1 Computational Logic 2008 - Dr G.Bellin

Coursework 5

1. Let \perp be a propositional constant interpreted as a logically absurd sentence. The principle "double negation is assertion" is formalized by the rule

(1) $[\neg A]$ of inference \vdots $\frac{\bot}{A} \bot - C$ $\frac{\neg A, \Gamma \vdash \bot}{\Gamma \vdash A} \bot - C$

Let $\mathbf{NK}^{\to \wedge \perp}$ be the Natural Deduction system having the \perp -C rule in addition to the introduction and elimination rules for implication and conjunction.

(a) Write a derivation of $((A \to B) \to A) \to A$ in $\mathbf{NK}^{\to \wedge \perp}$.

(b) **Show**: every derivation d in $\mathbf{NK}^{\to \wedge \perp}$ can be transformed into a derivation d' where all conclusions A of $a \perp -C$ rule are atomic.

2. The *leftmost reduction strategy* is the rule that prescribes to reduce always the leftmost redex, i.e., the redex $(\lambda x.u)t$ whose indicated parentheses occurs leftmost in the term.

The set Λ_I of the λ_I terms is defined as follows:

- every variable x belongs to Λ_I ;
- if $u, t \in \Lambda_I$, then $(u)i \in \Lambda_I$;
- if $u \in \Lambda_I$ and x actually occurs in u, then $\lambda x.u \in \Lambda_I$.

Show that every λ_I -term t is normalizable by leftmost reduction if and only if t is strongly normalizable.

Hint: Use induction on the lexicographical ordering of the pairs (l(v), c(v)), where l(v) is the length of the leftmost reduction of v and c(v) is the number of symbols of v. Distinguish the cases

- $v = \lambda x_1 \dots \lambda x_m \cdot ((\dots (x)t_1 \dots t_{n-1})t_n;$
- $v = \lambda x_1 \dots \lambda x_m . ((\dots ((\lambda x.u)t)t_1 \dots t_{n-1})t_n)$, and notice that here x occurs in u, hence if u[t/x] is strongly normalizable, then so is t.