1 Computational Logic 2008 - Dr G.Bellin

Solutions Coursework 7, Part 1.

1. Modal Logic. A sequent calculus for the classical modal system S4 is given by the system G3C with in addition the following inference rules:

\[\Gamma \Rightarrow A, \Delta \]
\[\Pi, \Delta \Rightarrow \Box A, \Box \Delta, \Lambda \]
\[\Box A, \Gamma \Rightarrow \Delta \]

\[\Pi, \Delta \Rightarrow \Box A, \Box \Delta, \Lambda \]
\[\Gamma \Rightarrow \Delta \]
\[\Gamma \Rightarrow \Box A, \Delta \]

\[\Box A \Rightarrow \Gamma \]
\[\Pi, \Box A, \Delta \Rightarrow \Box \Delta, \Lambda \]
\[\Gamma \Rightarrow \Box A \]

Proofs in S4:

1:

\[P \Rightarrow P \]
\[\Box P \Rightarrow P \]
\[1: P \Rightarrow P \]

2:

\[P \Rightarrow P \]
\[P \Rightarrow \Diamond P \]
\[2: P \Rightarrow P \]

We can simplify proofs by allowing non-atomic axioms:

3:

\[\Box P \Rightarrow \Box P \]
\[\Box P \Rightarrow \Diamond P \]
\[\Diamond P \Rightarrow \Box \Diamond P \]
\[\Box P \Rightarrow \Box \Diamond P \]
\[\Diamond \Diamond P \Rightarrow \Diamond P \]
\[3: \Box P \Rightarrow \Box P \]

4:

\[\Diamond P \Rightarrow \Diamond P \]
\[\Box \Diamond P \Rightarrow \Diamond P \]
\[\Diamond \Box \Diamond P \Rightarrow \Diamond P \]
\[\Box \Diamond P \Rightarrow \Box \Diamond P \]
\[\Diamond \Box P \Rightarrow \Diamond P \]
\[4: \Diamond P \Rightarrow \Diamond P \]

5:

\[\Diamond \Diamond P \Rightarrow \Diamond P \]
\[\Box \Diamond \Diamond P \Rightarrow \Diamond P \]
\[\Diamond \Box \Diamond P \Rightarrow \Diamond P \]
\[\Box \Diamond \Diamond P \Rightarrow \Diamond P \]
\[\Diamond \Diamond \Diamond P \Rightarrow \Diamond \Diamond P \]
\[5: \Diamond \Diamond P \Rightarrow \Diamond P \]

6:

\[P \Rightarrow P \]
\[\Box P \Rightarrow P \]
\[\Diamond P \Rightarrow \Box P \]
\[\Box \Diamond P \Rightarrow \Diamond P \]
\[\Diamond \Box \Diamond P \Rightarrow \Diamond P \]
\[6: P \Rightarrow P \]

To show that the converses of 1-8 are false it suffices to exhibit Kripke models \((W, \leq, \models)\) with \(\leq\) reflexive and transitive where they are false. Since such models can be constructed as a result of a semantic tableaux procedure for S4, (see Dispense di logica modale, pp.40-41), here we sketch the semantic tableaux procedure and then indicate the Kripke models.

Notice that only the Kripke models are required for the coursework: the procedure may be useful as a heuristic tool.
1': open
\[w_1 : \square \Rightarrow P \] \[w_0 : P \Rightarrow \square P \] \[\Box - R \]

Goal: (i) \(w_0 \models P \), (ii) \(w_0 \not\models \square P \);
Stage 0: \(P \) is in the antecedent;
thus we can set \(w_0 \models P \) and (i) is OK.
Invert \(\Box - R \). Set \(w_0 \leq w_1 \).
Stage 1: \(P \) is in the succedent only;
set \(w_1 \not\models P \), (ii) is OK.

Models:
\(M = (W, \leq, \models) \) where
\(W = \{ w_0, w_1 \} \),
\[\leq = \text{RT} \text{Cl}(w_0 \leq w_1), \]
\(\models \) satisfies \((w_0 \models P, w_1 \not\models P) \)

Here \(\text{RT} \text{Cl}(\{x \leq y\}) \) is the reflexive and transitive closure of the set of accessibility conditions \(\{x \leq y\} \).

2': open
\[w_1 : P \Rightarrow \Diamond P \] \[w_0 : \Diamond P \Rightarrow P \] \[\Diamond - L \]

Goal: (i) \(w_0 \models \Diamond P \), (ii) \(w_0 \not\models P \);
Stage 0: \(P \) is in the succedent;
thus we can set \(w_0 \not\models P \) and (ii) is OK.
Invert \(\Diamond - L \). Set \(w_0 \leq w_1 \).
Stage 1: \(P \) in the antecedent only;
set \(w_1 \models P \), (i) is OK.

Stage 0: Invert \(\Box - L \); then we have two possibilities:
(a) invert \(\Diamond - L \), with principal formula \(\Diamond P \);
(b) invert \(\Box - R \), with principal formula \(\Box P \).
Set \(w_0 \leq w_1 \). Subgoal (a): \(w_1 \models \Box \Diamond P \) and \(w_1 \models \Box P \).

Stage 1: invert \(\Box - L \); we obtain \(\Box \Diamond P, \Box \Diamond P, \Box P \) in the antecedent only; all modal formulas have been already considered in stages 0 and 1 when inverting rules; i.e., we have entered a loop: thus we stop on this branch letting \(w_1 \leq w_1 \) only.
We have P in the antecedent, hence $w_1 \vdash P$; since $w_1 \leq w_1$ only, we have also $w_1 \vdash \Box P, w_1 \vdash \Diamond P, w_1 \vdash \Box \Diamond P$. This satisfies Subgoal (a).

- Set $w_0 \leq w_2$. Subgoal (b)(i) $w_2 \vdash \Box \Diamond P$ and (b)(ii) $w_2 \nmid P$.

Stage 2: we have P in succedent, subgoal (b)(ii) is OK; invert \Box-L and invert \Diamond-L with principal formula $\Diamond P$;

- Set $w_2 \leq w_3$. Subgoal (b)(iii) $w_3 \vdash \Diamond P$

Stage 3: Invert \Box-R; we obtain $\Box \Diamond P, \Diamond P, \Box P, P$ in the antecedent only, and we enter a loop; *stop on this branch* with $w_3 \leq w_3$ only.

We have P is in the antecedent, hence $w_1 \vdash P$; since $w_3 \leq w_3$ only, we have $w_3 \vdash \Box P, w_3 \vdash \Diamond P, w_3 \vdash \Box \Diamond P$, this satisfies subgoal (b)(i).

Models:

1. *From the procedure* we obtain the model $M = (W, \leq, \vdash)$ where

 - $W = \{w_0, w_1, w_2, w_3\}$;
 - $\leq = \text{RT}\text{rCl}(w_0 \leq w_1, w_0 \leq w_2, w_2 \leq w_3)$;
 - \vdash satisfies ($w_1 \vdash P, w_3 \vdash P, w_2 \nmid P$).

 Since $w_0 \leq w_2, w_2 \nmid P, w_0 \nmid \Box P$; since $w_2 \leq w_3$ and $w_3 \leq w_3$ only, we have $w_3 \vdash \Box P, w_3 \vdash \Diamond P$ and $w_2 \vdash \Diamond P$.

 Similarly, $w_0 \leq w_1, w_1 \vdash P$ and $w_1 \leq w_1$ only. Hence $w_1 \vdash \Box P, w_1 \vdash \Diamond P$ and $w_0 \vdash \Diamond P$.

 Since $w_0 \leq w_i$, for $i = 0, 1, 2, 3$ and for all $i, w_i \vdash \Diamond P$, we have $w_0 \vdash \Box \Diamond P$, as required.

2. *A simpler model is* $M = (W, \leq, \vdash)$ where

 - $W = \{w_0, w_1\}$;
 - $\leq = \text{RT}\text{rCl}(w_0 \leq w_1)$;
 - \vdash satisfies ($w_0 \nmid P, w_1 \vdash P$)

Check that this suffices.
(4') \(\mathcal{M} = (W, \leq, \models) \) where
- \(W = \{w_0, w_1\} \);
- \(\leq = \text{RTrCl}(w_0 \leq w_1) \);
- \(\models \) satisfies \(w_0 \models P, w_1 \not\models P \)

Here \(w_0 \models \Diamond P \) but \(w_1 \not\models \Diamond P \), hence neither \(w_1 \not\models \Box \Diamond P \) nor \(w_0 \not\models \Box \Diamond P \).

(5') and (8') \(\mathcal{M} = (W, \leq, \models) \) where
- \(W = \{w_0, w_1, w_2\} \);
- \(\leq = \text{RTrCl}(w_0 \leq w_1, w_0 \leq w_2) \);
- \(\models \) satisfies \(w_0 \not\models P, w_1 \models P, w_2 \not\models P \)

Here \(w_1 \models \Box P \), hence \(w_0 \models \Diamond \Box P \); but \(w_2 \not\models \Diamond \Box P \), hence \(w_0 \not\models \Box \Diamond \Box P \) and (5') is falsified at \(w_0 \).

Also \(w_1 \models \Box \Diamond P \), hence \(w_0 \models \Diamond \Box \Diamond P \); but \(w_2 \not\models \Diamond \Box P \), hence \(w_0 \not\models \Box \Diamond A \) and (8') is falsified at \(w_0 \).

(6') and (7') \(\mathcal{M} = (W, \leq, \models) \) where
- \(W = \{w_0, w_1\} \);
- \(\leq = \text{RTrCl}(w_0 \leq w_1, w_1 \leq w_0) \);
- \(\models \) satisfies \(w_0 \not\models P, w_1 \models P \)

Here \(w_0, w_1 \models \Diamond P \), since \(w_1 \models p \) thus \(w_0 \models \Box \Diamond P \), as \(w_0 \leq w_0, w_1 \) only; but neither \(w_0 \models \Box P \) nor \(w_1 \models \Box P \), because \(w_0 \not\models P \) and \(w_0, w_1 \leq w_0 \). Hence \(w_0 \not\models \Diamond \Box P \), and (6') is falsified at \(w_0 \) as required.

For the same analysis we have \(w_0 \models \Box \Diamond P \), but neither \(w_0 \models \Box P \) nor \(w_1 \models \Box P \), hence \(w_0 \not\models \Diamond \Box P \), as \(w_0 \leq w_0, w_1 \) only; thus also \(w_0 \not\models \Box \Diamond \Box P \) and (7') is falsified at \(w_0 \).