1 Computational Logic 2008 - Dr G.Bellin

Coursework 7

1. Modal Logic. A sequent calculus for the classical modal system S4 is given by the system G3C with in addition the following inference rules:

$$\begin{array}{c} \frac{\Box\Gamma \Rightarrow A, \Diamond\Delta}{\Pi, \Box\Gamma \Rightarrow \Box A, \Diamond\Delta, \Lambda} \Box \text{-R} \\ \frac{A, \Gamma \Rightarrow \Delta}{\Box A, \Gamma \Rightarrow \Delta} \Box \text{-L} \end{array} \qquad \begin{array}{c} \frac{\Box\Gamma, A \Rightarrow \Diamond\Delta}{\Pi, \Diamond A, \Box\Gamma \Rightarrow \Diamond\Delta, \Lambda} \Diamond \text{-L} \\ \frac{\Gamma \Rightarrow A, \Delta}{\Gamma \Rightarrow \Diamond A, \Delta} \Diamond \text{-R} \end{array}$$

Prove the following sequents in S4:

1. $\Box P \Rightarrow P;$	2. $P \Rightarrow \Diamond P;$
3. $\Box P \Rightarrow \Box \Diamond \Box P;$	4. $\Diamond \Box \Diamond P \Rightarrow \Diamond P;$
5. $\Box \Diamond \Box P \Rightarrow \Diamond \Box P;$	6. $\Diamond \Box P \Rightarrow \Diamond \Box \Diamond P;$
7. $\Box \Diamond \Box P \Rightarrow \Box \Diamond P;$	8. $\Box \Diamond P \Rightarrow \Diamond \Box \Diamond P$.

Show that the converses of 1-8 are false by exhibiting Kripke models (W, \leq, \Vdash) with \leq reflexive and transitive where they are false.

1'. $P \Rightarrow \Box P;$	2'. $\Diamond P \Rightarrow P;$
3'. $\Box \Diamond \Box P \Rightarrow \Box P;$	4'. $\Diamond P \Rightarrow \Diamond \Box \Diamond P;$
5'. $\Diamond \Box P \Rightarrow \Box \Diamond \Box P;$	6'. $\Diamond \Box \Diamond P \Rightarrow \Diamond \Box P$
7'. $\Box \Diamond P \Rightarrow \Box \Diamond \Box P;$	8'. $\Diamond \Box \Diamond P \Rightarrow \Box \Diamond P$.

2. Category Theory. (a) Let $\mathcal{M} = (M, \cdot_{\mathcal{M}}, 1_{\mathcal{M}})$ be a monoid. Show that \mathcal{M} is a category (with only one object M and with arrows the elements $m \in M$). [Remember that the multiplication operation of \mathcal{M} is associative and commutative and has $1_{\mathcal{M}}$ as the identity.]

(b) Given a monoid \mathcal{M} , an \mathcal{M} -set is a set A with a mapping $M \times A \to A$, written as $(m, a) \mapsto ma$, such that $(1, a) \mapsto a$ and $(m \cdot m', a) \mapsto m(m'a)$. Show that an \mathcal{M} -set may be regarded as a functor from \mathcal{M} to **Set** the category of sets. [**Note**: ma and m(m'a) are elements of A!]

(c) Let \mathcal{M} and \mathcal{M}' be monoids regarded as categories as in (a). Let $(A, F_{\mathcal{M}})$ be an \mathcal{M} -set and let $(A, F_{\mathcal{M}'})$ be an \mathcal{M}' set with $F_{\mathcal{M}} : \mathcal{M} \times A \to A$ and $F_{\mathcal{M}'} : \mathcal{M}' \times A \to A$ regarded as functors as in (b). Show that any homomorphism of monoids $h : \mathcal{M} \to \mathcal{M}'$ is a natural transformation between $F_{\mathcal{M}}$ and $F_{\mathcal{M}'}$. [Remember that an homomorphism $h : \mathcal{M} \to \mathcal{M}'$ of monoids has the property that $h(1_{\mathcal{M}}) = 1_{\mathcal{M}'}$ and that $h(m_1 \cdot_{\mathcal{M}} m_2) = h(m_1) \cdot_{\mathcal{M}'} h(m_2)$.]