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Abstract. Infinite dimensional tilting modules are abundant in representation theory.
They occur when studying torsion pairs in module categories, when looking for com-
plements to partial tilting modules, or in connection with the Homological Conjectures.
They share many properties with classical tilting modules, but they also give rise to in-
teresting new phenomena as they are intimately related with localization, both at the
level of module categories and of derived categories.

In these notes, we review the main features of infinite dimensional tilting modules.
We discuss the relationship with approximation theory and with localization. Finally, we
focus on some classification results and we give a geometric interpretation of tilting.
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1. Introduction

Tilting theory is a research area that has developed from representation theory of
finite dimensional algebras [27, 54, 74] with applications going far beyond this con-
text: tilting nowadays plays an important role in various branches of mathematics,
ranging from Lie theory to combinatorics, algebraic geometry and topology.

Classical tilting modules are required to be finite dimensional. This survey
focusses on tilting modules that need not be finitely generated, as first defined in
[40, 2]. The aim is twofold. We first explain the main tools of infinite dimensional
tilting theory and exhibit a number of examples. Then we discuss the interaction
with localization theory, and we employ it to classify large tilting modules over
several rings. We will see that such classification results also yield a classifica-
tion of certain categories of finitely generated modules. Moreover, they lead to a
classification of Gabriel localizations of the module category, or of an associated
geometric category.

Large tilting modules occur in many contexts. For example, the representation
type of a hereditary algebra is governed by the behaviour of certain infinite dimen-
sional tilting modules (Theorem 3.1). Also the finitistic dimension of a noetherian
ring is determined by a tilting module which is not finitely generated in general
(Theorem 5.4). Large tilting modules further arise when looking for complements
to partial tilting modules of projective dimension greater than one, or when com-
puting intersections of tilting classes given by finite dimensional tilting modules
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(Sections 5.1 and 5.3). Finally, over a commutative ring, every non-trivial tilting
module is large (Section 3.2).

In fact, given a ring R, many important subcategories of mod-R can be studied
by using tilting modules. Here mod-R denotes the category of modules admitting a
projective resolution with finitely generated projectives, which is just the category
of finitely generated modules when R is noetherian.

More precisely, for any set S ⊂ mod-R consisting of modules of bounded pro-
jective dimension, there is a tilting module T , not necessarily finitely generated,
whose tilting class T⊥ = {M ∈ Mod-R | ExtiR (T,M) = 0 for all i > 0} coincides
with S⊥ = {M ∈ Mod-R | ExtiR (S,M) = 0 for all i > 0, S ∈ S}. Conversely, for
any tilting module T , no matter whether finitely generated or not, the tilting class
T⊥ is determined by a set S ⊂ mod-R, in the sense that T⊥ = S⊥ (Corollary 5.1
and Theorem 6.1).

These results rely on work of Eklof and Trlifaj on the existence of approxima-
tions, on the relationship between tilting and approximation theory first discovered
by Auslander and Reiten in the classical setup (Theorems 4.4 and 4.6), and on pa-
pers by Bazzoni, Eklof, Herbera, Sťov́ıček, and Trlifaj which also make use of some
sophisticated set-theoretic techniques.

As a consequence, one obtains a bijection between the resolving subcategories
of mod-R consisting of modules of bounded projective dimension and the tilting
classes in Mod-R. For an artin algebra, one also gets a bijection between the torsion
pairs in mod-R whose torsion class contains all indecomposable injectives and the
tilting classes T⊥ in Mod-R where T is a tilting module of projective dimension
at most one (Corollary 6.4 and Theorem 6.8).

The results above show that large tilting modules share many properties with
the classical tilting modules from representation theory. There is an important
difference, however. If T is a classical tilting module over a ring R, and S is the
endomorphism ring of T , then the derived categories of R and S are equivalent as
triangulated categories. This is a fundamental result due to Happel. A general-
ization for large tilting modules holds true under a mild assumption, as recently
shown in papers by Bazzoni, Mantese, Tonolo, Chen, Xi, and Yang. But instead
of an equivalence, one has that the derived category D(Mod-R) is a quotient of
D(Mod-S). When T has projective dimension one, D(Mod-R) is even a recollement
of D(Mod-S) and D(Mod-S̃), where S̃ is a localization of S (Theorem 6.11).

Tilting functors given by large tilting modules thus give rise to new phenomena
and induce localizations of derived categories. Actually, localization already plays
a role at the level of module categories. A typical example of a large tilting module
is provided by the Z-module T = Q ⊕ Q/Z. Following the same pattern, one can
use localization techniques to construct tilting modules in many contexts. Indeed,
every injective ring epimorphism R → S with nice homological properties gives
rise to a tilting R-module of the form S ⊕ S/R (Theorem 7.1).

Over certain rings, tilting modules of this shape provide a classification of all
tilting modules up to equivalence. Hereby, we say that two tilting modules are
equivalent if they induce the same tilting class. Such identification is justified by
the fact that the tilting class T⊥ determines the additive closure AddT of a tilting
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module T . Furthermore, recall that in this way, when we classify tilting modules,
we are also classifying resolving subcategories of mod-R, and in case we restrict to
projective dimension one, torsion pairs in mod-R.

The interaction between tilting and localization and its role in connection with
classification problems is best illustrated by the example of a Dedekind domain
R. The tilting modules over R are constructed as above from ring epimorphisms,
or more precisely, from universal localizations of the ring R, which in turn are in
bijection with the recollements of the unbounded derived category D(Mod-R). In
other words, tilting modules are parametrized by the subsets P ⊂ Max-SpecR of
the maximal spectrum of R. Hereby, the two extreme cases yield the trivial tilting
module R when P = ∅, and the tilting module Q ⊕ Q/R when P = Max-SpecR
(Section 8.1).

This result extends to Prüfer domains and to arbitrary commutative noetherian
rings. Over the latter, tilting modules can be classified in terms of sequences
of specialization closed subsets of the Zariski prime spectrum. In both cases,
tilting modules of projective dimension one correspond to categorical localizations
of Mod-R in the sense of Gabriel (Sections 8.3 and 8.4).

But a similar situation also occurs when R is the Kronecker algebra (Section
8.2). Actually, if we replace the maximal spectrum by the index set X of the
tubular family t =

⋃
x∈X Ux and restrict our attention to infinite dimensional

tilting modules, we get a complete analogy to the Dedekind case. Indeed, the large
tilting modules over R are parametrized by the subsets of X. Here are the two
extreme cases: P = ∅ yields the tilting module L corresponding to the resolving
subcategory of mod-R formed by the preprojectives, and P = X the tilting module
W corresponding to the resolving subcategory of mod-R formed by preprojective
and regular modules. Moreover, all tilting modules are constructed from universal
localization, with the only exception of the module L, that is, of the set P = ∅.
This analogy also allows a geometric interpretation of tilting. In fact, regarding X
as an exceptional curve in the sense of [68], it turns out that large tilting modules
correspond to Gabriel localizations of the category QcohX of quasi-coherent sheaves
on X, the same result as in the commutative case when replacing Mod-R by QcohX.

For arbitrary tame hereditary algebras, the classification of large tilting mod-
ules is more complicated due to the possible presence of finite dimensional direct
summands from non-homogeneous tubes. Infinite dimensional tilting modules are
parametrized by pairs (Y, P ) where Y determines the finite dimensional part, and
P is a subset of X. The infinite dimensional part is obtained as above from uni-
versal localization and from the module L. And again, tilting modules correspond
to Gabriel localizations of the category QcohX (Section 8.5).

Finally, these results lead to a classification of large tilting sheaves in the cat-
egory QcohX on an exceptional curve X. When X is of domestic type, the clas-
sification is essentially the same as for large tilting modules over tame hereditary
algebras. For X of tubular type there are many more tilting sheaves. Indeed, for
each rational slope we find the same tilting sheaves as in the domestic case, and in
addition there is one tilting sheaf for each irrational slope. Since every large tilting
sheaf has a slope, this yields a complete classification (Section 8.6).
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The paper is organized as follows. In Section 2 we collect basic notation and
definitions. In Section 3 we exhibit first examples of large tilting modules, e.g. over
Z and over hereditary artin algebras. Further examples are presented in Section
5, after reviewing the relationship between tilting and approximation theory in
Section 4. Section 6 is devoted to the interplay between finitely generated modules
and large tilting modules. In Section 7 we explain the fundamental construction
of tilting modules from ring epimorphisms or universal localizations. Finally, in
Section 8 we illustrate the classification results for Dedekind domains, commutative
noetherian rings, Prüfer domains, tame hereditary algebras and the category of
quasi-coherent sheaves on an exceptional curve.

Many of the results presented here, in particular in Sections 1-6, are treated in
detail in [52]. We also refer to the survey articles [88, 93, 94].

2. Large tilting modules

2.1. Notation. Throughout this note, let R be a ring (associative, with 1),
Mod-R (respectively, R-Mod) the category of all right (respectively, left)R-modules,
and mod-R (respectively, R-mod) the full subcategory of all modules M admitting
a projective resolution

· · · → Pk+1 → Pk → · · · → P1 → P0 →M → 0

where all Pi are finitely generated. The modules M ∈ mod-R are sometimes called
of type FP∞. They have the property that the functor ExtiR (M,−) commutes
with direct limits for any i ≥ 0 (see e.g. [52, 3.1.6]). Of course, mod-R is just the
category of finitely presented (respectively, generated) modules when R is right
coherent (respectively, noetherian).

If R is a k-algebra over a commutative ring k, we denote by D = Homk(−, I)
the duality with respect to an injective cogenerator I of Mod-k. When R is an
artin algebra, we take the usual duality D. For an arbitrary ring R, we can choose
k = Z and D = HomZ(−,Q/Z).

Given a class of modules M ⊂ Mod-R, we denote by AddM the class of all
modules isomorphic to a direct summand of a direct sum of modules of M, and
by ProdM the class of all modules isomorphic to a direct summand of a direct
product of modules ofM. The class of all modules isomorphic to a direct summand
of a finite direct sum of modules of M is denoted by addM. Moreover, we write
lim−→M for the class of all modules isomorphic to a direct limit of modules of M.
We set

Mo = {X ∈ Mod-R | HomR(M,X) = 0 for all M ∈M}

M⊥ = {X ∈ Mod-R | ExtiR (M,X) = 0 for all i > 0 and M ∈M}

and we define correspondingly oM and ⊥M. When M = {M}, we just write
AddM , ProdM , Mo, M⊥, . . .. All these classes are regarded as strictly full
subcategories of Mod-R.
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We denote by pdimM and idimM the projective and injective dimension of a
module M , respectively, and for M⊂ Mod-R we write

pdimM = sup{ pdimM | M ∈M}.

Further, we set P = {M ∈ Mod-R | pdimM <∞}, and P<∞ = P ∩mod-R.
Finally, we recall that a short exact sequence 0→ A→ B → C → 0 in Mod-R

is said to be pure-exact if the induced sequence 0 → A ⊗R M → B ⊗R M →
C ⊗R M → 0 is exact for any left R-module M . A module N ∈ Mod-R is pure-
injective if the functor HomR(−, N) turns every pure-exact sequence into a short
exact sequence of abelian groups. If N (I) is pure-injective for all sets I, then N is
said to be Σ-pure-injective.

2.2. Tilting and cotilting modules. A (right) R-module T is called a tilting
module provided it satisfies the following conditions

(T1) pdimT <∞;

(T2) ExtiR (T, T (I)) = 0 for each i > 0 and all sets I;

(T3) There exists a long exact sequence

0→ RR → T0 → · · · → Tr → 0

with Ti ∈ AddT for each 0 ≤ i ≤ r.

The class T⊥ is then called the tilting class induced by T . Further, T and T⊥ are
called n-tilting when pdimT ≤ n.

The tilting class determines the additive closure of T : two tilting modules T
and T ′ induce the same tilting class T⊥ = T ′ ⊥ if and only if AddT = AddT ′.
In this case we say that T and T ′ are equivalent. Moreover, we say that a tilting
module is large if it is not equivalent to any tilting module in mod-R.

Dually, a module C is called a cotilting module provided it satisfies the following
conditions

(C1) idimC <∞;

(C2) ExtiR(CI , C) = 0 for each i > 0 and all sets I;

(C3) There exists an injective cogenerator Q and a long exact sequence

0 −→ Cr −→ · · · −→ C0 −→ Q −→ 0

with Ci ∈ ProdC for each 0 ≤ i ≤ r.

The class ⊥C is then called the cotilting class induced by C. Again, C and C⊥ are
called n-cotilting when idimC ≤ n.



6 Lidia Angeleri Hügel

Two cotilting modules C and C ′ are equivalent if ⊥C = ⊥C ′, or equivalently,
ProdC = ProdC ′. A cotilting module is said to be large if it is not equivalent to
any cotilting module in mod-R.

We will see in Proposition 6.2 that the dual D(T ) of a tilting module is always
a cotilting module. However, not all cotilting modules arise in this way in general,
see Remark 6.3. Furthermore, the dual of a cotilting module need not be a tilting
module, cf. Section 3.

2.3. Faithful torsion pairs. Recall that a pair of classes (T ,F) in Mod-R (or
more generally, in an abelian category A) is a torsion pair if T = oF , and F = T o.
Every class M of modules (or of objects in A) generates a torsion pair (T ,F) by
setting F =Mo and T = o(Mo). Similarly, the torsion pair cogenerated by M is
given by T = oM and F = (oM)o. We say that a torsion pair (T ,F) is split if
every short exact sequence 0 → T → M → F → 0 with T ∈ T and F ∈ F splits.
Finally, a torsion pair (T ,F) in Mod-R, or in mod-R, is called faithful if R ∈ F ,
and it is called cofaithful if T contains an injective cogenerator of Mod-R.

1-tilting modules generate cofaithful torsion pairs, and 1-cotilting modules co-
generate faithful torsion pairs.

Proposition 2.1 ([40, 36]). (1) A module T is a 1-tilting module if and only if T⊥

coincides with the class GenT of all modules isomorphic to a quotient of a direct
sum of copies of T . Then (GenT, T o) is a cofaithful torsion pair in Mod-R.

(2) A module C is a 1-cotilting module if and only if ⊥C coincides with the class
CogenC of all modules isomorphic to a submodule of a direct product of copies of
C. Then (oC,CogenC) is a faithful torsion pair in Mod-R.

Torsion pairs as in statement (1) or (2) above are called tilting, respectively
cotilting torsion pairs. They will be characterized in Corollaries 4.7 and 6.6, and
in Theorem 6.8. For an extension of Proposition 2.1 to tilting or cotilting modules
of arbitrary projective, respective injective, dimension, we refer to [18].

3. First examples

3.1. Classical tilting modules. If T ∈ mod-R, then the functors ExtiR (T,−)
commute with direct sums, so condition (T2) in definition 2.2 is equivalent to

(T2’) ExtiR (T, T ) = 0 for each i > 0.

Moreover, it is easy to show that condition (T3) can be replaced by

(T3’) There exists a long exact sequence 0 → RR → T0 → · · · → Tr → 0 with
Ti ∈ addT for each 0 ≤ i ≤ r.

We thus recover the original definition of tilting module from [27, 54, 74]. Ob-
serve that a tilting module belongs to mod-R whenever it is finitely generated, see
e.g. [32, 4.7].
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3.2. Tilting modules over commutative rings. Over a commutative ring R,
every finitely generated tilting module is projective. This was already observed in
[39, 77]. It can also be derived from a more general statement on the unbounded
derived category D(Mod-R). Indeed, using that over a commutative ring vanishing
of HomD(Mod-R)(X,Y [n]) is determined locally, one can show that every compact
exceptional object X ∈ D(Mod-R) is projective up to shift, cf. [7]. So, all tilting
modules are either equivalent to R or large. A classification of tilting and cotilting
modules over commutative noetherian rings will be given in Section 8.3.

3.3. A tilting and cotilting abelian group. Let us focus on the special case
R = Z. A complete classification of the tilting Z-modules will be given in Section
8.1. We start by considering the Z-module Q⊕Q/Z.

It is a tilting and cotilting module. Indeed, the short exact sequence

0→ Z→ Q→ Q/Z→ 0

gives condition (T3) in definition 2.2, and the remaining conditions follow from
the fact that Q⊕Q/Z is an injective cogenerator of Mod-Z.

The tilting class generated by Q ⊕ Q/Z is the class D of divisible groups, i.e.
the class of Z-modules M such that M = rM for all 0 6= r ∈ Z. The corresponding
torsion-free classR is the class of reduced groups, and the tilting torsion pair (D,R)
is a split torsion pair. The cotilting class cogenerated by Q⊕Q/Z is Mod-Z.

The dual module D(Q⊕Q/Z) = HomZ(Q⊕Q/Z,Q/Z) is a cotilting Z-module.
Using Proposition 6.2, one proves that its cotilting class is the class of all torsion-
free groups, i.e. the class of Z-modules M such that for 0 6= r ∈ Z and 0 6= m ∈M
always rm 6= 0. So, the cotilting torsion pair induced by D(Q ⊕ Q/Z) is the
classical torsion pair whose torsion class is formed by the torsion groups, i.e. by
the Z-modules M such that for all m ∈M there is 0 6= r ∈ Z with rm = 0.

Observe that D(Q ⊕ Q/Z) is not tilting. Indeed, condition (T2) fails because
the two direct summands Q and D(Q/Z) satisfy Ext1

Z (Q, D(Q/Z)(N)) 6= 0, see [45,
V.2].

3.4. Two large tilting modules over hereditary algebras. Let R be a (con-
nected) hereditary artin algebra of infinite representation type. The Auslander-
Reiten-quiver of R is of the form

�
� . . .

. . . �
�. . .

. . .

p t q

where p is the preprojective component, q is the preinjective component, and t
consists of a family of regular components.

Let us consider the following torsion pairs in Mod-R:

(1) [80, 79] The torsion pair (D,R) cogenerated by t is a cofaithful torsion pair
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�
� . . .

. . . �
�. . .

. . .

p t q

R D

induced by a large tilting module W ∈ Mod-R. The shape of W in the tame case
is described below, for the wild case we refer to [70, Section 4].

By the Auslander-Reiten formula Gen W = D = ot = t⊥. The modules in D
are called divisible.

(2) The torsion pair (T ,F) generated by t is a faithful torsion pair induced by
the cotilting module D(RW), where RW ∈ R-Mod is the left version of W. This
follows from Proposition 6.2.

The modules in F are called torsion-free, the modules in T are called torsion.
The class CogenD(RW) = F = to = ⊥t consists of all direct limits of preprojective
modules, and T = Gen t, see [6, 5.4] or Lemma 6.7.

(3) [71, 61] The torsion pair (L,P) cogenerated by p is a cofaithful torsion pair

�
� . . .

. . . �
�. . .

. . .

p t q

P L

induced by a large tilting module L. The class Gen L = L = op = p⊥ consists of
the modules without indecomposable preprojective summands. The class P is the
class of preprojective modules from [80, 2.7]: a module X belongs to P if and only
if every non-zero submodule of X has a direct summand from p.

The module L is called Lukas tilting module. It is constructed as follows.
One defines inductively a chain in add p starting with A0 = R, and choosing at
every step an embedding An ⊂ An+1 ∈ add p such that An+1/An ∈ add p and
HomR(An+1, τ

−nR) = 0. This is possible by [80, 2.5]. Now set L0 =
⋃
n≥0An and

take the short exact sequence 0 → R → L0 → L1 → 0. The module L = L0 ⊕ L1

certainly satisfies (T1) and (T3), it is add p-filtered according to the definition in
Section 4.2, and one verifies that it is a tilting module with the desired tilting class,
see [70, 71] and [61, 3.3].

Notice that L has no finite-dimensional direct summands. Further, Add L =
AddL0 by [71, 3.2], and when R is the Kronecker algebra or of wild representation
type, then even Add L = AddM for any non-zero direct summand M of L, see
[71, 3.1] and [70, 6.1].

(4) The torsion pair (Q, C) generated by q is a faithful torsion pair induced by
the cotilting module D(RL), where RL ∈ R-Mod is the left version of L. This
follows again from Proposition 6.2.

The class CogenD(RL) = C = qo = ⊥q consists of the modules without
indecomposable preinjective summands, and Q = Add q by [80, 3.3].

Notice that the tilting modules L and W determine the representation type of R:
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Theorem 3.1 ([80, 3.7-3.9], [6, Theorem 18]). Let R be a (connected) hereditary
artin algebra. The following statements are equivalent.

(1) R is of tame representation type.

(2) The torsion pair (Q, C) splits.

(3) The module L is noetherian over its endomorphism ring.

(4) The class Add W is closed under direct products.

Assume now that R is of tame representation type. Then W is a cotilting
module equivalent to D(RL), that is, Cogen W = C, see [79].

Moreover, the module W has an indecomposable decomposition

W = G⊕
⊕
{all Prüfer modules S∞}.

Here, G denotes the generic module, that is, the unique indecomposable infinite di-
mensional module, up to isomorphism, having finite length over its endomorphism
ring (which is a division ring), or in other words, G is the unique indecomposable
torsion-free divisible module, see [80, 5.3 and p.408]. Further, for each quasi-simple
module S ∈ t, we denote by Sm the module of regular length m on the ray

S = S1 ⊂ S2 ⊂ · · · ⊂ Sm ⊂ Sm+1 ⊂ · · ·

and let S∞ = lim−→Sm be the corresponding Prüfer module. The adic module S−∞
determined by S is defined dually as the inverse limit along the coray ending at S.

With similar arguments as in Section 3.3 one can now verify that D(RW) is
not a tilting module. Indeed, D(RW) is isomorphic to the direct product of G
and of all adic modules S−∞, and condition (T2) fails as Ext1

R (G,S−∞
(N)) 6= 0

by [76].
For more details on tilting and cotilting modules over tame hereditary algebras

we refer to Example 6.9 and to Sections 8.2 and 8.5.

Examples of tilting modules of projective dimension bigger than one are dis-
cussed in Section 5, after providing some background on the connection between
tilting and approximation theory.

4. Tilting and approximations

In this section, we review some fundamental results from approximation theory,
and we describe tilting classes in terms of the existence of certain approximations.

4.1. Resolving and coresolving subcategories. Recall that a full subcategory
S ⊆ ModR (or S ⊆ modR) is resolving if it satisfies the following conditions:

(R1) S contains all (respectively, all finitely generated) projective modules,
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(R2) S is closed under direct summands and extensions,

(R3) S is closed under kernels of epimorphisms.

Coresolving subcategories of ModR (or of modR) are defined by the dual condi-
tions. For example, mod-R is resolving, cf. [4, 1.1], and P and P<∞ are resolv-
ing subcategories of Mod-R and mod-R, respectively. Moreover, given any M ⊆
ModR, the category ⊥M is always resolving and M⊥ is coresolving. If S is a
resolving subcategory, then the class S⊥ coincides with

S⊥1 = {X ∈ Mod-R | Ext1
R (S,X) = 0 for all S ∈ S},

and the dual property holds true for coresolving subcategories.

4.2. Cotorsion pairs. Cotorsion pairs are the analog of torsion pairs where the
functor Hom is replaced by Ext. A pair of classes (A,B) in Mod-R is a cotorsion
pair if A = ⊥1B and B = A⊥1 . Every class of modules M generates a cotorsion
pair (A,B) by setting B =M⊥1 and A = ⊥1(M⊥1). Similarly, the cotorsion pair
cogenerated by M is given by A = ⊥1M and B = (⊥1M)⊥1 .

In a cotorsion pair (A,B), the class A is always closed under coproducts and
satisfies (R1) and (R2), while B is closed under products, contains all injective
modules and satisfies (R2). Moreover, A is resolving if and only if B is coresolving,
and this is further equivalent to ExtiR(A,B) = 0 for all A ∈ A, B ∈ B, i ≥ 1.
Cotorsion pairs with these equivalent properties are called hereditary.

A module M is said to be filtered by a class of modules S (or S-filtered) provided
thatM = Mσ is the union of a chain (Mα | α ≤ σ) of submodules such thatM0 = 0,
Mα ⊆ Mα+1 for all α < σ, Mα =

⋃
β<αMβ for all limit ordinals α ≤ σ, and the

consecutive factors Mα+1/Mα, α < σ, are isomorphic to elements of S.
The following result shows that the class A in a cotorsion pair (A,B) is always

closed under filtrations.

Lemma 4.1. ([52, 3.1.2]) Let A,B ∈ Mod-R. If A is ⊥1B-filtered, then A ∈ ⊥1B.

Let us now turn to cotorsion pairs providing for approximations.

Lemma 4.2 ([81]). Let R be a ring and (A,B) be a cotorsion pair. The following
statements are equivalent.

(1) For every M ∈ Mod-R there is a short exact sequence 0→M
f→ B → A→ 0

with B ∈ B and A ∈ A.

(2) For every M ∈ Mod-R there is a short exact sequence 0→ B → A
g→M → 0

with B ∈ B and A ∈ A.

Under these conditions, the cotorsion pair (A,B) is called complete.

The sequence in 4.2(1) gives rise to a left B-approximation (or B-preenvelope)
of M : every homomorphism h : M → B′ with B′ ∈ B factors through f . Similarly,
the sequence in 4.2(2) gives rise to a right A-approximation (or A-precover) of M :
every homomorphism h : A′ →M with A′ ∈ A factors through g.
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Remark 4.3. (1) [48, 7.2.6] If (A,B) is a complete cotorsion pair such that A is
closed under direct limits, then every module M ∈ Mod-R has a minimal left B-
approximation and a minimal right A-approximation (also called B-envelope and
A-cover).

(2) By Wakamatsu’s Lemma [48, 7.2.3], a cotorsion pair (A,B) is complete
provided that every module M ∈ Mod-R has a minimal left B-approximation, or
that every module M ∈ Mod-R has a minimal right A-approximation.

Cotorsion pairs, introduced by Salce [81] already in 1979, were rediscovered by
Eklof and Trlifaj in 2000 with the following fundamental results that led, among
other things, to the proof of the existence of flat covers, see e.g. [48, 7.4.4].

Theorem 4.4 ([46, 47]). Let M be a class of modules.

(1) If the isomorphism classes ofM form a set, then the cotorsion pair generated
by M is complete.

(2) If M consists of pure-injective modules, then the cotorsion pair cogenerated
by M is complete.

Furthermore, if (A,B) is the cotorsion pair generated by a set S ⊂ Mod-R
containing R, then A = ⊥1(S⊥1) consists of all direct summands of S-filtered
modules [52, 3.2.4].

Given a module M , consider the set S = {Ωn(M) | n ≥ 0} of all its syzygies.
Using dimension shifting and the observations in Section 4.1, we see that M⊥ =
S⊥1 and ⊥(M⊥) = ⊥1(S⊥1). Hence we obtain

Corollary 4.5. Let M be a module. Then (⊥(M⊥), M⊥) is a complete hereditary
cotorsion pair.

4.3. Cotorsion pairs induced by tilting modules. Given a tilting module T
of projective dimension n, let us collect some properties of the complete hereditary
cotorsion pair (A,B) = (⊥(T⊥), T⊥) from Corollary 4.5.

(1) The modules in A have bounded projective dimension:

pdimA = sup{ pdimA | A ∈ A} = n.

Actually, this is true for any module T with pdimT = n. Indeed, let A ∈ A and
let M ∈ Mod-R be an arbitrary module with an injective coresolution 0 → M →
E0 → E1 → . . .. The injective modules E0, E1, . . . , En−1 are contained in T⊥. By
dimension shifting we see that the n-th cosysygy Ω−n(M) also belongs to T⊥ and
we infer Exti+nR (A,M) = 0 for all i > 0.

(2) Next, we claim that
A ∩ B = AddT.

The inclusion ⊃ is obvious. For ⊂, observe first that the long exact sequence

0 → RR
f0−→ T0

f1−→ T1 −→ · · · −→ Tr−1
fr−→ Tr → 0 with T0, . . . , Tr ∈ AddT
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from condition (T3) yields a kernel Ker fi ∈ A for each 1 ≤ i ≤ r. In particular,

0 → R
f0−→ T0 → Ker f1 → 0 is a short exact sequence as in 4.2(1), showing

that f0 is a left B-approximation of R. This implies that for every X ∈ B, any
epimorphism R(I) → X factors through f0

(I), and we infer B ⊂ GenT .
So, if X ∈ B and g : T ′ → X is a right AddT -approximation (given for

instance by the codiagonal map g : T (I) → X induced by all homomorphisms in I =

HomR(T,X)), then g must be surjective, and 0→ K → T ′
g→ X → 0 is a sequence

as in 4.2(2). In fact, by applying HomR(T,−), we obtain a long exact sequence

· · · → HomR(T, T ′)
HomR(T,g)−→ HomR(T,X) → Ext1

R (T,K) → Ext1
R (T, T ′) = 0

showing that K ∈ B.
Now, if we assume that X ∈ A ∩ B, then idX factors through the right A-

approximation g, so g is a split epimorphism and X ∈ AddT .

(3) Finally, we conclude that a module X belongs to B if and only if it has an
AddT -resolution, that is, a long exact sequence

. . . −→ T ′m
gm−→ . . .

g1−→ T ′0
g0−→ X −→ 0

with all T ′i ∈ AddT . Indeed, the only-if-part follows by iterating the construction
of the right AddT -approximation above. For the if-part, note that by dimension
shifting ExtiR (A,X) ∼= Exti+nR (A,Ker gn−1) for all i > 0 and all A ∈ A. So
pdimA = n implies X ∈ A⊥.

In fact, the properties of (A,B) established above characterize the cotorsion
pairs induced by tilting modules.

Theorem 4.6 ([2],[92]). Let B ⊆ Mod-R and A = ⊥B. The following statements
are equivalent.

(1) B is a tilting class.

(2) (A,B) is a complete hereditary cotorsion pair such that A ⊂ P and A∩B is
closed under coproducts.

(3) (A,B) is a hereditary cotorsion pair such that A ⊂ P and B is closed under
coproducts.

Proof. (Sketch) As verified above, (1) implies that A ⊂ P and that A ∩ B and B
are closed under coproducts.

For (2)⇒(1), observe first that since A ⊂ P and A is closed under coproducts,
the projective dimensions attained on A are bounded by some n ∈ N. Moreover,
the completeness of (A,B) allows an iteration of left B-approximations yielding a
long exact sequence

0→ R
f0→ B0

f1→ B1 → . . .

with Bi ∈ B and Ai+1 = Coker fi ∈ A for all i. Since R ∈ A, we even have
Bi ∈ A ∩ B. But also An ∈ A ∩ B, because ExtiR (A,An) ∼= Exti+nR (A,R) = 0 for
all A ∈ A and i > 0. The module

T = B0 ⊕ . . .⊕Bn−1 ⊕An
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then satisfies AddT ⊂ A∩B, and one checks that it is a tilting module with tilting
class B.

For (3)⇒(2), one has to prove completeness. In fact, by refining set-theoretic
methods originally developed by Eklof, Fuchs, Hill, and Shelah, it is proved in [92]
that A is deconstructible, i.e. the modules in A are filtered by “small” modules from
A. Here “small” means that the modules admit a projective resolution consisting
of projectives with a generating set of bounded cardinality, and the bound can
be chosen as the least infinite cardinal κ such that every right ideal of R has a
generating set of cardinality at most κ. Now the “small” modules from A form a
set, and it follows from Lemma 4.1 that the cotorsion pair (A,B) is generated by
this set. So (A,B) is complete by Theorem 4.4.

There is a dual characterization of cotilting classes, see [2, 4.2], and [84, 2.4].
Notice that these results generalize classical results for finitely generated tilting
and cotilting modules over artin algebras due to Auslander and Reiten [15].

We obtain the following consequence for 1-tilting modules.

Corollary 4.7 ([13]). The tilting torsion pairs are precisely the torsion pairs
(T ,F) in Mod-R such that for every R-module M (or equivalently, for M = R)
there is a short exact sequence 0→M → B → A→ 0 with B ∈ T and A ∈ ⊥T .

For a dual version of this result, see [13, 2.5] or Corollary 6.6.

5. Further examples

Here is an immediate application of Theorem 4.6.

Corollary 5.1. Let S be a set of modules with pdimS ≤ n. If S⊥ is closed under
coproducts (for instance, if S ⊂ mod-R), then it is an n-tilting class.

5.1. Complements. As a consequence, we obtain the existence of complements
to partial tilting modules. Notice that this fails when restricting the attention to
finitely generated modules, as shown by the example in [78].

We say that a module M ∈ Mod-R is a partial tilting module if it satisfies
conditions (T1) and (T2). Dually, M is a partial cotilting module if it satisfies
conditions (C1) and (C2).

Theorem 5.2 ([3]). (1) Let M ∈ Mod-R be a partial tilting module. There is
N ∈ Mod-R such that T = M ⊕N is a tilting module with tilting class T⊥ = M⊥

if and only if M⊥ is closed under coproducts.

(2) Let M be a pure-injective partial cotilting module. There is N ∈ Mod-R
such that C = M ⊕ N is a cotilting module with cotilting class ⊥C = ⊥M if and
only if ⊥M is closed under products.
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Proof. (Sketch of the if-part.) (1) The class B = M⊥ is a tilting class by Corollary
5.1. A tilting module T with B = T⊥ is obtained by taking a sequence 0 → R →
N → A → 0 with N ∈ B and A ∈ A and setting T = M ⊕ N . Statement (2) is
proven dually by employing Theorem 4.4(2).

In particular, it follows that every partial tilting module M ∈ mod-R has a
complement N as in 5.2(1). Over an artin algebra R, also the dual result holds
true. Indeed, every M ∈ mod-R is pure-injective, and using the Auslander-Reiten
formula, it is shown in [65, 6.4] that ⊥M is closed under products.

Corollary 5.3 ([65]). If R is an artin algebra, then every partial cotilting module
M ∈ mod-R has a complement N as in 5.2(2).

In general, however, the complement N to a partial (co)tilting module M ∈
mod-R will be infinite dimensional.

For the case of a hereditary artin algebra, see also [62].

5.2. A tilting module determining the finitistic dimension. In this section,
let R be a right noetherian ring. The big and the little finitistic dimension of R
are defined as FindimR = pdimP and findimR = pdimP<∞. A long-standing
open problem asks whether findimR < ∞ for any artin algebra R. We are going
to phrase this problem in terms of tilting modules.

Given a class of R-modules X , we denote by X∧ the class of R-modules M
admitting a long exact sequence 0 → Xn → · · · → X1 → X0 → M → 0 with
X0, . . . , Xn ∈ X . The minimal length n of such X -resolution is the X -resolution
dimension resdimX (M) of M .

Let now (A,B) be the complete hereditary cotorsion pair generated by the
resolving subcategory P<∞ ⊂ mod-R.

Theorem 5.4 ([14, 9]). Let R be a right noetherian ring. The little finitistic
dimension findimR is finite if and only if B is a tilting class. If T is a tilting
module with B = T⊥, then

(1) findimR = pdimT = pdimA,

(2) FindimR = pdim(AddT )∧,

(3) FindimR− findimR ≤ resdimA P.

Proof. (Sketch.) (1) findimR = n < ∞ if and only if pdimA = n, which means
by Theorem 4.6 that there is a tilting module T of projective dimension n with
B = T⊥.

For (2), one proves that (AddT )∧ = P ∩ B. Then FindimR ≥ pdim(AddT )∧.
For the reverse inequality, recall that for every M ∈ P there is an exact sequence
0 → M → B → A → 0 where B ∈ B and A ∈ A. Since A ⊂ P, we even have
B ∈ P ∩ B. Moreover, pdimA ≤ n = pdimT ≤ pdim(AddT )∧. So, pdimM ≤
pdim(AddT )∧.
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(3) is a consequence of the inequality

(∗) resdimA(P) ≤ FindimR ≤ pdimA+ resdimA(P)

obtained in [9, 4.3] for any complete hereditary cotorsion pair with A ⊂ P.

Examples by Huisgen-Zimmermann and by Smalø show that the big and the
little finitistic dimension need not coincide and that their difference can be arbi-
trarily large [58, 87]. From Theorem 5.4, we see that equality of the two dimensions
holds true if and only if pdimT = pdim(AddT )∧. In particular, we recover the
following results from [15] and [59].

Corollary 5.5 ([14]). Assume that R is an artin algebra. There is a finitely
generated tilting module T such that B = T⊥ if and only if the category P<∞ is
contravariantly finite in mod-R. In this case, (AddT )∧ = AddT , and A = P. In
particular FindimR = findimR <∞.

Example 5.6. The inequality in Theorem 5.4(3) can be strict. For example, if R
is the finite-dimensional algebra from [60] given by the quiver

2

α
**

β
**
1

γ

jj

with the relations αγ = βγ = γα = 0, then FindimR = findimR = 1, but P<∞
is not contravariantly finite in mod-R, and resdimA P = 1, see [9, 4.6]. The large
1-tilting module T from Theorem 5.4 is computed explicitly in [91].

Example 5.7 ([4]). Assume R is an (Iwanaga–)Gorenstein ring, i. e. R is noethe-
rian, and the injective dimensions idimRR and idimRR are finite. Then idimRR =
idimRR = findimR, and the tilting module from Theorem 5.4 is T = I0⊕ . . .⊕ In
where 0 → R → I0 → . . . → In → 0 is a minimal injective coresolution of RR. In
particular (AddT )∧ = AddT , and FindimR = findimR. In general (e.g. when R
is a commutative Gorenstein ring), T is a large tilting module.

Theorem 5.8 ([9]). If R is right noetherian, then for every tilting module T

FindimR ≤ pdimT + idimT

Example 5.7 shows that the inequality above is sharp. Indeed, FindimR =
pdimT = pdimT + idimT in this case.

5.3. Limits of tilting or cotilting modules. It follows from Theorem 4.6 (or
its dual version) that the intersection of a family of (co)tilting classes induced
by (co)tilting modules of bounded projective (respectively, injective) dimension is
again a (co)tilting class. A corresponding (co)tilting module can be constructed
explicitly when the (co)tilting classes form a decreasing sequence.
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Theorem 5.9 ([31]). Let R be an artin algebra and let (Cn)n∈N be a family of
cotilting modules in R-mod with bounded injective dimension such that ⊥Cn ⊃
⊥Cn+1 for all n ∈ N. Then the cotilting class

⋂
n∈N

⊥Cn is induced by a cotilting
module C which can be realized as an inverse limit of an inverse system of cotilting
modules equivalent to the Cn.

The case of a decreasing sequence of tilting classes is treated in [28]. As shown
in [31], even if starting with finite dimensional (co)tilting modules, in general one
will get a large (co)tilting module. This will be illustrated in Example 6.9.

6. Large versus small

After exhibiting several examples of large tilting modules, let us now discuss dif-
ferences and similarities with the classical setup. On one hand, we will see that
tilting modules, even if infinite dimensional, still correspond to categories of finitely
generated modules. On the other hand, a substantial difference will appear when
considering tilting functors. In fact, the tilting functors given by a large tilting
module induce localizations of derived categories rather than derived equivalences.

6.1. Resolving subcategories of mod-R. The first result asserts that, sur-
prisingly, every large tilting module is determined by a set of finitely presented
modules. This has many important consequences as we will see below, and it is
the key to the classification results in Section 8.

Theorem 6.1 ([21, 22, 92, 25]). Every tilting class is of the form B = S⊥1 for
some set S ⊂ mod-R with pdimS < ∞. If (A,B) is the corresponding cotorsion
pair, then one can choose the resolving subcategory S = A ∩mod-R.

Let us point out that the statement can be rephrased as follows: every tilting
class is a definable class, i.e. it is closed under direct limits, direct products and
pure submodules.

Proof. (Sketch.) Theorem 6.1 was proved by Bazzoni, Eklof, Herbera, Sťov́ıček,
and Trlifaj in a series of four papers. We briefly sketch the main steps of the proof
and refer to [52, 5.2] for more details.

In a first step [21, 92], one uses set-theoretic methods as in the proof of the
implication (3)⇒(2) in Theorem 4.6 to deconstruct the class A into countably
presented modules, that is, one proves that the modules in A are S ′-filtered, where
S ′ is the class of modules from A that admit a projective resolution with countably
generated projectives. This implies that B = (S ′)⊥1 by Lemma 4.1.

In the next step [22], one shows that for a countably presented module A the
vanishing of Ext1

R (A,B(N)) can be translated into a Mittag-Leffler condition, and
this Mittag-Leffler condition is preserved when passing to pure submodules of B.
This implies that B is closed under pure submodules. But then B is also closed
under direct limits, since it is coresolving and closed under coproducts. Further,
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B is closed under direct products because the functors ExtiR (T,−) commute with
products. So, we conclude that B is definable.

The last step is devoted to proving B = S⊥1 . Notice that also S⊥1 is definable,
and two definable classes coincide if and only if they have the same pure-injective
modules, cf. [43, 2.3 and 2.5]. As B ⊂ S⊥1 , it remains to prove that every pure-
injective module M ∈ S⊥1 satisfies Ext1

R (A,M) = 0 for all A ∈ S ′. Now one shows
[21, 25] that A = lim−→Sn with Sn ∈ S. The claim then follows from a well-known

result by Auslander stating that Ext1
R (lim−→Sn,M) ∼= lim←−Ext1

R (Sn,M) when M is
pure-injective.

The dual of an n-tilting module is always an n-cotilting module whose cotilt-
ing class is then also determined by a set of finitely presented modules. Indeed,
employing the Ext-Tor-relations [48, 3.2.1 and 3.2.13], one obtains

Proposition 6.2. ([4, 2.3]) If T is an n-tilting right R-module and S ⊂ mod-R
satisfies T⊥ = S⊥1 , then C = D(T ) is an n-cotilting left R-module with cotilting
class

⊥C = {M ∈ R-Mod | D(M) ∈ T⊥} =

= {M ∈ R-Mod | TorR1 (S,M) = 0 for all S ∈ S} = ⊥1DS

where DS = {D(S) | S ∈ S}.

Remark 6.3. In general not all cotilting modules arise in this way. Counterex-
amples are constructed in [17, 19] over valuation domains. Over commutative
noetherian rings, however, every cotilting module is equivalent to the dual of a
tilting module, see [10]. We will show in Corollary 6.10 that the same holds true
for 1-cotilting left modules over left noetherian rings.

If S is a resolving subcategory of mod-R with pdimS ≤ n, then B = S⊥1 = S⊥
is an n-tilting class by Corollary 5.1. Theorem 6.1 now shows that all tilting classes
arise in this way.

Corollary 6.4 ([4]). For every n ∈ N there is a bijection

{resolving S ⊂ mod-R with pdimS ≤ n} −→ {n-tilting classes in Mod-R}
S 7→ S⊥1

Moreover, there is an injective map

{resolving S ⊂ mod-R with pdimS ≤ n} −→ {n-cotilting classes in R-Mod}
S 7→ ⊥1DS

which is a bijection if R is commutative noetherian, or if n = 1 and R is left
noetherian.

Despite the lack of symmetry between tilting and cotilting modules discussed
above, also cotilting classes are definable due to [52, 4.3.23], or to the following
result of Bazzoni and Šťov́ıček.
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Theorem 6.5 ([16, 90]). Every cotilting module is pure-injective.

In particular, cotilting classes are closed under direct limits. This property al-
ready allows to detect cotilting torsion pairs, thanks to the dual version of Corollary
4.7 and to an existence result for minimal right approximations given in [19, 2.6].

Corollary 6.6. ([19, 6.1]) The cotilting torsion pairs are precisely the faithful
torsion pairs (T ,F) in Mod-R where F is closed under direct limits.

6.2. Torsion pairs in mod-R. The next result asserts that over a noetherian
ring R, the 1-cotilting classes are in bijection with the faithful torsion pairs in
R-mod. A dual result holds true for 1-tilting classes over artin algebras. The
following preliminary result is needed.

Lemma 6.7 ([42]). Let R be a right noetherian ring.

(1) If (T ,F) is a torsion pair in Mod-R, then its restriction (T ∩ mod-R,F ∩
mod-R) to mod-R is a torsion pair in mod-R.

(2) If (t, f) is a torsion pair in mod-R, then its limit closure (lim−→ t, lim−→ f) in
Mod-R is a torsion pair in Mod-R, which coincides with the torsion pair
generated by t.

Lemma 6.7(2) together with Corollary 6.6 yield that the limit closure of a
faithful torsion pair in R-mod is a cotilting torsion pair in R-Mod, and all cotilting
torsion pairs arise in this way. Over an artin algebra, the Auslander-Reiten formula
allows to prove that a cofaithful torsion pair (t, f) in mod-R produces a tilting class
of in Mod-R, and applying Theorem 6.1 one can show that all tilting torsion pairs
have this form.

Theorem 6.8 ([29, 61]). (1) If R is left noetherian, there is a bijection

{cotilting torsion pairs in R-Mod} ↔ {faithful torsion pairs in R-mod}
(T ,F) 7→ (T ∩R-mod,F ∩R-mod)

The inverse map assigns to (t, f) the torsion pair in R-Mod generated by t.

(2) If R is an Artin algebra, there is a bijection

{tilting torsion pairs in Mod-R} ↔ {cofaithful torsion pairs in mod-R}
(T ,F) 7→ (T ∩mod-R,F ∩mod-R)

The inverse map assigns to (t, f) the torsion pair in Mod-R cogenerated by f.

Example 6.9. Every cofaithful torsion pair in mod-R over an artin algebra R is
thus represented by a tilting module which is unique up to equivalence. Let us
illustrate this for the Kronecker algebra, that is, is the path algebra of the quiver

• //
// •
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Its Auslander-Reiten quiver has the form

P1 P3 P5

P2 P4

������������ @@R@@R @@R@@R . . .
Q5 Q3 Q1

Q4 Q2

������������ @@R@@R @@R@@R. . .�� ��
...

...

�� ��
...

...

�� ��
...

...

. . . . . .

p t =
⋃
x∈X Ux q

Here is a classification of the cofaithful torsion pairs in mod-R. It yields a
classification of all tilting R-modules up to equivalence.

Cofaithful torsion pairs in mod-R Tilting modules

( add({Pi | i > n} ∪ t ∪ q), add(P1 ⊕ . . .⊕ Pn) ), n ≥ 0, Pn+1 ⊕ Pn+2

( add(t ∪ q), add(p) ) L
( add(

⋃
x6∈P Ux ∪ q), add(p ∪

⋃
x∈P Ux) ), ∅ 6= P ( X, TP

( add(q), add(p ∪ t) ) W
( add(Q1 ⊕ . . .⊕Qn), add(p ∪ t ∪ {Qi | i > n}) ), n ≥ 2, Qn−1 ⊕Qn

The modules L and W are the large tilting modules from Example 3.4. Further,
for every subset ∅ 6= P ( X, we obtain a large tilting module TP corresponding to
the torsion pair below. The shape of TP will be discussed in Section 8.2.

�
� . . .

. . . �
�. . .

. . .

p t

⋃
x∈P Ux

q

Observe that the tilting classes Gen(Pn+1 ⊕ Pn+2) = GenPn+1 = oPn form a
decreasing sequence with intersection op = Gen L, cf. Section 5.3.

As a consequence of Theorem 6.8, we can now prove the following.

Corollary 6.10 ([10]). Over a left noetherian ring R, every 1-cotilting left R-
module is equivalent to the dual of a tilting module.

Proof. Let C be a 1-cotilting module with cotilting class F . By Theorem 6.8 there
is a set t ⊂ R-mod such that F = to, and R ∈ F . Then the modules U ∈ t satisfy
HomR(U,R) = 0. Taking the Auslander-Bridger transpose TrU of U , we see that
pdim TrU ≤ 1 and that HomR(U,−) ∼= TorR1 (TrU,−) are isomorphic functors,
see [10, 2.9]. By Corollary 5.1, the class S = {TrU | U ∈ t} ⊂ mod-R induces a
1-tilting class S⊥. If T is a tilting module with T⊥ = S⊥, then it follows from
Proposition 6.2 that ⊥D(T ) = {M ∈ R-Mod | TorR1 (S,M) = 0 for all S ∈ S} =
F , and C is equivalent to D(T ).
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6.3. Tilting functors given by large tilting modules. Let us now turn to
an important difference between large and classical tilting modules.

Let TR be a tilting module and let S = EndTR. When T ∈ mod-R, the tilting
functors j∗ = − ⊗L

S T and j∗ = R HomR(T,−) define an equivalence between
D(Mod-R) and D(Mod-S) by a well-known result of Happel [55].

This is no longer true for large tilting modules. However, a weaker result can
be proven under the assumption that T satisfies

(T3’) There exists a long exact sequence 0 → RR → T0 → · · · → Tr → 0 with
Ti ∈ addT for each 0 ≤ i ≤ r.

A tilting module with this property is said to be good. Classical tilting modules
are good, and it is easy to see that every tilting module is equivalent to a good
one. The advantage of good tilting modules is that ST is then a finitely presented
partial tilting module.

When T is good, the triangle functors j∗ = − ⊗L
S T and j∗ = R HomR(T,−)

form an adjoint pair such that the counit adjunction morphism j∗j∗ → IdD(Mod−R)

is invertible, and therefore j∗ is fully faithful and j∗ dense. Moreover, D(Mod-R)
is equivalent to the Verdier quotient of D(Mod-S) with respect to the kernel of the
functor j∗. Notice that this kernel is zero if and only if T ∈ mod-R. For details
we refer to [20, 23].

As shown in [95, 32, 33], the functors j∗ and j∗ actually belong to a recollement
of derived categories in the sense of [26].

Theorem 6.11 ([20, 23, 95, 32, 33]). Let TR be a good n-tilting module, and
S = EndTR. Then there are a dg-algebra S̃ and a recollement of derived categories

D(Mod-S̃)

i∗oo

i∗=i! //

i!
oo

D(Mod-S)

j!oo

j!=j∗ //

j∗
oo

D(Mod-R)

If n = 1, then S̃ is an ordinary ring that can be computed as universal localisation
of S (as defined in Theorem 7.2).

Tilting functors given by large tilting modules thus give rise to new derived
categories and to new phenomena. This was exploited in [32] to show that stratifi-
cations of derived categories in general are not unique, that is, they do not satisfy
a Jordan-Hölder theorem.

For generalizations of Theorem 6.11 we refer to [24, 75].

7. Tilting modules arising from localization.

7.1. Ring epimorphisms. In order to find the shape of the tilting modules TP
from Example 6.9, we need a construction of tilting modules that is inspired by
the tilting module Q ⊕ Q/Z of Example 3.3. In fact, following the same pattern,
we will obtain a big supply of tilting modules.
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Recall that a ring homomorphism λ : R→ S is said to be a ring epimorphism
if it is an epimorphism in the category of rings, that is, whenever two ring homo-
morphisms ϕi : S → Si, i = 1, 2, satisfy ϕ1λ = ϕ2λ, then ϕ1 = ϕ2. Equivalently,
λ : R→ S induces a full embedding Mod-S ↪→ Mod-R.

Notice that every surjective ring homomorphism is an epimorphism, but the
converse is not true, see for example Z ↪→ Q.

A ring epimorphism λ : R→ S is a homological ring epimorphism if it also in-
duces a full embedding D(Mod-S) ↪→ D(Mod-R) at the level of derived categories.
As shown in [51, 4.4], this can be expressed by the condition

ExtnR (M,N) ∼= ExtnS (M,N) for all n ∈ N and M,N ∈ Mod-S (1)

or, equivalently, by the condition

TorRn (S, S) = 0 for all n ∈ N. (2)

Assume now that λ : R → S is an injective ring epimorphism such that
TorR1 (S, S) = 0 and SR is an R-module of projective dimension at most one.

By condition (2) above, λ is a homological ring epimorphism. In particular
ExtiR (S, S(I)) ∼= ExtiS (S, S(I)) = 0 for all i > 0 and all sets I, and as pdimSR ≤ 1,
it follows GenSR ⊂ S⊥.

Consider now the short exact sequence

0→ R
λ→ S → S/R→ 0.

For M ∈ Mod-R we obtain a long exact sequence

0→ HomR(S/R,M)→ HomR(S,M)
HomR(λ,M)−→ HomR(R,M)→

→ Ext1
R (S/R,M)→ Ext1

R (S,M)→ 0

The image of HomR(λ,M) under the identification HomR(R,M) ∼= M is precisely
the trace of SR in M . Thus M ∈ GenSR if and only if Ext1

R (S/R,M) = 0. We
conclude that the R-module

T = S ⊕ S/R

satifies GenT = GenSR = (S/R)⊥ = T⊥ and is therefore a 1-tilting module.

Theorem 7.1 ([11]). (1) If λ : R → S is an injective ring epimorphism such
that TorR1 (S, S) = 0 and pdimSR ≤ 1, then S⊕S/R is a 1-tilting R-module.

(2) A tilting R-module T is equivalent to a tilting module S⊕S/R as in (1) if and
only if there is an exact sequence 0→ R→ T0 → T1 → 0 with T0, T1 ∈ AddT
and HomR(T1, T0) = 0.

Proof. (Sketch of the if-part in (2).) Denote by X = T1
o ∩ T⊥1 the perpendicular

category of T1. By [50] (see also [51, Proposition 3.8]) there is a ring epimorphism
λ : R → S such that the category Mod-S, when viewed as a full subcategory of
Mod-R, is equivalent to X . More precisely, the inclusion functor ι : X → Mod-R
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has a left adjoint ` : Mod-R → X , and λ : R → S = End(`(R)) is defined by the
assignment λ(r) = `(mr), where mr : R → R denotes the left multiplication with
the element r.

Since T0 belongs to X , we see that the unit adjunction morphism R → ι`(R)

is given by the map f in the exact sequence 0→ R
f→ T0 → T1 → 0, and from the

commutative diagram

R
f

//

mr

��

T0

λ(r)

��

R
f

// T0

we infer that λ : R → S is injective. Indeed, λ(r) = 0 implies f mr = 0, hence
mr = 0 and r = 0. Moreover, SR ∼= T0 has projective dimension at most one, and
λ is even a homological ring epimorphism by [51, Corollary 4.8]. It follows from (1)
that S⊕S/R is a tilting module with tilting class Gen(SR) = Gen(T0). Moreover,
the map f : R → T0 is a minimal left T⊥-approximation of R, and as in Section
4.3, we deduce GenT0 = T⊥.

7.2. Universal localization. The technique of universal localization developed
by Cohn and Schofield provides a large supply of ring epimorphisms as in Section
7.1.

Theorem 7.2 ([85]). For any set of morphisms Σ between finitely generated pro-
jective right R-modules there is a ring homomorphism λ : R→ RΣ such that

(1) λ is Σ-inverting: if α : P → Q belongs to Σ, then the RΣ-homomorphism
α⊗R 1RΣ : P ⊗R RΣ → Q⊗R RΣ is an isomorphism.

(2) λ is universal with respect to (1): any further Σ-inverting ring homomor-
phism λ′ : R→ R′ factors uniquely through λ.

The homomorphism λ : R → RΣ is a ring epimorphism with TorR1 (RΣ, RΣ) = 0,
called the universal localization of R at Σ.

Let now U ⊂ mod-R be a set of modules of projective dimension one. For each
U ∈ U , we fix a projective resolution in mod-R

0→ P
αU→ Q→ U → 0

and we set Σ = {αU | U ∈ U}. We denote by RU the universal localization of R at
Σ. Note that RU does not depend on the chosen class Σ, cf. [34, Theorem 0.6.2].

If U∗ = HomR(U,R) = 0 for all U ∈ U , then we also have exact sequences

0 → Q∗
(αU )∗→ P ∗ → TrU → 0, and RU ∼= RTrU for TrU = {TrU | U ∈ U}.

Moreover, the class U⊥ is a 1-tilting class by Corollary 5.1, and as in the proof of
Corollary 6.10 one checks that the class (TrU)o is the 1-cotilting class in R-Mod
that corresponds to U⊥ under the bijection from Corollary 6.4.
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Theorem 7.3. ([11, 4.13]) Let U ⊂ mod-R be a set of modules of projective
dimension one such that U∗ = 0 for all U ∈ U . Assume that R embeds in RU and
pdimRU ≤ 1. Then

TU = RU ⊕RU/R

is a 1-tilting module. If RU/R is a direct limit of U-filtered right R-modules, then
GenTU = U⊥, and CogenD(TU ) = (TrU)o.

Example 7.4. [11, 4.7 and 4.14] Let U be a left Ore set of non-zero-divisors of R.
Then the Ore localization U−1R coincides with the universal localization of R at
U = {R/uR | u ∈ U} (or at TrU = {R/Ru | u ∈ U}). Moreover, U⊥ is the class of
U-divisible right R-modules, i.e. the modules MR such that M = Mu for all u ∈ U,
and (TrU)o is the class of U-torsion-free left R-modules, i.e. the modules RM such
that for u ∈ U and 0 6= m ∈M always um 6= 0.

As an application of Theorem 7.3, we have that pdim(U−1RR) ≤ 1 if and only
if Gen(U−1RR) = U⊥, and in this case TU = U−1R ⊕ U−1R/R is a tilting right
R-module generating the U-divisible right R-modules, and D(TU) is a cotilting
module cogenerating the U-torsion-free left R-modules.

For a commutative ring R, the tilting module TU is used in [5] to prove that
pdim(U−1RR) ≤ 1 if and only if the module U−1R/R is a direct sum of count-
ably presented submodules. This generalizes classical results for domains due to
Hamsher, Matlis, and Lee [53, 72, 67].

Example 7.5. Let R be a right hereditary ring, and let Σ be a set of morphisms
between finitely generated projective right R-modules. It is shown in [86] that
RΣ = RU for a subcategory U ⊂ mod-R which is closed under images, kernels,
cokernels and extensions. More precisely, U consists of all U ∈ mod-R such that
the projective resolution 0 → P

α→ Q → U → 0 is inverted by RΣ, that is,
α⊗R RΣ is an isomorphism. Equivalently, U consists of all U ∈ mod-R such that
HomR(U,−) and Ext1

R (U,−) vanish on all RΣ-modules.
If U contains no projective module, then R embeds in RU , and RU/R is a direct

limit of modules in U by [86, 2.6]. It follows from Theorem 7.3 that TU is a tilting
module with tilting class U⊥.

8. Classification of tilting modules

Now we are ready for the first classification results. In fact, Theorem 7.3 is used
in [11, 6.11] to prove that over certain hereditary rings all tilting modules are
of the form TU for some set of simple modules U . In particular, this applies to
maximal hereditary orders, to hereditary local noetherian prime rings which are
not simple artinian (e.g. not necessarily commutative discrete valuation domains),
and to Dedekind domains.

8.1. Dedekind domains. [21, 11]. Let R be a Dedekind domain, i.e. a commu-
tative noetherian hereditary domain, for example R = Z. Every tilting module is
equivalent to a module of the form TU where U is a set of simple R-modules.
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Writing U = U(P ) = {R/m | m ∈ P} where P is a set of maximal ideals of
R, we see that the equivalence classes of tilting modules are parametrized by the
subsets of Max-SpecR. The trivial case P = ∅ corresponds to T = R, while the
choice P = Max-SpecR gives the tilting module T = Q⊕Q/R where Q is the field
of quotients of R, cf. Example 3.3 for R = Z.

Not all tilting R-modules, however, arise from Ore localization. Indeed, TU(P ) is
of the form TU as in Example 7.4 if and only if the complement X = Max-SpecR\P
of P is compact. Here a subset X of Max-Spec(R) is said to be compact if every
m ∈ Max-Spec(R) such that m ⊆ ∪

p∈X
p must equal some p ∈ X.

Tilting classes in Mod-R correspond bijectively to universal localizations of R.
In fact, by the structure of finitely generated modules over Dedekind domains,
the non-trivial universal localizations of R are equivalent to localizations at sets
of simple modules. By [64, 8.1], we infer that the tilting classes in Mod-R are in
bijection with the recollements of D(Mod-R).

8.2. The Kronecker algebra. [12] A similar classification as in the Dedekind
case is obtained for large tilting modules when R is the Kronecker-algebra. Indeed,
as we have seen in Example 6.9, the tilting classes corresponding to infinite dimen-
sional tilting modules are of the form Gen L = op or Gen TP = o(p ∪

⋃
x∈P Ux) =⋂

x∈P Ux ⊥ for some subset ∅ 6= P ⊂ X. So, the equivalence classes of tilting mod-
ules are parametrized by the subsets of X. The trivial case P = ∅ corresponds to
T = L, while the choice P = X gives the module T = W.

Applying Theorem 7.3, we see that TP = TU(P ) can be obtained from universal
localization at the set U(P ) of quasi-simple modules in

⋃
x∈P Ux. So, every large

tilting module is equivalent to one of the following:

- the tilting module L

- a tilting module of the form TU where U 6= ∅ is a set of quasi-simple modules.

The rings RP = RU(P ) are hereditary orders, and RX is a simple artinian ring,
see [41]. The tilting module W is equivalent to TX = RX⊕RX/R. More generally,
TP = RP ⊕RP /R has the form

TP = RP ⊕
⊕
{all S∞ from tubes Ux, x ∈ P}.

Here we say that S∞ is a Prüfer module from Ux if S ∈ Ux, and similarly for the
adic modules.

From Corollary 6.10 we recover the classification of cotilting modules achieved
by Buan and Krause in [29]. In fact, taking the dual modules D(TP ), one obtains
that every large cotilting R-module is equivalent to

CP = G⊕
⊕
{all S∞ from tubes Ux, x 6∈ P}⊕

∏
{all S−∞ from tubes Ux, x ∈ P}

for some subset P ⊂ X, where G again denotes the generic module.
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Before we turn to arbitrary tame hereditary algebras, let us investigate more
carefully the relationship between tilting modules and localization over commuta-
tive rings. In fact, the classification over Dedekind domains (which are precisely
the noetherian Prüfer domains) extends both to commutative noetherian rings and
to Prüfer domains.

8.3. Commutative noetherian rings. Recall that a torsion pair (T ,F) in
Mod-R (or more generally, in a Grothendieck category A) is hereditary if T is
closed under subobjects.

Let now R be a commutative noetherian ring. We are going to see that the
cotilting torsion pairs over R are precisely the faithful hereditary torsion pairs in
Mod-R, and they are parametrized in terms of certain sets of prime ideals.

A subset P ⊆ Spec(R) is said to be closed under specialization if for any p ∈ P
and any q ∈ Spec(R) we have q ∈ P whenever q ⊇ p.

Every subset P ⊆ Spec(R) closed under specialization gives rise to a Gabriel
topology (or Gabriel filter) GP on R, which consists of those ideals I of R for which
the set V (I) = {p ∈ Spec(R) | p ⊇ I} is contained in P . For details on Gabriel
topologies we refer to [89]. Here we just recall that the Gabriel topologies on
R correspond bijectively to the hereditary torsion pairs in Mod-R. In order to
describe the torsion pair associated to GP in terms of P , we need some further
terminology.

Given M ∈ Mod-R, a prime ideal p ∈ Spec(R) is said to be associated to
M if R/p embeds in M . The set of all associated primes of M is denoted by
Ass M . Further, denoting by Mp = M ⊗R Rp the localization of M at p, we
write Supp M = {p ∈ Spec(R) | Mp 6= 0} for the support of M . For a category
M⊆ Mod−R, we set Supp M =

⋃
M∈M Supp M.

The following result goes back to work of Gabriel. For details we refer to [89,
Chapter VI, Theorem 5.1 and Example 6.6] and to [10, Proposition 2.3].

Proposition 8.1 ([49]). Let R be a commutative noetherian ring. Every subset
P ⊆ Spec(R) closed under specialization gives rise to a hereditary torsion pair
(T (P ),F(P )), where

T (P ) = {M ∈ Mod-R | Supp M ⊆ P},
F(P ) = {M ∈ Mod-R | Ass M ∩ P = ∅}.

The assignments P 7→ GP and P 7→ (T (P ),F(P )) define bijective correspondences
between the subsets of Spec(R) closed under specialization, the Gabriel topologies
on R, and the hereditary torsion pairs in Mod-R.

The class F(P ) is called the class of P -torsion-free modules. The class of P -
divisible modules is defined as D(P ) = {M ∈ Mod-R | pM = M for all p ∈ P}.

From Theorem 6.8 we know that every cotilting torsion pair is of the form
(T ,F) = (lim−→(T ∩ mod-R), lim−→(F ∩ mod-R)). Moreover, it turns out that F =
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lim−→(F ∩mod-R) = F(P ) for some subset P ⊂ Spec(R) closed under specialization.
Finally, it follows from the definition of F(P ) that the torsion pair (T (P ),F(P ))
is faithful if and only if P does not contain prime ideals that are associated to R.
We thus obtain

Theorem 8.2 ([10]). Let R be a commutative noetherian ring. There are bijections
between the following sets:

(i) subsets P ⊆ Spec(R) closed under specialization such that Ass R ∩ P = ∅,

(ii) faithful hereditary torsion pairs in Mod-R,

(iii) 1-cotilting classes in Mod-R,

(iv) 1-tilting classes in Mod-R

given by

Bijection Assignment
(i) → (ii) P 7→ (T (P ),F(P ))

(ii) → (i) (T ,F) 7→ Supp T
(i) → (iii) P 7→ F(P)
(i) → (iv) P 7→ D(P )

(iv) → (iii) GenT 7→ CogenD(T )

Notice that over a Dedekind domain Ass R = {0}, so the set of maximal ideals
Max-Spec(R) coincides with Spec(R) \ Ass R. The assignment (i) → (iv) thus
becomes

{subsets of Max-Spec(R)} → {tilting classes}, P 7→ Gen TU(P )

and corresponds to the classification in Section 8.1.

More generally, for each n ≥ 1, the n–tilting and n–cotilting classes over a
commutative noetherian ring R are parametrized by finite sequences of subsets of
Spec(R). For details we refer to [10]. In this way, by Corollary 6.4, one also ob-
tains a classification of the resolving subcategories of mod-R of bounded projective
dimension, which was obtained independently in [44].

8.4. Prüfer domains. [21, 82, 1] Recall that a Prüfer domain is a commutative
domain that is semihereditary, i.e. every finitely generated ideal is projective. Then
by a well-known result of Kaplansky, all finitely presented modules have projective
dimension at most one.

Theorem 8.3 ([21, 82]). Over a Prüfer domain R, the tilting classes in Mod-R
correspond bijectively to the Gabriel topologies of R of finite type.

Here a Gabriel topology G is of finite type if it has a basis of finitely generated
ideals, that is, every I ∈ G contains a finitely generated ideal I ′ ∈ G.
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The bijection in Theorem 8.3 associates to a Gabriel topology of finite type
G the tilting class of all G-divisible modules, that is, of all modules X such that
IX = X for each I ∈ G. Conversely, if B is a tilting class, then the non-zero finitely
generated ideals I such that R/I ∈ ⊥B form a basis of the corresponding Gabriel
topology.

The tilting modules overR were classified by Salce in [82]. Hereby, an important
role is played by the localizations R→ QG with respect to a Gabriel topology G.

Let us briefly recall the construction of QG , for details we refer to [89, Chapter
IX]. Every Gabriel topology G corresponds bijectively to a hereditary torsion pair
(T ,F). If X = T o ∩ T ⊥ is the perpendicular category of T , then the inclusion
functor ι : X → Mod-R has a left adjoint ` : Mod-R → X . As in the proof of
Theorem 7.1, we see that the unit adjunction morphism R→ ι`(R) induces a ring
structure on QG = ι`(R) and a ring homomorphism λG : R→ QG . If G is a Gabriel
topology of finite type over a Prüfer domain, then λG : R→ QG is an injective ring
epimorphism, and QG is a flat R-module. Further, λG is equivalent to the universal
localization λU at the set U of all finitely presented modules from T , that is, there
is a ring isomorphism ϕ : QG → RU such that ϕλG = λU , see [1, 5.7 and 5.3].

Theorem 8.4 ([82, 1]). Let R be a Prüfer domain. Let T be a tilting module, and
let G be the associated Gabriel topology of finite type. The following statements are
equivalent.

(1) pdimQG ≤ 1.

(2) QG ⊕QG/R is a tilting module equivalent to T .

(3) There is a set U ⊂ mod-R such that TU is a tilting module equivalent to T .

(4) There is an exact sequence 0 → R → T0 → T1 → 0 where T0, T1 ∈ AddT
and HomR(T1, T0) = 0.

So, over Prüfer domains the tilting modules constructed from ring epimor-
phisms, from universal localizations and from Gabriel localizations are the same.
But in general, not all tilting modules arise in this way: an example is provided
by the Fuchs tilting module δ generating the class of all divisible modules when R
is a Prüfer domain which is not a Matlis domain, that is, when the quotient field
Q of R has projective dimension > 1 over R, cf. [52, 5.1.2] and [11, 3.11(4)].

8.5. Tame hereditary algebras. Throughout this section, R denotes a (con-
nected) tame hereditary finite dimensional algebra over a field k. We use the
notation from 3.4 and denote by t =

⋃
x∈X Ux the regular components.

Our first aim is to rephrase the classification over the Kronecker algebra in
terms of categorical localization. We are going to see that large tilting modules
correspond to faithful hereditary torsion pairs, like in the commutative noetherian
case, once we replace the module category Mod-R by the category QcohX of quasi-
coherent sheaves on the exceptional curve X. For details on the notion of an
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exceptional curve (which agrees with the notion of a weighted projective line if the
field k is algebraically closed) we refer to [68, 69, 66].

Here we interpret QcohX as the heart of a t-structure in the bounded derived
categoryDb(Mod-R). Following [56] and [79, 11.1], we associate a t-structure to the
split torsion pair (Add q, C) in Mod-R from Section 3.4. We have a particularly nice
situation since (Add q, C) is a cotilting torsion pair given by the Σ-pure-injective
cotilting module W.

Theorem 8.5 ([79, 37, 38]). The heart A of the t-structure in Db(Mod-R) associ-
ated to the torsion pair (Add q, C) is a hereditary locally noetherian Grothendieck-
category with injective cogenerator W[1], and with a tilting object V = R[1] in-
ducing a split tilting torsion pair (C[1],Add q). In particular, A is equivalent to
QcohX.

The last statement follows from the axiomatic description of cohX given in
[68], which yields an equivalence between cohX and the category fpA of finitely
presented objects in A. Notice that the indecomposable injective objects in A are
G[1] and the objects S∞[1], and the latter are uniserial objects with socle S[1].
The class add t[1] = add(

⋃
x∈X Ux[1]) consists precisely of the objects of fpA that

have finite length. The class add(q ∪ p[1]) of objects of infinite length in fpA
corresponds to the class vectX of all vector bundles in QcohX.

According to [57, 63], the hereditary torsion pairs in the locally noetherian
Grothendieck category A correspond bijectively to the Serre subcategories of fpA,
that is, the subcategories S ⊂ fpA such that for every exact sequence 0 → A →
B → C → 0 in fpA we have B ∈ S if and only if A,C ∈ S. The bijection assigns to
a hereditary torsion pair (T ,F) the Serre subcategory S = fpA ∩ T . Conversely,
a Serre subcategory S is mapped to the (hereditary) torsion pair generated by S.

We will say that a hereditary torsion pair (T ,F) in A is faithful if add(q ∪
p[1]) ⊂ F , or equivalently, if the corresponding Serre subcategory consists of finite
length objects.

Recall that a torsion pair (T ,F) in a Grothendieck category is hereditary if and
only if F is closed under injective envelopes. So, let us explain how to compute
injective envelopes in A. As shown in [79], the classes C = Cogen W = ⊥q and
D = Gen W = t⊥ form a complete cotorsion pair (C,D) in Mod-R. So, for every
M ∈ Mod-R there is a short exact sequence 0 → M → D → C → 0 where
D ∈ D and C ∈ C. In particular, if M ∈ C, then the sequence above is a left
Add W-approximation in Mod-R

0→M →W0 →W1 → 0

which gives rise to an injective coresolution in A

0→M [1]→W0[1]→W1[1]→ 0

For example, the injective coresolution of S−∞[1] in A is

0→ S−∞[1]→ G′[1]→ (τ−S)∞[1]→ 0
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where G′ is a direct sum of copies of the generic module G, see [29, 2.4].

Now assume that R is the Kronecker algebra. By Section 8.2, every large
cotilting R-module is equivalent to a module

CP = G⊕
⊕
{all S∞ from tubes Ux, x 6∈ P}⊕

∏
{all S−∞ from tubes Ux, x ∈ P}

with P ⊂ X. Then the injective envelope of CP [1] in A is a direct sum of copies
of G[1] and of objects S∞[1] from tubes Ux, x 6∈ P . Hence the class F(P ) =
Cogen CP [1] is closed under injective envelopes. We obtain a hereditary torsion
pair (T (P ),F(P )) in A, which is faithful as the corresponding Serre subcategory
is S(P ) = add(

⋃
x∈P Ux[1]). Notice, moreover, that the quotient category A/T (P )

is equivalent to the category Mod-RP .

We thus have an analog to Theorem 8.2.

Theorem 8.6. Let R be the Kronecker algebra. There are bijections between the
following sets:

(i) subsets P ⊂ X,

(ii) faithful hereditary torsion pairs (T ,F) in A,

(iii) equivalence classes of large cotilting left R-modules,

(iv) equivalence classes of large tilting right R-modules.

Let us now turn to an arbitrary tame hereditary algebra. Here, in contrast to
the Kronecker case, a large tilting module T can also have finite dimensional direct
summands. They will be regular modules from non-homogeneous tubes.

We need some terminology in order to describe such summands. Given a tube
Ux of rank r > 1 and a module Sm ∈ Ux of regular length m < r, we consider
the full subquiver WSm

of tλ which is isomorphic to the Auslander-Reiten-quiver
Θ(m) of the linearly oriented quiver of type Am with Sm corresponding to the
projective-injective vertex of Θ(m). The set WSm

is called a wing of Ux of size m.
It turns out that the finite dimensional indecomposable summands of T are ar-

ranged in disjoint wings, and the number of summands in each wing equals the size
of the wing. The direct sum Y of a complete irredundant set of finite dimensional
indecomposable summands of T is thus a finite dimensional regular multiplicity-
free R-module with Ext1

R (Y, Y ) = 0 such that for every direct summand Sm of Y
of regular length m there exist precisely m direct summands of Y that belong to
WSm

. A module Y with these properties will be called a branch module.
By passing to a suitable universal localization RV of R, one can reduce the

classification problem to a situation similar to the Kronecker case. In fact, T is
equivalent to a tilting R-module of the form Y ⊕M where Y is a branch module and
M is a tilting RV -module without finite dimensional indecomposable summands.
This allows to conclude that T is equivalent either to Y ⊕ LV , where LV is the
Lukas tilting module over RV , or it is equivalent to Y ⊕RV ⊕RV/RU for a suitable
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subset U of V. Here RV/RU is a direct sum of Prüfer modules, and both LV and
RV can be replaced by L⊗R RV , see [12, 5.6 and 5.7].

A complete list of all large tilting modules up to equivalence is then given by
the modules

T(Y,P ) = Y ⊕ (L⊗R RV)⊕
⊕
{all S∞ in ⊥Y from tubes Ux, x ∈ P}

where Y is a branch module, P ⊂ X, and V = V(Y,P ) consists of all quasi-simple
modules in

⋃
λ∈P Ux and all regular composition factors of Y . By the Auslander-

Reiten formula, the Prüfer modules S∞ appearing in the direct sum are precisely
those whose regular socle S does not occur as a regular composition factor of τ−Y .

Again, one can use Corollary 6.10 to recover the classification of large cotilting
modules achieved in [29, 30]. So, every large cotilting module is equivalent to a
module

C(Y,P ) = Y ⊕G⊕
⊕
{all S∞ in ⊥Y from tubes Ux, x 6∈ P}⊕

⊕
∏
{all S−∞ in Y ⊥ from tubes Ux, x ∈ P}

Theorem 8.7 ([12]). Let R be a connected tame hereditary artin algebra. There
are bijections between the following sets:

(i) pairs (Y, P ) where Y is a branch module and P ⊂ X,

(ii) equivalence classes of large cotilting left R-modules,

(iii) equivalence classes of large tilting right R-modules.

Moreover, given a pair (Y, P ) as above, we can consider the Serre subcategory
S(Y,P ) of fpA consisting of the additive closure of the wings defined by Y [1] and
the tubes Ux[1], x ∈ P . The torsion pair (T ,F) in A generated by S(Y,P ) is a
faithful hereditary torsion pair, and all faithful hereditary torsion pairs in A arise
in this way. Hence the equivalence classes of large (co)tilting modules correspond
to Gabriel localizations of A. It is easy to see, however, that this correspondence
is not injective in general, as different branch modules can define the same wing.

Finally, we remark that by [73] all classical tilting modules over finite dimen-
sional hereditary algebras (of any representation type) arise from universal locali-
sations.

8.6. Tilting sheaves. The discussion above raises the problem of classifying
large tilting sheaves in the category QcohX of quasi-coherent sheaves on an excep-
tional curve X. As QcohX is a Grothendieck category, we can employ the tilting
theory for Grothendieck categories from [35] and the background on cotorsion pairs
developed in [83]. We can also use the interplay between sheaves on X and modules
over the derived equivalent canonical algebra R.

Considering tilting sheaves T(Y,P ) analogous to the modules constructed in
Section 8.5, one obtains
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Theorem 8.8 ([8]). Let X be an exceptional curve of domestic type. There are
bijections between the following sets:

(i) pairs (Y, P ) where Y is a branch object and P ⊂ X,

(ii) equivalence classes of large tilting sheaves in QcohX.

When X, or the associated canonical algebra R, is of tubular type, there are
many more tilting sheaves on X, or tilting modules over R. In fact, there are tilting
modules of the form T(Y,P ) for each rational slope, and in addition there are tilting
modules of irrational slope.

Let us first recall the definition of slope. If R is a (connected) canonical algebra
of tubular type, the AR-quiver of R consists of a preprojective component p0, a
preinjective component q∞ and a countable number of sincere separating tubular
families tα, α ∈ Q∞0 = Q+ ∪ {0,∞}, where tα is stable for α ∈ Q+.

We fix w ∈ R∞0 = R+ ∪ {0,∞} and set

pw = p0 ∪
⋃
α<w

tα, qw =
⋃
w<γ

tγ ∪ q∞

For rational w we thus obtain a trisection (pw, tw,qw) of the category of inde-
composable finitely generated modules as in Section 3.4, while for irrational w the
finitely generated indecomposable modules all belong either to pw or to qw.

In [79, §13], the classes pw and qw are used to construct torsion pairs in Mod-R
in the same way as in Section 3.4. The class

Bw = o(pw) = (pw)⊥,

is a 1-tilting class by Corollary 5.1. We denote by Lw a tilting module generat-
ing Bw. It is an infinite dimensional module that can be obtained by a similar
construction as in Section 3.4.

Dually, the class
Cw = (qw)o = ⊥(qw),

is a cotilting class, and we denote by Ww a cotilting module cogenerating Cw.
According to [79], for any w ∈ R∞0 we say that a module has slope w if it

belongs to the class Cw ∩ Bw. Notice that every indecomposable module not in
p0 ∪ q∞ has a slope by [79, Theorem 13.1].

If w is rational, the situation is completely analogous to the tame hereditary
case. Indeed, the classes Cw and Dw = o(tw) = (tw)⊥ form a cotorsion pair
(Cw,Dw), and Ww is also a tilting module which generates Dw and which can
be chosen as the direct sum of a set of representatives of the Prüfer modules and
the generic module Gw from the family tw. Moreover, Add Ww is closed under
direct products, and (Qw, Cw) is a split torsion pair with Qw = Gen qw, see [79,
3.1 and 13.1]. The heart Aw of the t-structure in Db(Mod-R) associated to this
torsion pair is again of the form QcohXw for a tubular exceptional curve Xw which
parametrizes the family tw, see [69],[66, 8.1.6]. So, with the corresponding torsion
pairs and the corresponding notion of slope in QcohX (which coincides with the
definition in [69, 66]), we can define tilting modules or sheaves T(Y,P ) as above.
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If w is irrational, then there is just one tilting module and one cotilting module
of that slope. In fact, any tilting module of slope w is equivalent to Lw, and any
cotilting module of slope w is equivalent to Ww. Moreover, a module has slope w
if and only if it is a pure submodule of a product of copies of Ww, or equivalently,
it is a pure-epimorphic image of a direct sum of copies of Lw.

It is well known that coherent tilting sheaves must have direct summands of
different slopes. Indeed, in a coherent tilting sheaf T , the number of pairwise non-
isomorphic indecomposable summands from a given tubular family tw is bounded
by

∑t
i=1(pi − 1), where p1, . . . , pt are the ranks of the non-homogeneous tubes in

tw, and it is therefore strictly smaller than the rank of the Grothendieck group
rkK0(X) =

∑t
i=1(pi − 1) + 2.

In contrast, large tilting sheaves have a well-defined slope. So, we obtain a
complete classification as follows.

Theorem 8.9 ([8]). Let X be an exceptional curve of tubular type.
(1) Every large tilting sheaf has a slope w.
(2) If w is irrational, then Lw is the only tilting sheaf of slope w up to equivalence.
(3) For rational w there are bijections between the following sets:

(i) pairs (Y, P ) where Y is a branch object in tw and P ⊂ Xw,

(ii) equivalence classes of large tilting sheaves in QcohX of slope w.
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[27] S.Brenner, M.Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflec-
tions functors. In Proc. of ICRA II, Springer Lecture Notes in Mathematics 832
(1980), 103–169.

[28] C. Braga, F.U. Coelho, Limits of tilting modules. Colloq. Math. 115 (2009), 207–217.

[29] A.B. Buan, H. Krause, Cotilting modules over tame hereditary algebras. Pacific J.
Math. 211 (2003), 41–60.

[30] A.B. Buan, H. Krause, Tilting and cotilting for quivers of type Ãn. J. Pure Appl.
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Algebra 199 (2005), 245-259.
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