1 Serie geometrica

Sia $0 \le x < 1$. Allora

$$S = 1 + x + x^2 + x^3 + \dots$$

da cui

$$xS = x + x^2 + x^3 + x^4 + \dots$$

e quindi xS = S - 1. Pertanto, S = 1/(1 - x).

 $2 \quad 0.\overline{9} = 1$

• conversione dei numeri decimali periodici in frazioni:

$$0.\overline{9} = \frac{9-0}{9} = 1$$

• $0.\overline{9} = 9 \cdot \left(\frac{1}{10} + \left(\frac{1}{10}\right)^2 + \ldots\right) = 9 \cdot \left(\frac{1}{1 - \frac{1}{10}} - 1\right) = 1$

• $0.\overline{9} \le 1$: se fosse minore stretto di 1, quanto sarebbe la differenza?

• Poniamo x = 0.999...

$$\begin{array}{rcl}
10x & = 9.999... \\
x & = 0.999... \\
\hline
9x & = 9 \Rightarrow x = 1
\end{array}$$

• $1/3 = 0.\overline{3}$, da cui $1 = 3 \cdot 1/3 = 3 \cdot 0.\overline{3} = 0.\overline{9}$.

3 Fiocco di Koch

Detto p_0 il perimetro del triangolo iniziale, si ha facilmente $p_n = (4/3)^n p_0$. Pertanto, $\lim_{n\to\infty} p_n = \infty$. Per quanto riguarda l'area, detta a_0 quella iniziale, si ha

$$a_1 = a_0 + \frac{3}{9}a_0 = a_0 + \frac{1}{3}a_0$$

$$a_2 = a_1 + \frac{12}{81}a_0 = a_1 + \frac{4}{9} \cdot \frac{1}{3}a_0$$

$$a_3 = a_2 + \frac{48}{9^3}a_0 = a_2 + \left(\frac{4}{9}\right)^2 \cdot \frac{1}{3}a_0$$

$$a_{n+1} = a_n + \left(\frac{4}{9}\right)^n \cdot \frac{1}{3}a_0$$

e dunque

$$a_{n+1} = a_0 + \frac{1}{3}a_0 + \frac{4}{9} \cdot \frac{1}{3}a_0 + \left(\frac{4}{9}\right)^2 \cdot \frac{1}{3}a_0 + \dots + \left(\frac{4}{9}\right)^n \cdot \frac{1}{3}a_0 =$$

$$= a_0 + \frac{a_0}{3} \left(1 + \frac{4}{9} + \left(\frac{4}{9}\right)^2 + \dots + \left(\frac{4}{9}\right)^n\right)$$

e quindi $\lim_{n\to\infty} a_n = a_0 + \frac{a_0}{3} \frac{1}{1 - \frac{4}{9}} = \frac{8}{5} a_0$

4 Scala del diavolo

In un rettangolo $b \times h$. Pedate:

$$b_0 = \frac{1}{3}b$$

$$b_1 = b_0 + 2 \cdot \frac{1}{9}b$$

$$b_2 = b_1 + 4 \cdot \frac{1}{3^3}b$$

$$b_n = b_{n-1} + 2^n \cdot \frac{1}{3^{n+1}}b$$

e dunque

$$b_n = \left(\frac{1}{3} + \frac{2}{9} + \dots + \frac{2^n}{3^{n+1}}\right)b = \frac{1}{3}\left(1 + \frac{2}{3} + \dots + \left(\frac{2}{3}\right)^n\right)b$$

e quindi $\lim_{n\to\infty} b_n = 1$. Per quanto riguarda i tratti obliqui, si ha

$$h_0 = \sqrt{b^2 + h^2}$$

$$h_1 = 2\sqrt{\left(\frac{h}{2}\right)^2 + \left(\frac{b}{3}\right)^2}$$

$$h_2 = 4\sqrt{\left(\frac{h}{4}\right)^2 + \left(\frac{b}{9}\right)^2}$$

$$h_n = 2^n\sqrt{\left(\frac{h}{2^n}\right)^2 + \left(\frac{b}{3^n}\right)^2} = \sqrt{h^2 + b^2\left(\frac{2}{3}\right)^{2n}}$$

e dunque $\lim_{n\to\infty}h_n=h$. Pertanto la scala del diavolo è lunga b+h. La sua dimensione frattale è 1. È una scala che sale senza salti e senza tratti in salita.

5 Superficie di Koch

A partire da un triangolo equilatero, divido ogni lato in 2 e dai tre punti medi alzo un tetraedro regolare. La dimensione frattale è $\log(6)/\log(2)$.

6 Insieme di Cantor

La dimensione dell'insieme (polvere) di Cantor è $\log_2 3$. L'insieme di Cantor bidimensionale è $\log_3 4$.

7 Palline di carta (o di alluminio)

Lo massa di una sfera piena (proporzionale al volume) scala come il diametro al cubo. Pertanto, date due sfere dello stesso materiale con diametri diversi, si ha

$$\frac{m_1}{m_2} = \left(\frac{d_1}{d_2}\right)^3$$

Il numero 3 è la dimensione del solido. Consideriamo due palline di carta ottenute dall'appallottolamento di un foglio di carta di massa m_1 e di massa m_2 , rispettivamente e misuriamone il diametro. In questo caso si trova

$$\frac{m_1}{m_2} = \left(\frac{d_1}{d_2}\right)^d$$

con d da determinare. Per farlo, possiamo partire da un foglio A4 di massa m_1 e appallottolarlo e misurarne il diametro d_1 . Poi lo dividiamo in due parti uguali e ne appallottoliamo una e ne misuriamo il diametro d_2 e infine lo dividiamo un'altra volta in due parti e otteniamo d_3 . Siccome non disponiamo di una bilancia, usiamo il fatto che il volume del foglio di carta è direttamente proporzionale alla sua massa (quindi dimezza ad ogni passo della procedura descritta). Dunque

$$\frac{m_1}{m_2} = \frac{v_1}{v_2} = 2 = \left(\frac{d_1}{d_2}\right)^d$$

da cui si ricava

$$d = \frac{\log 2}{\log\left(\frac{d_1}{d_2}\right)}$$

Si ripete il ragionamento tra i fogli di massa m_2 ed m_3 e di trova un nuovo valore d da mediare con il precedente. Il risultato sarà una dimensione d tra il 2 e il 3.

8 Bach