
A TERM ASSIGNMENT FOR DUAL INTUITIONISTIC LOGIC.

GIANLUIGI BELLIN

Abstract. We study the proof-theory of co-Heyting algebras and present a cal-

culus of continuations typed in the disjunctive–subtractive fragment of dual intu-

itionistic logic. We give a single-assumption multiple-conclusions Natural Deduction

system NJrg for this logic: unlike the best-known treatments of multiple-conclusion

systems (e.g., Parigot’s λ−µ calculus, or Urban and Bierman’s term-calculus) here

the term-assignment is distributed to all conclusions, and exhibits several features of

calculi for concurrency, such as remote capture of variable and remote substitution.

The present construction can be regarded as the construction of a free co-Cartesian

closed category, dual to the familiar construction of a free Cartesian-closed category

from the syntax of positive intuitionistic logic. Here duality is extended from formu-

las to proofs and it is shown that every computation in our calculus of continuations

is isomorphic to a computation in the simply typed λ-calculus. An informal inter-

pretation of this system in the framework of the logic for pragmatics is suggested as

a calculus of refutations in the logic of conjectures.

§1. Preface. This paper is a contribution to the proof-theory of
co-Heyting algebras.1 A co-Heyting algebra is a (distributive) lattice
C such that its opposite Cop is a Heyting algebra. In Cop the operation
of Heyting implication B → A is defined by the familiar adjunction,
thus in the co-Heyting algebra C subtraction (i.e., co-implication)
A r B is defined dually

C ∧ B ≤ A

C ≤ B → A

A ≤ B ∨ C

A r B ≤ C

Thus we have an intuitionistic propositional formal system, where
formulas are built from atoms and a constant for falsity using dis-

junction and subtraction, which is the dual of a fragment of minimal

(positive intuitionistic) logic. Proofs can be represented in a sequent
calculus LJrg, where sequents are restricted to a single formula in
the antecedent; here the rules for subtraction are precisely dual to
the rules for implication

1Thanks to Stefano Berardi, Corrado Biasi, Tristan Crolard, Arnaud Fleury,
Nicola Gambino, Maria Emilia Maietti, Kurt Ranalter, Edmund Robinson and
Graham White for their help and cooperation at various stages of the project.

1

2 GIANLUIGI BELLIN

E ⇒ Υ, C D ⇒ Υ

E ⇒ Υ, C r D
r −R

C ⇒ D,Υ

C r D ⇒ Υ
r −L

Θ ⇒ A B,Θ ⇒ F

A ⊃ B,Θ ⇒ F
⊃ −R

A,Θ ⇒ B

Θ ⇒ A ⊃ B
⊃ −R

and similarly for disjunction. The rules of the sequent calculi LJ⊃∩

and LJrg in a G3 system [21] are given in the Appendix, Table 2.

We present a corresponding natural deduction system NJrg for
this logic: as Natural Deduction NJ⊃∩ for minimal logic is a multiple-

assumptions single-conclusion system, so ours is single-assumption

multiple-conclusions. Some subtle points need to be addressed in
the definition of this formalism, to be discussed below.

From the graphs of Natural Deduction derivations for minimal
logic, decorated with lambda terms, one constructs the free Cartesian-
closed category generated by the syntax ([16], pp. 55) in a familiar
way. We would like to dualize this construction, in particular, to
define a term assignment suitable for the construction of free co-
Cartesian closed categories. However, the following fact (spelt out
in [10], Proposition 1.15) reminds us that not every mathematical
model is suitable for such a dualization:

Fact. In the category of sets, the coexponent BA of two sets A and

B is defined if and only if A = ∅ or B = ∅.

It is instructive to glance at the proof. The coexponent of A and B
is an object BA together with an arrow ∋A,B: B → BA⊕A such that
for any arrow f : B → C ⊕ B there exists a unique f∗ : BA → C
such that the following diagram commutes:

B
f //

∋A,B ##HHHHHHHHH C ⊕ A

BA ⊕ A

f∗⊕idA

OO

In Sets the coexponents B∅ and ∅A are defined trivially. Conversely,
suppose that A 6= ∅ 6= B and that BA is defined. For each b ∈ B,
the (total) function ∋A,B chooses an element in the disjoint union

BA ⊕A, i.e., ∋A,B chooses either the left or the right side of BA ⊕A
and moreover f∗ ⊕ idA preserves the side. To find a counterexample
it suffices to choose f : B → C ⊕ B and b ∈ B such that the side of
f(b) is different from that of (f∗ ⊕ idA)◦ ∋A,B (b).

TERM ASSIGNMENT 3

Thus we shall not look for models in Sets. On the other hand,
models in Rel are readily available if we translate NJr,g into linear
logic and then look at the coherent semantics of the translation. The
following seems a suitable translation ()◦

(p)◦ = p
(⊥)◦ = 0

(C r D)◦ = C◦ ⊗ (?D◦)⊥ = C◦ ⊗ !(D◦⊥)
(C gD)◦ = ?(C◦ ⊕ D◦) = ?C◦℘?D◦

(E ⊢ C1, . . . , Cn)◦ = ?E◦ ⊢ ?C◦
1 , . . . , ?C◦

n

(namely, ?E◦ ⊢ ?C◦
1℘ . . . ℘?C◦

n)

Spelling out the term assignment for the linearization of LJrg

and the categorical term model means to dualize the construction of
Bierman’s thesis [7] and then extract the term model for LJrg itself;
we shall not do this here. We simply outline the definition of the term
assignment which appears to provide the required duality with the
simply typed lambda calculus. Namely, given the dual diagrams2

Θ × Π × Γ

1×t×1

��
Θ × A × Γ

u×1

��
B × Γ

v

��
F

F⊥

v⊥

��

B⊥ + Γ⊥

u⊥+1

��

Θ⊥ + A⊥ + Γ⊥

1+t⊥+1

��

Θ⊥ + Π⊥ + Γ⊥

we need to define the following data:

(i) terms ℓ : B⊥ → Θ⊥ and ℓ : B⊥ → A⊥ such that u⊥ = [ℓ, ℓ];
(ii) “continuation” terms contB⊥,A⊥ : B⊥ → (B⊥

r A⊥) + A⊥ and
postp(ℓ) : (B⊥

r A⊥) → ⊥;
(iii) a binding operation ()∗ such that ℓ∗ : (B⊥

r A⊥) → Θ⊥

2Here we write “+” instead of “⊕” for the coproduct, in order to avoid con-
fusions with Girard’s plus, mentioned above.

4 GIANLUIGI BELLIN

in order to produce the following dual diagram to the right.

Θ × Π × Γ

u∗×t×1

��
(A ⊃ B) × A × Γ

appA,B×1

��
B × Γ

v

��
F

F⊥

v⊥

��

B⊥ + Γ⊥

cont
B⊥,A⊥+1

��

(B⊥
r A⊥) + A⊥ + Γ⊥

[ℓ∗,postp(ℓ)] + t⊥ + 1

��

Θ⊥ + ⊥ + Π⊥ + Γ⊥

The possibility of finding the required ℓ and ℓ could be argued infor-
mally as follows. By definition our terms code the paths of the dual
proof-graph and also the overall structure of the dual proof-graph
can be reconstructed from the set of terms. For instance, the term
u⊥ : B⊥ → Θ⊥ + A⊥ is in fact a list ℓ of terms, an element of ℓ
for each summand X in Θ⊥ + A⊥. As the decomposition of u⊥ in ℓ
and ℓ identifies subgraphs of the graph, such decomposition must be
possible also in the category freely generated from the graph.

The co-Cartesian structure of our logic is more standard (since we
have implicitly assumed Girard’s isomorphism ?(C⊕D) ≡ ?C℘?D).
E.g., we need to implement the dual diagrams

Θ

t0

}}zz
zz

zz
zz

zz
zz

<t0,t1>

��

t1

!!D
DD

DD
DD

DD
DD

D

A0

v

��

(A0 ∩ A1)
π0oo π1 //

<v,3>

��

A1

3

��
B B × 1

π0oo π1 // 1

B⊥

v⊥

��

inl // B⊥ + ⊥

[v⊥,2]

��

⊥
inroo

2

��

A⊥
0

inl//

t⊥
0

""EE
EEE

EE
EEE

EE
(A⊥

0 gA⊥
1)

[t⊥
0

,t⊥
1

]

��

A⊥
1

inroo

t⊥
1

||yy
yy

yy
yy

yy
yy

Θ⊥

Here the multiple conclusion structure of derivations allows us to
assign distributed terms casel : A⊥

0 g A⊥
1 → A⊥

0 and caser : A⊥
0 g

A⊥
1 → A⊥

1 to the conclusions of an application of g-E such that

TERM ASSIGNMENT 5

inl; casel = 1A⊥
0

and inr; caser = 1A⊥
1

. We stipulate that a se-

quence inl; caser annihilates (i.e., reduces to nil) and that a sub-
stitution of nil for x in t annihilates t as well. Thus nil acts as the
identity of the coproduct and we use it to decorate terms introduced
by Weakening-R. However we distinguish between Weakening-R and
the logical rule ⊥-E; for the latter we introduce terms of the form
falseC : ⊥ −→C.

The aim of this paper is to spell out the analogue of the Curry-
Howard correspondence3 for NJrg; but a formal categorical defini-
tion is not given. The main focus is rather on the definition of the
natural deduction derivations and on the behaviour of the operation
()∗ and of the terms contB⊥,A⊥ and postp that decorate the rules
for subtraction.4

1.1. Main result.

Theorem 1. There exists a duality ()⊥ between the propositions,

the natural deduction derivations and the term assignments of the

systems NJ⊃∩ and NJrg such that

1. if x : Θ ⊲ t : A is a typing derivation in NJ⊃∩, then

(x : Θ ⊲ t : A)⊥ = a : A⊥
⊲ t⊥ : Θ⊥

is a typing derivation in NJrg, and conversely;

2. (isomorphism) if x : Θ ⊲ t0 : A and t0 β-reduces to t1, then t⊥0
β-reduces to t⊥1 , and conversely.

We shall need a main lemma:
3Namely, the correspondence between propositions of intuitionistic logic and

types, on one hand, and between derivations in NJ and λ-terms, on the other,
resulting in the abstract characterization of the Curry-Howard correspondence
in terms of Cartesian closed categories.

4In [11] Tristan Crolard presents a Natural Deduction system and a term
assignment for Subtractive Logic, called λµ→+×−-calculus, in the tradition
of Parigot’s λµ-calculus for classical Natural Deduction. Restrictions on the
implication-introduction and subtraction-elimination rules are introduced to de-
fine a constructive system of Subtractive Logic and its term calculus. Clearly we
work in a much more restricted environment, in which a duality result with the
simply typed lambda calculus holds. But even extending our logic as in [4] and
introducing negations, the crucial difference of our approach is that our terms
are distributed over the conclusions (with the possible exception of postpone
terms), and therefore there is no focalization nor defocalization and no obvious
way to introduce a µ-operator. It is an interesting problem for future research
to find a more general framework in which both our intuitionistic systems and
classical proof-theory could be fully expressed.

6 GIANLUIGI BELLIN

Lemma 1. (substitution) If

(Θ2 ⊲ u : A)⊥ = a : A⊥
⊲ u⊥ : Θ⊥

2

and

(x : A, Θ1 ⊲ t : B)⊥ = b : B⊥
⊲ ℓ : Θ⊥

1 , ℓ : A⊥

then

(Θ2, Θ1 ⊲ t[u/x] : B)⊥ = b : B⊥
⊲ l(t⊥) : Θ⊥

1 , u⊥[ℓ/a] : Θ⊥
2

and simmetrically.

Notice that if Θ ⊲ t : A then t⊥ is not typed with A⊥, but with the
Θ⊥, i.e., with the dual of the context of the original type derivation,
and t⊥ is a list of terms distributed over Θ⊥. This remark seems
related to the following fact: while in the lambda calculus a reduction
operates within a redex, by substitution of a subterm in another
subterm, in the dual calculus reductions involving cont and postp

operate outside the redex, by remote substitutions in the context.

§2. Informal interpretation. As the proof theory of co-Heyting
algebras formalizes a logic, we must specify which areas of informal

reasoning such a logic is about. In fact we do have a “story to
tell” about our technical results, as our work in dual intuitionistic
logic is also part of investigations on the logic for pragmatics. This
research project, introduced by Dalla Pozza and Garola in [12, 13]
and developed in [4, 6, 5], aims at a formal characterization of the
logical properties of illocutionary operators: it is concerned, e.g.,
with the operations by which we performs the act of asserting a
proposition as true, either on the basis of a mathematical proof or
by conclusive empirical evidence or by the recognition of physical
necessity, or the act of taking a proposition as an obligation, either
on the basis of a moral principle or by inference within a normative
system.

The following is a rough account of the viewpoint in Dalla Pozza
and Garola [12]. There is a logic of propositions and a logic of judge-

ments. Propositions are entities which can be true of false, judge-
ments are acts which can be justified or unjustified. The logic of
propositions is about truth according to classical semantics. The
logic of judgements gives conditions for the justification of acts of
judgements. An instance of an elementary act of judgement is the
assertion of a proposition α, which is justified by the capacity to

TERM ASSIGNMENT 7

exhibit a proof of it, if α is a mathematical proposition, or conclusive
empirical evidence if α is about states of affairs. It is then claimed
that the justification of complex acts of judgement must be in terms
of Heyting’s interpretation of intuitionistic connectives: for instance,
a conditional judgement where the assertion of β depends on the
assertibility of α is justified by a method that transforms any justi-
fication for the assertion of α into a justification for the assertion of
β.

Which criteria shall we follow in extending the logic for pragmat-
ics to a logic of conjectures? First of all, such a logic cannot deal
with positive justifications of acts of conjecture, e.g., in terms of
the likelihood of their propositional content being true: such a task
would require probabilistic techniques not available here. Second, a
characterization of the relations between acts of assertion and acts
of conjecture may be based upon the similarity between what counts
as a justification of the assertion that α is true, on one hand, and
what counts as a refutation of the conjecture that α is false, on the
other. Certainly in Dalla Pozza and Garola’s approach, proving the

truth of the proposition α is very close to refuting the truth of ¬α.
5 Thus a formal treatment of the logic of conjectures could have
the form of a calculus of refutations and the overall system should
axiomatize a notion of duality between assertions and conjectures.
Third, pragmatic connectives are regarded here as operations which
express ways of building up complex acts of assertion or of conjecture
from elementary acts of assertion and conjecture. The justification
of a complex act depends on the justification of the component acts,
possibly through intensional operations.

We are aware that there are notions of conjecturing in natural lan-
guage and in scientific discourse which are not dual to asserting. In
[4] the issue has been briefly discussed with reference to a (possibly)
related philosophical issue, the atemporal existence of mathematical
proofs. However a detailed philosophical investigation about notions
of conjectures and assertions is more significant in the desing of a
formal system extending both LJ⊃∩ and LJrg, as in [4], indeed it
is essential in making choices about such a system. Here for the

5In the formula H¬α, the negation is classical negation, not the intuitionistic
one: e.g., the conjecture H ¬α may be refuted also by evidence that a certain
state of affairs α does not obtain, not necessarily by a proof that there would be
a contradiction assuming that α obtains.

8 GIANLUIGI BELLIN

time being we assume that there are structural similarities in com-
mon sense reasoning between the processes of justifying an assertion
and of refuting a conjecture; we will appeal to these similarities in
informal explanations of the conjectural connectives of LJrg by com-
parison with the corresponding assertive ones of LJ⊃∩.

Therefore our language for the logic of pragmatics deals with act-

types of assertion ϑ and act-types of conjecture υ.

Definition 1. (i) The languages Lϑ and Lυ are generated from
an infinite list of atomic propositions pi by the following grammars:

α := p | ¬p

ϑ := ⊢ α |
∨

| ϑ ⊃ ϑ | ϑ ∩ ϑ

υ := Hα |
∧

| υ r υ | υ g υ

(ii) We define the duality ()⊥ between L−
ϑ and L−

υ inductively thus:

(⊢ p)⊥ = H¬p (H p)⊥ = ⊢ ¬p
(⊢ ¬p)⊥ = H p (H¬p)⊥ = ⊢ p

(
∨

)⊥ =
∧

(
∧

)⊥ =
∨

(ϑ0 ⊃ ϑ1)
⊥ = ϑ⊥

1 r ϑ⊥
0 (υ0 r υ1)

⊥ = υ⊥
1 ⊃ υ⊥

0

(ϑ0 ∩ ϑ1)
⊥ = ϑ⊥

0 g ϑ⊥
1 (υ0 g υ1)

⊥ = υ⊥
0 ∩ υ⊥

1

§3. Natural Deduction. Natural deduction derivations in NJ

represent the intuitionistic entailment relation Γ − A which holds
between a set of hypotheses Γ and a conclusion A. The representa-
tion of derivations as directed trees is deceptively simple: already in
NJ⊃∩ of NJ proof-graphs are trees with complex additional struc-

ture of logical, computational and geometric significance. A massive
amount of research in proof theory, type theory and categorical logic,
also stimulated by the Curry and Howard correpondence, has revis-
ited this subject and thus Natural Deduction for minimal logic is well
understood. However it often happens that investigations extending
the scope of Gentzen’s methods are forced to go back to the basic
definitions.

It is important to notice, not just as an historical point but also in
order to put current research in perspective, that in Prawitz’s thesis
[18] two distinct representations of Natural Deduction derivations are
suggested, which may be called sequent-style (or type-theoretic) and
graphical, respectively. On one hand, natural deductions may be re-
garded as trees whose edges are labelled with sequents, the formulas

TERM ASSIGNMENT 9

in the antecedent referring to the assumption classes which remain
open at that edge; correct derivations are inductively generated from
assumptions of the form A, Γ − A according to Prawitz’s deduction

rules. This view is common in type theory (see, e.g., Krivine [15],
p. 34) where the assignment of variables to assumptions makes the
discharging operations completely explicit (otherwise, the use of la-

belled formulas to characterize assumption classes is necessary).

On the other hand, we may regard proof-trees as directed labelled
graphs, whose vertices are labelled with rules of inference and edges
are labelled with formulas; discharging functions are pointers from
leaves representing discharged assumptions to vertices representing
discharging inferences (⊃-I and ∨-E in the propositional fragment).
Discharging functions must satisfy a correctness condition: with each
leaf in their domain they must associate a vertex occurring below

that leaf in the tree-ordering; this correctness condition is in fact
suggested by Prawitz’s notation of the rules of inference →-I and
∨-E.

Fundamental is the treatment of the tree transformations corre-
sponding to the structural rules of Weakening and Contraction in
the sequent calculus. (The consideration of Exchange, leading to
braided systems, is beyond the scope of our investigation.) In the
type-theoretical (sequent-style) representation, irrelevant assump-
tions may appear in the sequents whose variable do not occur in
the term and an assumptions class is represented by labelling dif-
ferent leaves with a single variable, therefore Contraction can be
represented by renaming of variables. In the graphical representa-
tion, in order to fix the identity of the derivation represented by a
given correct graph some notation must be added to represent

(a) the partition of leaves into assumption and
(b) irrelevant assumptions that appear in the intended entailment

relation but not in the graph;6

also the discharging function must be compatible with the partition
in (a).

6In Prawitz [18] proof-graphs do not convey the information in (b), thus a
correct proof-graph identifies a minimal set Γ of hypotheses such that Γ − A but
represents an infinite set of entailments, namely, all the Π − A such that Γ ⊆ Π.
Since in [18] the &-I rule is multiplicative but the &-E rules are additive (and
dually for disjunction), in the normalization process some actual dependencies
may become vacuous; thus without representation of vacuous dependencies the
entailment relation represented by the proof-graph changes with normalization.

10 GIANLUIGI BELLIN

Prawitz’s thesis fills in the gaps of both representations by combin-
ing them: we may say that a proof-graph with a discharging function
is a correct representation of (an infinite class of) Natural Deduction
derivations if it can be inductively generated using the global rules
of deduction.More recent developments (as Girard’s proof nets for
linear logic and further generalizations to affine, intuitionistic, non-
commutative and braided variants of linear logic) show that the in-
terplay between the two representations (as well between the sequent
calculus and natural deduction) is a fruitful research tool. Although
we are concerned mostly with natural deduction as a tool for typing
derivations, we find it conceptually convenient to follow Prawitz and
retain both representations7.

In a directed proof-tree, the direction from the leaves to the root,
may be called main orientation. Prawitz’s analysis of branches in
normal deductions for the fragment NJ⊃∩ ([18] p. 41) identifies an
elimination part, where vertices are ⊃-E (applications) or ∩-E (pro-
jections), followed by an introduction part, where vertices are ⊃-I
(λ-abstractions) or ∩-I (pairings). Branches are connected at an
application vertex ⊃-E: the child branch terminates at the minor
premise (argument position) while the parent branch continues from
the major premise (function position) to the conclusion. This anal-
ysis identifies a “flow of information”, from the elimination part of
a branch to its introduction part, and from a branch to its parent,
which may be called the input-output orientation8. It is a remarkable
feature of Natural Deduction for NJ⊃∩ that the input-output orien-
tation and the main orientation coincide in a deduction tree. In the
sequent calculus LJ the input-output orientation is “contravariant”
in the antecedent and “covariant” in the succedent, namely, it runs
from a formula to its ancestors in the antecedent and conversely in
the succedent.

7We shall use the symbol “⇒” for the consequence relation in the sequent
calculus, “−” in the deduction rules of Natural Deduction systems and “⊲” in
type derivations.

8The terminology comes from research communities working on process calculi
and on linear logic in the early 1990s. Prawitz’ analysis of branches is robust and
has clear counterparts in the lambda-calculus, in game semantics and in other
representations of proofs. See also the applications of this concept to proof-nets
in [2] and in F. Lamarche’s essential nets, fruitful both for the abstract theory
[3] and for applications to complexity theory [17].

TERM ASSIGNMENT 11

In the full system NJ, which includes the (ordinary assertive) dis-
junction ∨, the analysis of branches is subsumed in that of paths

([18], pp. 52-3). Paths extend branches but in addition they go from
the major premise of a ∨-elimination I to any one of the assump-
tions in the classes discharged by the inference I. Thus in the case of
∨-elimination the main orientation diverges from input-output ori-
entation: here the tree structure of the derivation performs a control

function, namely, the verification that the minor premises of the in-
ference coincide.

3.1. Natural Deduction for conjectural reasoning. As in
NJ⊃∩, also in NJrg two representations of proofs are possible,
one “sequent-style” (type-theoretic) and the other “graphical”; also
fundamental is the representation of Weakening and Contraction,
here on the conclusions. The graphical representation of NJrg

derivations merely relabels a proof-graph for NJ⊃∩ after “turning
it upside down”: additional notation is introduced to specify con-

clusion classes and to represent irrelevant conclusions; assumption-
discharging function are replaced by conclusion-discharging ones.
Prawitz’s branches are connected at a r-I vertex, the child branch
beginning at the minor conclusion. The “flow of information” still
goes from the elimination part to the introduction part of a branch,
but from the introduction part of a parent branch it goes to the
elimination part of a child branch. In our graphical representation
of rules of inference, edges belonging to the elimination (input) part
or introduction part (output) part are marked with I or O, respec-
tively. This yields inference rules for subtraction perfectly symmetric
to those for implication: r-I is dual to ⊃-E:

...

υO
1

r-I
υI

2 (υ1 r υ2)
O

...
...

...

(ϑ1 ⊃ ϑ2)
I

...

ϑO
1

⊃-E
ϑI

2

...

r-E is dual to ⊃-I:

...

(υ2 r υ1)
I

r-E
υI

2

...

[υO
1 . . . υO

1]

[ϑ1]
I

...

ϑO
2

⊃-I
(ϑ1 ⊃ ϑ2)

O

...

12 GIANLUIGI BELLIN

For the sequent-style and type theoretic representation, there is no
problem in giving multiple-conclusion deduction rules to be used as
clauses for the inductive definition of derivations, which follows the
main orientation of the derivation, in all cases except for r-E: here
indeed (looking at the graphical representation) the inductive step
must reverse the main orientation and, taking the the subderivation
starting from the conclusion as inductive clause, extend it upwards
to the premise. The problem, of course, is solved by adopting the
familiar form of elimination rules and taking a multi-premises rule.
This suggests also an alternative graphical representation of the elim-
ination rule:

...

(υ2 r υ1)
I

[υ2]
I

...

υO
1 . . . υO

1
r-E

The deduction rules for subtraction are
r-I:

ǫ − Υ, υ1

ǫ − Υ, υ2, υ1 r υ2

r-E:
ǫ − Υ, υ1 r υ2 υ1 − Υ′, υ2

ǫ − Υ, Υ′

The r-introduction rule has following “operational interpretation”:
if from the conjecture ǫ the alternative conjectures Υ, υ1 follow, then
we may we specify our alternative υ1 by taking it as “υ1 but not υ2”,
on one hand, and by considering also υ2 as an alternative, on the
other hand.

The r-elimination rule can be explained as follows. Suppose we
have two arguments, one showing that ǫ yields the alternatives Υ or
else “υ1 but not υ2”, and another showing that υ1 yields the alterna-
tives Υ′ or υ2; then after assuming ǫ we are left with the alternatives
Υ and Υ′, but υ1 \ υ2 is no longer a consistent option.

The dynamics of our calculus is illustrated by the following reduc-
tion of a cut (maximal formula) υ1 r υ2:

ǫ − Υ, υ1
r-I

ǫ − Υ, υ2, υ1 r υ2 υ1 − Υ′, υ2
r-E

ǫ − Υ,Υ′, υ2

reduces to

ǫ − Υ, Υ′, υ2

TERM ASSIGNMENT 13

The rules of inference for disjunction are unproblematic: they are
the exact dual of those for conjunction

...

υO
i

gi-I
(υ0 g υ1)

O

...

for i = 0, 1

...

(ϑ0 ∩ ϑ1)
I

∩i-E
ϑI

i

...
and

...

(υ0 g υ1)
I

g-E
υI

0 υI
1

...
...

...

ϑO
0

...

ϑO
1

∩-I
(ϑ0 ∩ ϑ1)

O

...
Similarly unproblematic are the deduction rules and the dynamics
of normalization for g.

The rules of inference and deduction for NJ⊃∩ and NJrg are listed
in the Appendix in Tables 3 and 4. The reduction rules are listed in
Table 5 and the commutation rules resulting from the absurdity and
validity rules in Table 6.

§4. Term Assignment for conjectural reasoning.

Definition 2. We are given a countable set of free variables (de-
noted by x, y, a, b), a contable set of globally bound variables (denoted
by x) and an injective operation (. . .)(−) which given a variable x and
a term ℓ returns a bound variable x, written xℓ.

(i) Terms and lists of terms are defined simulaneously by the follow-
ing grammar:

t := x | xℓ | false (ℓ1 . . . ℓn) | inl(ℓ) | inr(ℓ) | casel (ℓ) | caser (ℓ) |
continue from (xℓ) using(ℓ) | postpone (x :: ℓ) with (xℓ′) until(ℓ

′)
ℓ := () | t · ℓ

with the usual associative operation of append:

() ∗ ℓ′ = ℓ′ (t · ℓ) ∗ ℓ′ = t · (ℓ ∗ ℓ′).

If ℓ = (t1, . . . , tn) is a list and σ a permutation on n then we write
ℓσ for (tσ(1), . . . , tσ(n)). Also, if ℓ = ℓ1, . . . , ℓn and ℓ′ = ℓ′1, . . . , ℓ′n are

vectors of lists (of the same length n), then ℓ∗ℓ′ = ℓ1 ∗ℓ′1, . . . , ℓn ∗ℓ′n.

(ii) Term expansion: Let op () be one of x(), false (ℓ1 . . . () . . . ℓn),
inl(), inr(), casel(), caser(), continue from (x()) using ()
or postpone (x :: ℓ′) with (x()) using().

14 GIANLUIGI BELLIN

Then the expansion of op (ℓ) is the list defined inductively thus:

op () = () op (t · ℓ) = op (t) · op (ℓ)

Remark. By term expansion, a term consisting of an operator ap-
plied to a list of terms can always be turned into a list of terms;
thus terms may always be trasformed into an expanded form where
operators are applied only to terms, except for expressions (x :: ℓ′)
occurring in terms of the form postpone (x :: ℓ′) with xℓ′ using (t).

Definition 3. The free variables FV (ℓ) in a list of terms ℓ are
defined as follows:

FV (()) = ∅
FV (t · ℓ) = FV (t) ∪ FV (ℓ)

FV (x) = {x}
FV (xℓ) = FV (ℓ)

FV (false (ℓ1 . . . ℓn)) =
⋃

i≤n FV (ℓi)

FV (inl(ℓ)) = FV (inr(ℓ)) = FV (ℓ)
FV (casel(ℓ)) = FV (caser(ℓ)) = FV (ℓ)

FV (continue from (xℓ) using (ℓ)) = FV (ℓ)
FV (postpone (x :: ℓ) with (xℓ′) until (ℓ′) = FV (ℓ′) ∪ FV (ℓ) \ {x}.

Definition 4. Substitution of lists of terms within lists of terms
is defined from the usual substitution (avoiding capture of free vari-
ables) as follows:

()[ℓ′/x] = () t · ℓ[ℓ′/x] = t[ℓ′/x] · ℓ[ℓ′/x]
t[()/x] = () t[u · ℓ/x] = t[u/x] · t[ℓ/x]

If ℓ is a vector (ℓ1, . . . , ℓm), then ℓ[ℓ′/x] = (ℓ1[ℓ
′/x], . . . , ℓm[ℓ′/x]).

Definition 5. β-reduction ℓ β ℓ′ is defined as follows:

casel (inl ℓ) β ℓ; caser (inr ℓ) β ℓ;
casel (inr ℓ) β (); caser (inl ℓ) β ();

postpone (x :: ℓ′) with xc until

(continue from (yℓ) using(ℓ)) β {yℓ ::= ℓ′[ℓ/x]}, {xc ::= ℓ}.

Here we have written xc for xcontinue from (yℓ) using(ℓ).

4.1. Typing judgements for the calculus of continuations.

The typing judgements for NJrg are in the following Table 1.

Remark. (i) The implicit presence of contraction in the conclusion
requires formulas to be labelled with multisets of terms, rather than
with terms alone. We represent multisets by lists (modulo permu-
tations σ). Thus Contraction of multisets of terms is implemented
by the operation “∗” (append) of lists (modulo permutations) and
Weakening by the empty list “()”.

TERM ASSIGNMENT 15

Typing judgement for NJrg

exchange:

ǫ ⊲ Υ, ℓ : υ, ℓ′υ′,Υ′

ǫ ⊲ Υ, ℓ′ : υ′, ℓ : υ,Υ′

contraction:
Θ ⊲ Υ, ℓ : υ, ℓ′ : υ

Θ ⊲ Υ, ℓ ∗ ℓ′ : υ

weakening:

Θ ⊲ Υ

Θ ⊲ Υ, () : υ

assumption :

x : υ ⊲ x : υ

ǫ ⊲ Υ, ℓ : υ x : υ ⊲ ℓ : Υ′

ǫ ⊲ Υ, ℓ[ℓ/x] : Υ′
-substitution

ǫ ⊲ ℓ :
∧ ∧

-E
ǫ ⊲ false (ℓ) : υ1 . . . false (ℓ) : υn

ǫ ⊲ ℓ : υ1,Υ
r-I

ǫ ⊲ yℓ : υ2, continue from (yℓ) using (ℓ) : υ1 r υ2,Υ

ǫ ⊲ Υ, ℓ′ : υ1 r υ2 x : υ1 ⊲ ℓ : υ2, ℓ : Υ′

r-E
ǫ ⊲ Υ, ℓ[xℓ′/x] : Υ, postpone (x :: ℓ) with (xℓ′) until ℓ′ : •

ǫ ⊲ ℓ : υ0,Υ
g0-I

ǫ ⊲ inl (ℓ) : υ0 g υ1,Υ

ǫ ⊲ ℓ : υ1,Υ
g1-I

ǫ ⊲ inr (ℓ) : υ0 g υ1,Υ

ǫ ⊲ Υ, ℓ : υ0 g υ1
g-E

ǫ ⊲ Υ, casel (ℓ) : υ0, caser (ℓ) : υ1

Table 1. Typing judgements for NJrg

(ii) The operation (. . .)(−) takes a free variable y : υ2 and a term
ℓ : υ1, which represents a set of paths (there may be more than
one path, in view of contraction) in the proof-graph and generates a
bound variable yℓ : υ2. Thus the operation (y)() is of type υ1 → υ2;
since it is injective, the new bound variable is fresh, it cannot occur
elsewhere in the proof-graph.

(iii) The occurrence of ℓ as a subterm of

t(ℓ) = continue from (yℓ) using (ℓ) : υ1 r υ2

allows us to locate the edge t(ℓ) as the major conclusion of the
inference represented by the r−I node, which has ℓ : υ1 as incoming
edge, the premise. Moreover, the occurrence of the fresh bound
variable yℓ in t(ℓ) establishes a connection with the edge yℓ : υ2 as
the minor conclusion of the same inference, a conclusion which is

16 GIANLUIGI BELLIN

essential for the implementation of the rewriting in the β-reduction.
A bound variable must be assigned to the edge υ2, as any substitution
of a term for y must occur only within the process of β-reduction.

(iv) Part (iii) gives us terms

t() = continue from (y) using () : υ1 → (υ1 r υ2) and
(y)() : υ1 → υ2.

Hence the term [t(), (y)()] : υ1 → (υ1 r υ2) + υ2 is the dual of
appυ⊥

2
,υ⊥

2

, as required in section 1.

(v) Let ℓ = (t1, . . . , tm). The expression x :: ℓ, which could be read
as λx.ℓ, codes the subpaths of the proof-graph from the edge x to
the edges ti : υ2, for all i ≤ m. Thus the term postpone binds x in
the usual sense. But as a side effect of the binding of x, other paths
from x to the edges in ℓ are affected: indeed no substitution of a
term s for x in ℓ is possible, so long as x remains bounded by the
postpone term: this effect we call a remote binding. Thus we need to
substitute a bound variable for x in ℓ: the device in (ii) provides us
with xℓ′ , where ℓ′ : υ1 r υ2 represents the paths leading to the major

premise of the r-E inference. Notice also that the postpone term
must access the bound variable yℓ′ for the remote rewriting required
by the β-reduction to succeed.

(vi) Terms u() of the form postpone (y :: ℓ) with (x()) until()
are really of type (υ1 r υ2) → ⊥, hence we should give u(ℓ′) the
type ⊥ (i.e.,

∧
). We write instead u(ℓ′) : • because these terms are

regarded as control terms, “global” expressions that cannot occur as
subterms of other terms.

(vii) The term ℓ[x()/x] can be written as ℓ∗ : (υ1 r υ2) → Υ, and it
is dual to u∗ : Υ⊥ → (υ⊥

2 ⊃ υ⊥
2). Hence

[ℓ[x()/x],u()] : (υ1 r υ2) → Υ + ⊥

as required in section 1.

(viii) Let us consider now a redex of the form

ǫ ⊲ Υ, ℓ : υ1
r-I

ǫ ⊲ Υ, yℓ : υ2, t(ℓ) : υ1 r υ2 x : υ1 ⊲ ℓ : Υ′, ℓ′ : υ2
r-E

ǫ ⊲ Υ, ℓ[xc/x] : Υ′, yℓ : υ2, r : •

where
t(ℓ) = continue from yℓ using ℓ as in (iii),

TERM ASSIGNMENT 17

r = postpone (x :: ℓ′) with xc until (continue from yℓ using ℓ)
and xc stands for xcontinue from (yℓ) using(ℓ).

With β-reduction the redex is destroyed, the direct and remote
binding are removed and the term ℓ : υ1 can be substituted for x
both in ℓ′ and in ℓ:

ǫ ⊲ Υ, ℓ : υ1 x : υ1 ⊲ ℓ : Υ′, ℓ′ : υ2
substitution

ǫ ⊲ Υ, ℓ[ℓ/x] : Υ′, ℓ′[ℓ/x] : υ2

Since both ℓ′ and ℓ occur in the redex r, the substitution ℓ′[ℓ/x] is
a transformation of r and can be immediately executed, but then
the command must be broadcast to the context to replace the result
ℓ′[ℓ/x] for the term yℓ : υ2. We express this command by the “control
term” {xℓ ::= ℓ′[ℓ/y]}.

Similarly, the substitution ℓ[ℓ/x] is implemented by broadcasting
the command to replace ℓ for yc in all the terms ℓ[xc]. This command
is expressed by {yc ::= ℓ}.

As indicated above, it is possible to broadcast these commands only
because the continue term has access to yℓ and the term postpone

has access to yc.
We shall not try to implement remote substitution here, but we

expect the specification of their action may be achieved in an elegant
way using familiar techniques from calculi for concurrency.

4.2. Isomorphism theorem. To prove the theorem 1, we need
to show that (modulo α-equivalence) there exists a bijection ()⊥

between proof-terms for NJ⊃∩ and for NJrg such that

(i) if x : Θ ⊲ t : ϑ then (t)⊥ has the form ℓ and x : ϑ⊥
⊲ ℓ : Θ⊥

and conversely, if x : ǫ ⊲ ℓ : Υ then (ℓ)⊥ has the form t and

x : Υ⊥
⊲ t : ǫ⊥; moreover, (t)⊥⊥ = t and (ℓ)⊥⊥ = ℓ.

(ii) if t0 β-reduces to t1 then (t0)
⊥ β-reduces to (t1)

⊥; conversely, if

ℓ0 β-reduces to ℓ1, then (ℓ0)
⊥ β-reduces to (ℓ1)

⊥.

Proof. We write x : Υ⊥ for x1 : υ⊥
1 , . . . xn : υ⊥

1 and false (x) : Υ
for falseυ1

(x) : υ1, . . . falseυn
(x) : υn, and so on. The duality ()⊥

on proof-terms is defined as follows. Setting x⊥ = x, the judgement
x : ϑ ⊲ x : ϑ is mapped to x⊥ : ϑ⊥

⊲ x⊥ : ϑ⊥ and conversely.

18 GIANLUIGI BELLIN

(1.1) (x :
∧
⊲ false (x) : Υ)⊥ = x : Υ⊥

⊲ true (x) :
∨

(1.2) (x : Θ ⊲ true (x) :
∨

)⊥ = x :
∧
⊲ false (x) : Θ⊥

(2.1) (z : ϑ1 ⊃ ϑ2, y : ϑ1 ⊲ y : ϑ2)
⊥ = x : ϑ⊥

2 ⊲ yx : ϑ⊥
1 , r : ϑ⊥

2 r ϑ⊥
1

(2.2) (x : υ1 ⊲ yx : υ2, r : υ1 r υ2)
⊥ = y : υ⊥

2 , z : υ⊥
2 ⊃ υ⊥

1 , ⊲ zy : υ⊥
1

where r = continue from yx using x.

(3.1) (y : ϑ0 ∩ ϑ1 ⊲ π0(y) : ϑ0)
⊥ = x : ϑ⊥

0 ⊲ inl x : ϑ⊥
0 g ϑ⊥

1

(3.2) (x : υ0 ⊲ inl x : υ0 g υ1)
⊥ = y : υ⊥

0 ∩ υ⊥
1 ⊲ π0(y) : y : υ⊥

0

(4.1) (y : ϑ1 ∩ ϑ1 ⊲ π1(y) : ϑ1)
⊥ = x : ϑ⊥

1 ⊲ inr x : ϑ⊥
0 g ϑ⊥

1

(4.2) (x : υ1 ⊲ inr x : υ0 g υ1)
⊥ = y : υ⊥

0 ∩ υ⊥
1 ⊲ π1(y) : y : υ⊥

1

Now suppose

(x : Θ ⊲ ti : ϑi)
⊥ = yi : ϑ⊥

i ⊲ ℓi : Θ⊥

for i = 0 and 1. We set
(5.1) (x : Θ ⊲< t0, t1 >: ϑ0 ∩ ϑ1)

⊥ = z : ϑ⊥
0 g ϑ⊥

1 ⊲ r0 ∗ r1 : Θ⊥

where r0 = ℓ0[casel z/y0] and r1 = ℓ1[caser z/y1].
Next suppose

(yi : υi ⊲ ℓi : Υ)⊥ = x : Υ⊥
⊲ ti : υ⊥

i

for i = 0 and 1. We set

(5.2) (z : υ0 g υ1 ⊲ r0 : Θ⊥
0 , r1 : ϑ⊥

1)⊥ = x : Υ⊥
⊲ < t0, t1 >: υ⊥

0 ∩ υ⊥
1

where again r0 = ℓ0[casel z/y0] and r1 = ℓ1[caser z/y1].

Now suppose

(x : ϑ1, x : Θ ⊲ t : ϑ2)
⊥ = y : ϑ⊥

2 ⊲ ℓ1 : ϑ⊥
1 , . . . , ℓm : ϑ⊥

1 , ℓ : Θ⊥

We set

(6.1) (x : Θ ⊲ λx.t : ϑ1 ⊃ ϑ2)
⊥ = z : ϑ⊥

2 r ϑ⊥
1 ⊲ ℓ[yz/y] : Θ⊥, u : •

where u = postpone (y :: ℓ1 ∗ . . . ∗ ℓm) with yz until (z).

Finally suppose

(x : υ1 ⊲ ℓ1 : υ2, . . . , ℓm : υ2, ℓ : Υ)⊥ = y : υ⊥
2 , x : Υ⊥

⊲ t : υ⊥
1

We set

TERM ASSIGNMENT 19

(6.2) (z : υ2 r υ1 ⊲ ℓ[yz/y] : Υ, u : •)⊥ = x : Υ⊥
⊲ λy.t : υ⊥

2 ⊃ υ⊥
1

where u = postpone (y :: ℓ1 ∗ . . . ∗ ℓm) with yz until z.

Next we need to prove the Substitution lemma 1:

If

(i) (Θ2 ⊲ u : ϑ)⊥ = a : ϑ⊥
⊲ ℓ2 : Θ⊥

2

and

(ii) (x : ϑ, Θ1 ⊲ t : ϑ0)
⊥ = b : ϑ⊥

0 ⊲ ℓ1 : Θ⊥
1 , ℓ : ϑ⊥

then

(Θ2, Θ1 ⊲ t[u/x] : ϑ0)
⊥ = b : ϑ⊥

0 ⊲ ℓ1 : Θ⊥
1 , ℓ2[ℓ/a] : Θ⊥

2

and simmetrically for substitutions in the conjectural part.

We prove the lemma by induction on t. Let us consider the case
of t = λy.s. Given (i) and

(ii) (x : ϑ,Θ1 ⊲ λy.s : ϑ1 ⊃ ϑ2)
⊥ =

b : ϑ⊥
2 r ϑ⊥

1 ⊲ ℓ1[cb/c] : Θ⊥
1 , ℓ[cb/c] : ϑ⊥, r : •

where r = postpone (c :: ℓ1) with cb until b, we need to show that

((λy.s)[u/x])⊥ = ℓ1[cb/c], ℓ2[ℓ[cb/c]/a], r : •.

We may assume that (ii) results by an application of (6.1) and thus
that we have

(iii) (x : ϑ, y : ϑ1,Θ1 ⊲ s : ϑ2)
⊥ = c : ϑ⊥

2 ⊲ ℓ1 : Θ⊥
1 , ℓ1 : ϑ⊥

1 , ℓ : ϑ⊥

The induction hypothesis is that

(iii) (y : ϑ1,Θ1,Θ2 ⊲ s[u/x] : ϑ2)
⊥ =

c : ϑ⊥
2 ⊲ ℓ1 : Θ⊥

1 , ℓ1 : ϑ⊥
1 , ℓ2[ℓ/a] : Θ⊥

2 .

By applying (6.1) to (iii) we obtain

(Θ1,Θ2 ⊲ λx.s[u/y] : ϑ1 ⊃ ϑ2)
⊥ =

b : ϑ⊥
2 r ϑ⊥

1 ⊲ ℓ1[cb/c] : Θ⊥
1 , ℓ2[ℓ/a][cb/c] : Θ⊥

2 , r : •

Since we may assume that (λx.s)[u/y] = λx.s[u/y] and since the
variable c does not occur in ℓ2 , the desired result follows.

Part (i) of Theorem 1 is proved by a straightforward induction on
t or ℓ. To prove part (ii) of Theorem 1 there are four cases to check;

20 GIANLUIGI BELLIN

we consider only that of a r-reduction. Let

ℓ = (ℓ1, c, ℓ2[a/a], s)

where
s = postpone (a :: ℓ2) with a using (continue from (c) using (ℓ1))
(omitting some indices) and suppose

ℓ β ℓ1, c, ℓ2[a/a]{a ::= ℓ1}, {c ::= ℓ2[ℓ1/a]}

A typing derivation of ℓ is obtained as follows: we have a derivation
d1 ending with the inference

(o)
ǫ ⊲ ℓ1 : Υ1, ℓ1 : υ1

ǫ ⊲ ℓ1 : Υ1, c : υ2, r : υ1 r υ2

where r = continue from (c) using (ℓ1) and also a derivation d2 of

(i) a : υ1 ⊲ ℓ2 : υ2, ℓ2 : Υ2

and we apply the inference r-E to the conclusions of d1 and d2,
yielding

ǫ ⊲ ℓ1 : Υ1, c : υ2, ℓ2[a/a] : Υ2, s : •

But the same typing of ℓ may also be obtained by first deriving

(ii) b : υ1 r υ2 ⊲ ℓ2[a/a] : Υ2, s(b) : •

from (i), where s(b) = postpone (a :: ℓ2) with a using (b) and then
substituting r for b in the terms in (ii) which contain it free, i.e., in
the “control term” s(b). Moreover, we have

(iii) (ǫ ⊲ ℓ1 : Υ1, ℓ1 : υ1)
⊥ = x : υ⊥

1 , y : Υ⊥
1 ⊲ u : ǫ⊥

and

(iv) (a : υ1 ⊲ ℓ2 : υ2, ℓ2 : Υ2)
⊥ = y : υ⊥

2 , x : Υ⊥
2 ⊲ t : υ⊥

1

By applying Lemma 1 to (iii) and (2.2) we have

(v) (ǫ ⊲ ℓ1 : Υ1, c : υ2, r : υ1 r υ2)
⊥ =

y : υ⊥
2 , z : υ⊥

2 ⊃ υ⊥
1 , y : Υ⊥

1 ⊲ u[zy/x] : ǫ⊥

By applying Lemma 1 to (iv) and (6.2) we have

(vi) (b : υ1 r υ2 ⊲ ℓ2[a/a] : Υ2, s(b) : •)⊥ =
x : Υ⊥

2 ⊲ λy.t : υ⊥
2 ⊃ υ⊥

1

Again by Lemma 1 applied to (v) and (vi) we conclude

(vii) (ǫ ⊲ ℓ1 : Υ1, c : υ2, ℓ2[a/a] : Υ2, s : • =
= y : υ⊥

2 , y : Υ⊥
1 , x : Υ⊥

2 ⊲ u[(λy.t)y/x] : ǫ⊥

TERM ASSIGNMENT 21

using

postpone(f::

y

n:

f:

y:

N

x: υ

υυ

υ

f: θ θ θx :

: θ θ

N:

θ:

: υ υ

‘‘one’’: λ f. λ x. f x : N

postpone(y::x) until f

continue from

continue from x

nuntil x)

λx.fx

λx.fx

fx

λ f.

‘‘co−one’’: n: N postpone
postpone

(y::x)
(f::

until f
continue from x usingy)until n

Figure 1. Church’s one.

Now the right-hand side of (vii) reduces to u[t/x]. But also by
Lemma 1 applied to (iii) and (iv) we obtain

(ǫ ⊲ ℓ1 : Υ1, ℓ2[ℓ1/a] : υ2, ℓ2[ℓ1/a])⊥ = y : υ⊥
2 , y : Υ⊥

1 , x : Υ⊥
2 ⊲ u[t/x] : ǫ⊥

and the argument of the left-hand side is exactly what ℓ reduces
to when the global substitutions are eventually performed. This
concludes the proof.

4.3. Examples. We give some graphical representation of dual
derivations and proof-terms (with some simplification of the nota-
tion).
In Fig. 1 we have drawn a refutation

n : N⊥
⊲ postpone (y :: x) until (f) : •

postpone (f :: continue from (x) using (y)) until (n) : •

which is formally given in NJr as follows:

n : N⊥
⊲ n : N⊥

f : υ r υ ⊲ f : υ r υ

y : υ ⊲ y : υ

y : υ ⊲ x : υ, s : υ r υ

f : υ r υ ⊲ t : •, s[y/y] : υ r υ

n : N⊥
⊲ t : •,u : •

where s = continue from (x) using (y),
t = postpone (y :: x) until (f) and
u = postpone (f :: continue from (x) using (y)) until (n).

22 GIANLUIGI BELLIN

n:

f:

N

υυ

υ

x : θf: θ θx :

θ θ

θ

: θ

Redex!

υz:

s : υ υ

: N

: θ θ

z

usings) until n

postpone(x::z)until f

λ f. λx. (λx.x) f x : N

postpone(y::y)

υy:

x:

s: υs
x : υ υ

continue from

continue from

postpone(f ::continue from

x) usinguntil (continue from

using

using

s

z

λx.x : f x

(λ θ:

Redex!

x.x)f x

x.x)f xλx.(λ

λ f. x.x)f xλx.(λ

postpone (x::z) until f
(f ::continue from usingz s) until n

n: N
postpone
postpone (y::y) until (continue from s usingx)

‘‘co−succzero’’:
‘‘succ zero’’:

Figure 2. “succ zero”.

In Fig. 2 we draw a part of the computation that succ(zero) =
one and its dual.

We leave it as an exercise to the reader to write the formal proof
corresponding to the drawing.

REFERENCES

[1] G. Bellin, M. Hyland, E. Robinson and C. Urban. Categorical Proof Theory of
Classical Propositional Calculus, to appear in Theoretical Computer Science 2005.

[2] G. Bellin and P. J. Scott. “On the Pi-calculus and linear logic” in: Theoretical
Computer Science 135 (1994) pp. 11-65.

[3] G. Bellin. “Chu’s Construction: A Proof-theoretic Approach” in Ruy J.G.B.
de Queiroz editor, ”Logic for Concurrency and Synchronisation”, Kluwer Trends in
Logic n.18, 2003, pp.93-114.

[4] G. Bellin and C. Biasi. Towards a logic for pragmatics. Assertions and conjec-
tures. In: Journal of Logic and Computation, Special Issue with the Proceedings of the
Workshop on Intuitionistic Modal Logic and Application (IMLA-FLOC 2002), V. de
Paiva, R. Goré and M. Mendler eds., Volume 14, Number 4, 2004, pp. 473-506.

[5] G. Bellin and K. Ranalter. A Kripke-style semantics for the intuitionistic logic
of pragmatics ILP. In: Journal of Logic and Computation, Special Issue with the
Proceedings of the Dagstuhl Seminar on Semantic Foundations of Proof-search, Schloss
Dagstuhl, 1-6 April 2001, Volume 13, Number 5, 2003, pp. 755-775.

TERM ASSIGNMENT 23

[6] G. Bellin and C. Dalla Pozza. A pragmatic interpretation of substructural logics.
In Reflection on the Foundations of Mathematics (Stanford, CA, 1998), Essays in honor
of Solomon Feferman, W. Sieg, R. Sommer and C. Talcott eds., Association for Symbolic
Logic, Urbana, IL, Lecture Notes in Logic, Volume 15, 2002, pp. 139-163.

[7] G. M. Bierman On intuitionistic linear logic. Technical Report 346 (Ph.D. The-
sis), Computer Laboratory, University of Cambridge, August 1994.

[8] C. Biasi. Verso una logica degli operatori prammatici asserzioni e congetture, Tesi
di Laurea, Facoltà di Scienze, Università di Verona, March 2003.

[9] T. Crolard. Extension de l’isomorphisme de Curry-Howard au traitement des
exceptions (application d’une ètude de la dualité en logique intuitionniste). Thèse de
Doctorat, Université de Paris 7, 1996.

[10] T. Crolard. Substractive logic, in Theoretical Computer Science 254:1-2(2001)
pp. 151-185.

[11] T. Crolard. A Formulae-as-Types Interpretation of Subtractive Logic. In: Jour-
nal of Logic and Computation, Special Issue with the Proceedings of the Workshop on
Intuitionistic Modal Logic and Application (IMLA-FLOC 2002), V. de Paiva, R. Goré
and M. Mendler eds., Volume 14, Number 4, 2004, pp. 529-570

[12] C. Dalla Pozza and C. Garola. A pragmatic interpretation of intuitionistic
propositional logic, Erkenntnis 43. 1995, pp.81-109.

[13] C. Dalla Pozza. Una logica prammatica per la concezione “espressiva” delle
norme, In: A. Martino, ed. Logica delle Norme, Pisa, 1997

[14] R. Goré. Dual Intuitionistic Logic Revisited, In TABLEAUX00: Automated
Reasoning with Analytic Tableaux and Related Methods, LNAI 1847:252-267, 2000.
Springer.

[15] J-L. Krivine. Lambda-calcul, types et modèles, Masson, Paris 1990.
[16] J. Lambek and P. J. Scott. Introduction to higher order categorical logic, Cam-

bridge studies in advanced mathematics 7, Cambridge University Press, 1986 (Paper-
back Edition 1988)

[17] A. S. Murawski and C.-H. L. Ong. Fast verification of MLL proof nets via IMLL.
In ACM Transactions on Computational Logic, 2004. To appear.

[18] D. Prawitz. Natural deduction. A proof-theoretic study. Almquist and Wikksell,
Stockholm, 1965.

[19] C. Rauszer. Semi-Boolean algebras and their applications to intuitionistic logic
with dual operations, in Fundamenta Mathematicae, 83, 1974, pp. 219-249.

[20] G. Reyes and H. Zolfaghari, Bi-Heyting algebras, Toposes and Modalities, in
Journal of Philosophical Logic, 25, 1996, pp. 25-43.

[21] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory, Cambridge Tracts
in Theoretical Computer Science 43, Cambridge University Press 1996.

FACOLTÀ DI SCIENZE, UNIVERSITÀ DI VERONA

37134 VERONA, ITALY

and

DPT OF COMPUTER SCIENCE, QUEEN MARY UNIVERSITY OF LONDON

LONDON E1 4NS

E-mail : bellin@dcs.qmul.ac.uk

24 GIANLUIGI BELLIN

Sequent Calculi LJ⊃∩ and LJrg

G3-type LJ⊃∩

identity rules

logical axiom:
ϑ, Θ ⇒ ϑ

cut:
Θ ⇒ ϑ ϑ, Θ′

⇒ ǫ

Θ,Θ′ ⇒ ǫ
structural rules

exchange:
Θ, ϑ1, ϑ2, Θ

′
⇒ ǫ

Θ, ϑ2, ϑ1, Θ′ ⇒ ǫ

(Contraction and Weakening left implicit in G3-type systems)

logical rules
validity axiom:

Θ ⇒

_

right ⊃:
Θ, ϑ1 ⇒ ϑ2

Θ ⇒ ϑ1 ⊃ ϑ2

left ⊃:
ϑ1 ⊃ ϑ2, Θ ⇒ ϑ1 ϑ2, Θ ⇒ ǫ

ϑ1 ⊃ ϑ2, Θ ⇒ ǫ

right ∩:
Θ ⇒ ϑ1 Θ ⇒ ϑ2

Θ ⇒ ϑ1 ∩ ϑ2

left ∩:
ϑ0, ϑ1, Θ ⇒ ǫ

ϑ0 ∩ ϑ1, Θ ⇒ ǫ

G3-type LJrg

identity rules

logical axiom:
υ ⇒ Υ, υ

cut:
ǫ ⇒ Υ, υ υ ⇒ Υ′

ǫ ⇒ Υ, Υ′

structural rules
exchange:

ǫ ⇒ Υ, υ1, υ2, Υ
′

ǫ ⇒ Υ, υ2, υ1, Υ′

(Contraction and Weakening right implicit in G3-type systems)

logical rules
absurdity axiom:

^

⇒ Υ

right r:
ǫ ⇒ Υ, υ1 υ2 ⇒ Υ, υ1 r υ2

ǫ ⇒ Υ, υ1 r υ2

left r:
υ1 ⇒ Υ, υ2

υ1 r υ2 ⇒ Υ

right g:
ǫ ⇒ Υ, υ0, υ1

ǫ ⇒ Υ, υ0 g υ1

left g:
υ1 ⇒ Υ υ2 ⇒ Υ

υ1 g υ2 ⇒ Υ

Table 2. The sequent calculi LJ⊃∩ and LJrg

TERM ASSIGNMENT 25

Natural Deduction NJ⊃∩ and NJrg - Rules of Inference

ASSERTIVE RULES - NJ
⊃∩

...
...

ϑ1 . . . ϑm ∨
-I∨

...

[ϑ1]

...
ϑ2

⊃-I
ϑ1 ⊃ ϑ2

...

...
ϑ1 ⊃ ϑ2

...
ϑ1

⊃-E
ϑ2

...

...
ϑ0

...
ϑ1

∩-I
ϑ0 ∩ ϑ1

...

...
ϑ0 ∩ ϑ1 ∩0-E

ϑ0

...

...
ϑ0 ∩ ϑ1 ∩1-E

ϑ1

...

CONJECTURAL RULES- NJ
rg

...∧
∧

-E
υ1 . . . υn

...
...

...
υ2

r-I
υ1 υ2 r υ1

...
...

...
υ2 r υ1

r-Eυ2

...

[υ1]

...
υ0

g0-I
υ0 g υ1

...

...
υ1

g1-I
υ0 g υ1

...

...
υ0 g υ1

g-Eυ0 υ1

...
...

Table 3. NJ⊃∩ and NJrg - Rules of Inference

26 GIANLUIGI BELLIN

Natural Deduction NJ⊃∩ and NJrg

NJ⊃∩ - structural rules

exchange:

Θ, ϑ, ϑ′,Θ′ − ǫ

Θ, ϑ′, ϑ, Θ′ − ǫ

contraction:
ϑ, ϑ, Θ − ǫ

ϑ, Θ − ǫ

weakening:

Θ − ǫ

ϑ, Θ − ǫ

identity rules

assumption:

ϑ − ϑ

substitution:
Θ − ϑ ϑ, Θ′ − ǫ

Θ,Θ′ − ǫ

logical rules

validity axiom:

Θ −
W

⊃-I:
Θ, ϑ1 − ϑ2

Θ − ϑ1 ⊃ ϑ2

⊃-E:
Θ1 − ϑ1 ⊃ ϑ2 Θ2 − ϑ1

Θ1,Θ2 − ϑ2

∩-I:
Θ − ϑ1 Θ − ϑ2

Θ − ϑ1 ∩ ϑ2

∩0-E:

Θ − ϑ0 ∩ ϑ1

Θ − ϑ0

∩1-E:

Θ − ϑ0 ∩ ϑ1

Θ − ϑ1

NJrg - structural rules

exchange:

ǫ − Υ, υ, υ′,Υ′

ǫ − Υ, υ′, υ, Υ′

contraction:
ǫ − Υ, υ, υ

ǫ − Υ, υ

weakening:

ǫ − Υ

ǫ − Υ, υ

identity rules

assumption:

υ − υ

substitution:
ǫ − Υ, υ υ − Υ′

ǫ − Υ,Υ′

structuralrules

absurdity axiom:
V

− Υ

r-I:
ǫ − Υ, υ1

ǫ − Υ, υ2, υ1 r υ2

r-E:
ǫ − Υ, υ1 r υ2 υ1 − υ2,Υ′

ǫ − Υ, Υ′

g0-I:

ǫ − Υ, υ0

ǫ − Υ, υ0 g υ1

g1-I:

ǫ − Υ, υ1

ǫ − Υ, υ0 g υ1

g-E:
ǫ − Υ′, υ0 g υ1 υ0 − Υ υ1 − Υ

ǫ − Υ,Υ′

Table 4. NJ⊃∩ and NJrg - Rules of Deduction

TERM ASSIGNMENT 27

Natural Deduction NJ⊃∩ and NJrg - Reduction Rules

∩-REDUCTION

...

ϑ0

...

ϑ1

∩-I
ϑ0 ∩ ϑ1

∩i-E
ϑi

...

reduces to

...
ϑi

...

⊃-REDUCTION

[ϑ1]

...
ϑ2

⊃-I
ϑ1 ⊃ ϑ2

...
ϑ1

⊃-E
ϑ2

...

reduces to

...

[ϑ1]

...
ϑ2

...

g-REDUCTION

...

υi

gi-I
υ0 g υ1

g-E
υ0 υ1

...
...

reduces to

...
υi

...

r-REDUCTION

...

υ2

r-I
υ1 υ2 r υ1

r-E
... υ2

...
...

[υ1]
...

reduces to

...
υ2

...
...

[υ1]
...

...

Table 5. NJ⊃∩ and NJrg - Reduction Rules

28 GIANLUIGI BELLIN

Natural Deduction NJ⊃∩ and NJrg - Commutation rules

W

-COMMUTATIONS

...

ϑ1 . . .

..

.
..
.

ϑ′
1

. . . ϑ′
k

ϑi

...

. . . ϑn W

-I
W

.

..

commutes to

...
...

...
...

ϑ1 . . . ϑ′
1

. . . ϑ′
k

. . . ϑn W

-I
W

...

V

-COMMUTATIONS

...
V

V

-E
υ1 . . . υi . . . υm

... υ′
1

. . . υ′
k

...

...
...

commutes to

...
V

V

-E
υ1 . . . υ′

1
. . . υ′

k
. . . υm

...
...

...
...

Table 6. NJ⊃∩ and NJrg - Commutation Rules

