1 Computational Logic 2008-Dr G.Bellin

Solutions Coursework 7, Part 1.

1. Modal Logic. A sequent calculus for the classical modal system $\mathbf{S} 4$ is given by the system G3C with in addition the following inference rules:

$$
\begin{array}{cc}
\square \Gamma \Rightarrow A, \diamond \Delta \\
\Pi, \square \Gamma \overrightarrow{A D, \diamond \Delta, \Lambda} \square-\mathrm{R} & \frac{\square \Gamma, A \Rightarrow \diamond \Delta}{\Pi, \diamond A, \square \Gamma \vec{A} \Rightarrow \Delta \Delta, \Lambda} \diamond-\mathrm{L} \\
\frac{A, \Gamma \Rightarrow \Delta}{\square A, \Gamma \Rightarrow \Delta} \square-\mathrm{L} & \frac{\Gamma \Rightarrow \Delta, \Delta}{\Gamma \Rightarrow \diamond A, \Delta} \diamond-\mathrm{R}
\end{array}
$$

Proofs in S4:

$$
\begin{aligned}
& \frac{P \Rightarrow \stackrel{2:}{P}}{P \Rightarrow \diamond P} \diamond-\mathrm{R}
\end{aligned}
$$

We can simplify proofs
by allowing non-atomic axioms:

To show that the converses of 1-8 are false it suffices to exhibit Kripke models (W, \leq, \Vdash) with \leq reflexive and transitive where they are false. Since such models can be constructed as a result of a semantic tableaux procedure for S4, (see Dispense di logica modale, pp.40-41), here we sketch the semantic tableaux procedure and then indicate the Kripke models.
Notice that only the Kripke models are required for the coursework: the procedure may be useful as a heuristic tool.
$1^{\prime}:$
open
$\frac{w_{1}: \Rightarrow P}{w_{0}: P \Rightarrow \square P} \square-\mathrm{R}$
Goal: (i) $w_{0} \Vdash P$, (ii) $w_{0} \Vdash \square P$;
Stage 0: P is in the antecedent;
thus we can set $w_{0} \Vdash P$ and (i) is OK.
Invert \square-R. Set $w_{0} \leq w_{1}$.
Stage 1: P is in the succedent only;
set $w_{1} \Vdash P$, (ii) is OK.
$\mathcal{M}=(W, \leq, \Vdash)$ where
$W=\left\{w_{0}, w_{1}\right\}$,
$\leq=\mathbf{R} \operatorname{Tr} \mathbf{C l}\left(w_{0} \leq w_{1}\right)$,
\Vdash satisfies $\left(w_{0} \Vdash P, w_{1} \Vdash P\right)$

2'. ;
open
$\frac{w_{1}: P \Rightarrow}{w_{0}: \diamond P \Rightarrow P} \diamond-\mathrm{L}$
Goal: (i) $w_{0} \Vdash \diamond P$, (ii) $w_{0} \Vdash P$;
Stage 0: P is in the succedent;
thus we can set $w_{0} \Vdash P P$ and (ii) is OK.
Invert \diamond-L. Set $w_{0} \leq w_{1}$.
Stage 1: P in the antecedent only;
set $w_{1} \Vdash P$, (i) is OK.

Models:

$$
\begin{aligned}
& \mathcal{M}=(W, \leq, \Vdash) \text { where } \\
& W=\left\{w_{0}, w_{1}\right\}, \\
& \leq=\mathbf{R T r} \operatorname{Cl}\left(w_{0} \leq w_{1}\right), \\
& \Vdash \text { satisfies }\left(w_{0} \Vdash P, w_{1} \Vdash P\right)
\end{aligned}
$$

Here $\boldsymbol{R} \operatorname{Tr} \mathbf{C l}(\{x \leq y\})$ is the reflexive and transitive closure of the set of accessibility conditions $\{x \leq y\}$.

3':

$$
\begin{aligned}
& \text { loop } \\
& \text { loop } \\
& \frac{w_{1}: \square \diamond \square P, \diamond \square P, \square P, P \Rightarrow}{\frac{w_{1}: \square \diamond \square P, \square P \Rightarrow}{w_{0}: \square \diamond \square P, \diamond \square P \Rightarrow} \diamond-\mathrm{L}} \quad \frac{\frac{w_{3}: \square \diamond \square P, \square P \Rightarrow}{w_{2}: \square \diamond \square P, \diamond \square P \Rightarrow P} \diamond-\mathrm{L}}{\frac{w_{2}: \square \diamond \square P \Rightarrow P}{w_{0}: \square \diamond \square P \Rightarrow \square P} \square-\mathrm{L}} \\
& \frac{w_{0}: \square \diamond \square P, \diamond \square P \Rightarrow \square P}{w_{0}: \square \diamond \square P \Rightarrow \square P} \square-\mathrm{L}
\end{aligned}
$$

- Goal: (i) $w_{0} \Vdash \square \diamond \square P$, (ii) $w_{0} \Vdash \square P$;

Stage 0: Invert \square-L; then we have two possibilities:
(a) invert \diamond-L, with principal formula $\diamond \square P$;
(b) invert \square-R, with principal formula $\square P$.

- Set $w_{0} \leq w_{1}$. Subgoal (a): $w_{1} \Vdash \square \diamond \square P$ and $w_{1} \Vdash \square P$.

Stage 1: invert \square-L: we obtain $\square \diamond \square P, \diamond \square P, \square P, P$ in the antecedent only; all modal formulas have been already considered in stages 0 and 1 when inverting rules; i.e., we have entered a loop: thus we stop on this branch letting $w_{1} \leq w_{1}$ only.

We have P in the antecedent, hence $w_{1} \Vdash P$; since $w_{1} \leq w_{1}$ only, we have also $w_{1} \Vdash \square P, w_{1} \Vdash \diamond \square P, w_{1} \Vdash \square \diamond \square P$. This satisfies Subgoal (a).

- Set $w_{0} \leq w_{2}$. Subgoal (b)(i) $w_{2} \Vdash \square \diamond \square P$ and (b)(ii) $w_{2} \Vdash P$.

Stage 2: we have P in succedent, subgoal (b)(ii) is OK;
invert $\square-\mathrm{L}$ and invert \diamond - L with principal formula $\diamond \square P$;

- Set $w_{2} \leq w_{3}$. Subgoal (b)(iii) $w_{3} \Vdash \diamond \square P$

Stage 3: Invert \square-R ; we obtain $\square \diamond \square P, \diamond \square P, \square P, P$ in the antecedent only, and we enter a loop; stop on this branch with $w_{3} \leq w_{3}$ only.
We have P is in the antecedent, hence $w_{1} \Vdash P$; since $w_{3} \leq w_{3}$ only, we have $w_{3} \Vdash \square P, w_{3} \Vdash \diamond \square P, w_{3} \Vdash \square \diamond \square P$, this satisfies subgoal (b)(i).

Models:

1. From the procedure we obtain the model $\mathcal{M}=(W, \leq, \Vdash)$ where

- $W=\left\{w_{0}, w_{1}, w_{2}, w_{3}\right\} ;$
- $\leq=\mathbf{R} \operatorname{Tr} \mathbf{C l}\left(w_{0} \leq w_{1}, w_{0} \leq w_{2}, w_{2} \leq w_{3}\right) ;$
- \Vdash satisfies $\left(w_{1} \Vdash P, w_{3} \Vdash P, w_{2} \Vdash P\right)$.

Since $w_{0} \leq w_{2}, w_{2} \Vdash P, w_{0} \Vdash \square P$; since $w_{2} \leq w_{3}$ and $w_{3} \leq w_{3}$ only, we have $w_{3} \Vdash \square P, w_{3} \Vdash \diamond \square P$ and $w_{2} \Vdash \diamond \square P$.
Similarly, $w_{0} \leq w_{1}, w_{1} \Vdash P$ and $w_{1} \leq w_{1}$ only. Hence $w_{1} \Vdash \square P, w_{1} \Vdash \diamond \square P$ and $w_{0} \Vdash \diamond \square P$.
Since $w_{0} \leq w_{i}$, for $i=0,1,2,3$ and for all $i, w_{i} \Vdash \diamond \square P$, we have $w_{0} \Vdash \square \diamond \square P$, as required.
2. A simpler model is $\mathcal{M}=(W, \leq, \Vdash)$ where

- $W=\left\{w_{0}, w_{1}\right\} ;$
- $\leq=\mathbf{R} \operatorname{Tr} \mathbf{C l}\left(w_{0} \leq w_{1}\right)$;
- \Vdash satisfies $\left(w_{0} \Vdash P P, w_{1} \Vdash P\right)$

Check that this suffices.
$\left(4^{\prime}\right): \mathcal{M}=(W, \leq, \Vdash)$ where

- $W=\left\{w_{0}, w_{1}\right\} ;$
- $\leq=\mathbf{R} \operatorname{Tr} \mathbf{C l}\left(w_{0} \leq w_{1}\right) ;$
- \Vdash satisfies $\left(w_{0} \Vdash P, w_{1} \Vdash P\right)$

Here $w_{0} \Vdash \diamond P$ but $w_{1} \Vdash \forall \diamond$, hence neither $w_{1} \Vdash \square \triangleright P$ nor $w_{0} \Vdash \square \triangleright>P$.
(5^{\prime}) and $\left(8^{\prime}\right): \mathcal{M}=(W, \leq, \Vdash)$ where

- $W=\left\{w_{0}, w_{1}, w_{2}\right\} ;$
- $\leq=\mathbf{R} \operatorname{Tr} \mathbf{C l}\left(w_{0} \leq w_{1}, w_{0} \leq w_{2}\right) ;$
- \Vdash satisfies $\left(w_{0} \Vdash P, w_{1} \Vdash P, w_{2} \Vdash P\right)$

Here $w_{1} \Vdash \square P$, hence $w_{0} \Vdash \diamond \square P$; but $w_{2} \Vdash \diamond \triangleright \square$, hence $w_{0} \Vdash \square \diamond \square P$ and $\left(5^{\prime}\right)$ is falsified at w_{0}.
Also $w_{1} \Vdash \square \diamond P$, hence $w_{0} \Vdash \diamond \square \diamond P$; but $w_{2} \Vdash \diamond P$, hence $w_{0} \Vdash \square \square \diamond A$ and $\left(8^{\prime}\right)$ is falsified at w_{0}.
$\left(6^{\prime}\right)$ and $\left(7^{\prime}\right): \mathcal{M}=(W, \leq, \Vdash)$ where

- $W=\left\{w_{0}, w_{1}\right\} ;$
- $\leq=\mathbf{R} \operatorname{Tr} \mathbf{C l}\left(w_{0} \leq w_{1}, w_{1} \leq w_{0}\right) ;$
- \Vdash satisfies $\left(w_{0} \Vdash P P, w_{1} \Vdash P\right.$

Here $w_{0}, w_{1} \Vdash \diamond P$, since $w_{1} \Vdash p$ thus $w_{0} \Vdash \square \diamond P$, as $w_{0} \leq w_{0}$, w_{1} only; but neither $w_{0} \Vdash \square P$ nor $w_{1} \Vdash \square P$, because $w_{0} \Vdash P P$ and $w_{0}, w_{1} \leq w_{0}$. Hence $w_{0} \| \forall \diamond \square P$, and (6^{\prime}) is falsified at w_{0} as required.
For the same analysis we have $w_{0} \Vdash \square \diamond P$, but neither $w_{0} \Vdash \square P$ nor $w_{1} \Vdash$ $\square P$, hence $w_{0} \Vdash \diamond \diamond \square$, as $w_{0} \leq w_{0}, w_{1}$ only; thus also $w_{0} \Vdash \square \square \diamond \square P$ and (7^{\prime}) is falsified at w_{0}.

