ms: bool
Typing
I' - por(M;, My) : bool
Evaluation

My, true My by, true
por(M;y, Ms) |4, true por(My, Ms) {4, true

M Uy, false Mo |, false
por (M, My) |4, false

Slide 49

Plotkin’s full abstraction result

The denotational semantics of PCF+por terms is given by
extending the definition on Slides 32—-35 with the clause

[T - por(M;, My)](p) <

por([T" F Mi](p))(IT = M2](p))

where por : B, — (B, — B) is as on Slide 45.

This denotational semantics is fully abstract for contextual
equivalence of PCF+por terms:

Fl_MlgctxMQ:T =4 [[Fl_Ml]]:[[Fl_Mg]]

Slide 50

79

80 8 FULL ABSTRACTION

8.3 Fully abstract semantics for PCF

The evaluation of PCF terms involves a form of ‘sequentialithich is not reflected
in the denotational semantics of PCF using domains andraomis functions: the
continuous functiorpor does not denote any PCF term and this results in a mis-
match between denotational equality and contextual etpnea. But what precisely
does ‘sequentiality’ mean in general? Can we charactetrige an abstract way,
independent of the particular syntax of PCF terms, and hgiveea more refined
form of denotational semantics thiatfully abstract for contextual equivalence for
PCF (and for other types of language besides the simple,fpoational language
PCF)? These questions have motivated the development namhin theory and
denotational semantics since the appearance of (Plotkii)1%ee the survey by
Ong (1995), for example.

It is only within the last couple of years that definitive amssshave emerged even
for such an apparently simple language as PCF. O'Hearn aatk&{1994) construct
a fully abstract model of PCF by using certain kinds of ‘ladicelation’ to repair
the deficiencies of the standard model we have described Adtteough this does
provide a solution, it does not seem to give much insightin&nature of sequential
computation. By contrast, Abramsky, Jagadeesan, and taad 997) and Hyland
and Ong (1997) solve the problem by introducing what apptatse a radically
different and very promising approach to giving semantgsrtogramming languages
(not just PCF), based upon certain kinds of two-player gasee: (Abramsky 1997)
and (Hyland 1997) for introductions to this ‘game semahtics

Finally, a recent negative result by Loader should be mastio Note that the
material in Section 8.1 does not depend upon the presenagrdiers and arithmetic
in PCF. Let PCE denote the fragment of PCF only involvirdgol and the function
types formed from ittrue, false, conditionals, variables, function abstraction and
application, and a divergent terfy,,; : bool. SinceB, is a finite domain and
since the function domain formed from finite domains is adaiite, the domain
associated to each PEfype is finitel The domain model is adequate for RGid
hence there are only finitely many different RGE&rms of each type, up to contextual
equivalence. Given these finiteness properties, and thblyesimple nature of the
language, one might hope that the following questions ac&ddble (uniformly in
the PCE typer):

e Which elements ofr| are definable by PGRerms?

A further simplification arises from the fact that if the domaibsand D’ are finite, then they
contain no non-trivial chains and hence the continuous functions: D’ are just the monotone
functions.

8.4 Exercises 81

e When are two PCJof typer contextually equivalent?

Quite remarkably Loader (1996) shows that these are relysundecidable
questions.

8.4 Exercises

Exercise 8.4.1.Suppose that a monotonic functipn (B, x B,) — B, satisfies
p(true, —) = true, p(—,true) = true, and p(false, false) = false.

Show thatp coincides with the parallel-or function on Slide 45 in thexse that
p(dl, dg) = pOT(dl)(dg), for all di,do € B .

Exercise 8.4.2.Show that even though there are two evaluation rules on 3&de
with conclusionpor (M, Ms) {4, true, nevertheless the evaluation relation for
PCF+por is still deterministic (in the sense of Propositofhl).

Exercise 8.4.3.Give the axioms and rules for an inductively defined traasiti
relation for PCF+por. This should take the form of a binarlatien M — M’
between closed PCF+por terms. It should satisfy

MUV & M—*V

(where—* is the reflexive-transitive closure e#).

Postscript

The main mathematical idea introduced in these notes isghefiorder-theoretic
structures (domains and continuous functions) to provideting for solving fixed

point equations and thereby providing compositional dataal semantics of
various programming language constructs involving rdoars However, it turns

out that the domains required to give denotational sem&fdicmany programming
languages more complicated than PCF are themselves sgebifidixed point

equations. A usefully wide range of such ‘domain equatitias’e solutions (indeed,
have solutions that are sufficiently minimal to admit thedkof adequacy results
discussed here for PCF). It is beyond the scope of these twteEscribe any of the
various methods for constructing suddcursively defined domainghe interested
reader is referred to (Winskel 1993, Chapter 12), (Gunt&2] @hapter 10), or to
(Pitts 1996, Section 3) for a brief overview of a modern ajpgto

82

References

Abramsky, S. (1997). Semantics of interaction: an intrdiduncto game seman-
tics. In A. M. Pitts and P. Dybjer (Eds.$emantics and Logics of Computation
Publications of the Newton Institute, pp. 1-31. Cambridgeéversity Press.

Abramsky, S., R. Jagadeesan, and P. Malacaria (1997). Isailaation for PCF.
Information and Computation, ?—? to appear.

Gunter, C. A. (1992)Semantics of Programming Languages: Structures and
TechniquesFoundations of Computing. MIT Press.

Hyland, J. M. E. (1997). Game semantics. In A. M. Pitts and ybj& (Eds.),
Semantics and Logics of Computatidtublications of the Newton Institute,
pp. 131-184. Cambridge University Press.

Hyland, J. M. E. and C.-H. L. Ong (1997). On full abstraction PCF: I, 1l and
[ll. Information and Computation, ?—? to appear.

Loader, R. (1996, October). Finitary PCF is not decidableailable from
http://mc46.merton.ox.ac.uk/ loader/.

Milner, R. (1977). Fully abstract models of typed lambdé&gk Theoretical
Computer Science, 4-22.

Mulmuley, K. (1987) Full Abstraction and Semantic EquivalendT Press.

O’Hearn, P. W. and J. G. Riecke (1994). Kripke logical relas and PCF. To
appear.

Ong, C.-H. L. (1995). Correspondence between operatiarhdanotational se-
mantics. In S. Abramsky, D. Gabbay, and T. S. E. Maibaum jEdandbook
of Logic in Computer Science, Vol @p. 269-356. Oxford University Press.

Paulson, L. C. (1987).ogic and ComputationrCambridge University Press.

Pitts, A. M. (1996). Relational properties of domailrgormation and Computa-
tion 127, 66-90.

Plotkin, G. D. (1977). LCF considered as a programming lagguT heoretical
Computer Science, 223-255.

Scott, D. S. (1993). A type-theoretical alternative to ISWICUCH, OWHY.
Theoretical Computer Science 1211-440.

Sieber, K. (1992). Reasoning about sequential functioaslagical relations.
In M. P. Fourman, P. T. Johnstone, and A. M. Pitts (Ed&pplications of
Categories in Computer Science, Proceedings LMS SympgdSumtmam, UK,

83

84 REFERENCES

1991, Wolume 177 ofLMS Lecture Note Seriepp. 258-269. Cambridge
University Press.

Tennent, R. D. (1991)Semantics of Programming Languag®&gentice Hall
International (UK) Ltd.

Winskel, G. (1993)The Formal Semantics of Programming Languadesinda-
tions of Computing. Cambridge, Massachusetts: The MIT®res

Lectures Appraisal Form

If lecturing standards are to be maintained where they are high, and imprdezd they

are not, it is important for the lecturers to receive feedback about théurés:
Consequently, we would be grateful if you would complete this questionnaire, and either
return it to the lecturer in question, or to Jenni Cartwright in Austin 415. Thank you.

1.
2.
3.

Name of Lecturerbr Andrew M Pitts
Title of CourseCST Part |1 Denotational Semantics

How many lectures have you attended in this seriessofar?
Do you intend to go to the rest of them? Yes/No/Series finished

What do you expect to gain from these lectures? (Underline as appropriate)
Detailed coverage of selected topico®r Advanced material

Broad coverage of an area or Elementary material
Other (please specify)
Did you find the content: (place a vertical mark across the line)
Too basic --- Too complex
Too general --- Too specific
Well organised -----------=-==-mmmmsm oo Poorly organised
Easy to follow ---------m-mmmmme oo Hard to follow
Did you find the lecturer’s delivery: (place a vertical mark acrossitte) |
Too slow -—-—---m-mmmmm Too fast
Too general --- Too specific
TOO QUIEL —-—m—mmmm e Too loud
Halting = -------mmmmmmmm e Smooth
Monotonous Lively

Other comments on the delivery:

Was a satisfactory reading list provided? Yes/No
How might it be improved.

Apart from the recommendations suggested by your answers above, how else might
these lectures be improved? Do any specific lectures in this seriesaedi@ntion?
(Continue overleaf if necessary)

