Direct limits of modules of finite projective dimension

Lidia Angeleri Hügel and Jan Trlifaj *

Dedicated to Paul Eklof on his 60th birthday

Abstract

We describe in homological terms the direct limit closure of a class \mathcal{C} of modules over a ring R. We also determine the closure of the cotorsion pair $\mathcal{C} = (\mathcal{A}, \mathcal{B})$ cogenerated by \mathcal{C}. As an application, we solve a problem of Fuchs and Salce on the structure of direct limits of modules of projective dimension at most one over commutative domains. Then we consider the case when R is a right coherent ring and $\mathcal{C} = \mathcal{P}^{<\infty}$, the class of all finitely presented modules of finite projective dimension. If $\text{findim} R < \infty$ then \mathcal{C} is a tilting cotorsion pair induced by a tilting module T. We characterize closure properties of \mathcal{A} in terms of properties of T. Finally, we discuss an example where \mathcal{A} is not closed under direct limits.

Let R be a ring. Denote by \mathcal{P} the class of all modules of finite projective dimension, and by $\mathcal{P}^{<\infty}$ the class of all finitely presented modules in \mathcal{P}. For $n < \omega$ let \mathcal{P}_n be the class of all modules of projective dimension at most n, and let $\mathcal{P}_n^{<\infty}$ be the corresponding subclass of $\mathcal{P}^{<\infty}$.

In this paper, we study the categories $\varinjlim \mathcal{P}_n$ and $\varinjlim \mathcal{P}_n^{<\infty}$ of all direct limits of modules in \mathcal{P}_n and $\mathcal{P}_n^{<\infty}$, respectively. To this end, we consider the complete cotorsion pair $(\mathcal{A}_n, \mathcal{B}_n)$ cogenerated by $\mathcal{P}_n^{<\infty}$ and investigate the class \mathcal{A}_n.

Our main tool is a homological description of $\varinjlim \mathcal{A}_n$. We show that in many cases the limit closure $\varinjlim \mathcal{A}$ of the first component in a cotorsion pair $\mathcal{C} = (\mathcal{A}, \mathcal{B})$ consists of all modules X satisfying $\text{Ext}_R^1(X, B) = 0$ for each pure-injective module $B \in \mathcal{B}$; there is also a characterization of $\varinjlim \mathcal{A}$ in terms of vanishing of Tor (see Section 2).

This result allows us to discuss a more general question: What is the smallest complete cotorsion pair $\mathcal{C} = (\mathcal{A}, \mathcal{B})$ containing \mathcal{C} with \mathcal{A} being closed under direct limits? The question is of particular interest because of a classical result of Enochs saying that in this case \mathcal{A} is a covering class, and \mathcal{B} an enveloping class, in $\text{Mod}R$.

*Research of the first author supported by a HWP-grant of LMU Munich. Second author supported by grants GAČR 201-00-0766 and MSM 113200007.
In Corollary 2.4, we answer the question for cotorsion pairs cogenerated by classes of finitely presented modules over right coherent rings.

Section 3 deals with an application to the particular case when \(n = 1 \) and \(R \) is a commutative domain. In Theorem 3.5, we solve a problem of Fuchs and Salce ([15, Problem 22 on p.246]) by showing that a module belongs to \(\varprojlim \mathcal{P}_1 \) if and only if it has flat dimension at most one. Furthermore, we investigate the divisible modules of projective dimension at most one and answer a question related to the Fuchs’ divisible module \(\delta \) ([14, Problem 6 in Chapter VI]).

In Section 4, we consider right coherent rings and continue our investigation started in [4] of the complete cotorsion pair \((\mathcal{A}, \mathcal{B})\) cogenerated by \(\mathcal{P}^{< \infty} \). If \(\text{findim} R < \infty \), then we know from [4] that there is a tilting module \(T \) such that \(\mathcal{B} = T^{\perp} \). Furthermore, \(\mathcal{A} = \mathcal{P} \) if and only if the category \(\text{Add} T \) is closed under cokernels of monomorphisms, and in this case the little and the big finitistic dimensions of \(R \) coincide: \(\text{findim} R = \text{Findim} R \).

Our focus here is on the category \(\varprojlim \mathcal{P}^{< \infty} \). Note that \(\mathcal{A} \) is always contained in \(\varprojlim \mathcal{P}^{< \infty} \). Moreover, if \(\mathcal{P} \) is closed under direct limits, e. g. if \(R \) is right perfect and \(\text{Findim} R < \infty \), then \(\mathcal{A} \subseteq \varprojlim \mathcal{P}^{< \infty} \subseteq \mathcal{P} \). Using the tilting module \(T \) from [4], we investigate closure properties of \(\mathcal{A} \). We characterize the cases \(\mathcal{A} = \varprojlim \mathcal{P}^{< \infty} \) and \(\varprojlim \mathcal{P}^{< \infty} = \mathcal{P} \) in Theorems 4.2 and 4.7. In Theorem 4.3, we determine when \(\mathcal{A} \) is a definable class.

Finally, in Section 5, we study an important example in detail, namely the artin algebra introduced by Igusa, Smalø, and Todorov [19]. In this case, we show that \(\mathcal{A} = \varprojlim \mathcal{P}^{< \infty} \) fails while \(\varprojlim \mathcal{P}^{< \infty} = \mathcal{P} \) holds true.

1 Preliminaries

First, we fix our terminology and notation.

Let \(R \) be an arbitrary ring, \(\text{Mod} R \) be the category of all (right) \(R \)-modules, and \(\text{mod} R \) the subcategory of all finitely presented modules. For a subcategory \(\mathcal{M} \) of \(\text{Mod} R \), we denote by \(\text{Add} \mathcal{M} \) (respectively \(\text{add} \mathcal{M} \)) the subcategory of all modules isomorphic to a direct summand of a (finite) direct sum of modules of \(\mathcal{M} \).

Following [24, p.210], we will say that a module \(M \) is \(FP_n \) provided that \(M \) has a projective resolution

\[
\cdots \rightarrow P_{k+1} \rightarrow P_k \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0
\]

where all \(P_i \) with \(i \leq n \) are finitely generated. So \(FP_0 \) stands for finitely generated,
FP_1 for finitely presented, and a module M is FP_2 if and only if there are \(n < \omega \), a finitely presented module \(K \), and a short exact sequence \(0 \to K \to R^n \to M \to 0 \). Notice that \(\mathcal{P}_1^{\infty} \) coincides with the class of all FP_2 modules of projective dimension \(\leq 1 \). If \(R \) is right coherent and \(M \) is finitely presented then \(M \) is FP_n for all \(n \geq 1 \).

A. Precovers and Preenvelopes. Let \(\mathcal{M} \) be a subcategory of \(\text{Mod} R \), and let \(A \) be a right \(R \)-module. A morphism \(f \in \text{Hom}_R(A, X) \) with \(X \in \mathcal{M} \) is an \(\mathcal{M} \)-preenvelope (or a left \(\mathcal{M} \)-approximation) of \(A \) provided that the abelian group homomorphism \(\text{Hom}_R(f, M): \text{Hom}_R(X, M) \to \text{Hom}_R(A, M) \) is surjective for each \(M \in \mathcal{M} \). An \(\mathcal{M} \)-preenvelope \(f \in \text{Hom}_R(A, X) \) of \(A \) is said to be special if \(f \) is a monomorphism and \(\text{Ext}_R^1(\text{Coker} f, M) = 0 \) for all \(M \in \mathcal{M} \). An \(\mathcal{M} \)-envelope of \(A \) is an \(\mathcal{M} \)-preenvelope \(f \in \text{Hom}_R(A, X) \) which is left minimal, that is, \(h \) is an automorphism of \(X \) whenever \(h \in \text{End}_R(X) \) satisfies \(hf = f \). If it exists, an \(\mathcal{M} \)-envelope is unique up to isomorphism.

The notions of an \(\mathcal{M} \)-cover and a (special) \(\mathcal{M} \)-precovar are defined dually.

Finally, a subcategory \(\mathcal{C} \) of \(\text{mod}R \) is said to be covariantly (respectively, contravariantly) finite in \(\text{mod}R \) if every finitely presented module has a \(\mathcal{C} \)-preenvelope (respectively, a \(\mathcal{C} \)-precovar).

B. Closure under direct limits. Let \(\mathcal{C} \) be a class of modules. Denote by \(\varinjlim \mathcal{C} \) the class of all modules \(D \) such that \(D = \varinjlim_{i \in I} C_i \) where \(\{C_i \mid i \in I\} \) is a direct system of modules from \(\mathcal{C} \).

In general, the class \(\varinjlim \mathcal{C} \) is not closed under direct limits:

Example 1.1 Let \(R = \mathbb{Z} \) and let \(\mathcal{C} = \{A\} \) where \(A \) is an indecomposable torsion-free abelian group of rank \(r \geq 2 \) such that \(\text{End}(A) \cong \mathbb{Z} \). (There is a proper class of such groups: by [10, XII.3.5], there exist arbitrarily large indecomposable torsion-free abelian groups such that \(\text{End}(A) \cong \mathbb{Z} \).)

Consider the direct system \(\{C_n \mid n < \infty\} \) where \(C_n = A \) for all \(n < \infty \) and \(f_n : C_n \to C_{n+1} \) is the multiplication by \(n \). Then \(\varinjlim_{n<\infty} C_n \) coincides with the injective envelope \(E(A) \cong \mathbb{Q}^0 \) of \(A \).

Now, consider the direct system \(\{D_n \mid n < \infty\} \) where \(D_n = E(A) \) for all \(n < \infty \) and \(g_n : D_n \to D_{n+1} \) is the projection on a fixed copy of \(\mathbb{Q} \) in \(E(A) \). Then \(\varinjlim_{n<\infty} D_n \cong \mathbb{Q} \).

On the other hand, \(\mathbb{Q} \notin \varinjlim \mathcal{C} \). Namely, let \(\{C_i \mid i \in I\} \) be a direct system with \(C_i = A \) for all \(i \in I \), and let \(D = \varinjlim_{i \in I} C_i \). Since \(\text{End}(A) \cong \mathbb{Z} \) and \(A \) is torsion-free, all maps in the direct system are either monomorphisms or zero. It follows that either \(D \) contains a copy of \(A \), or else \(D = 0 \). Anyway, \(D \) has rank \(\neq 1 \), so \(D \not\cong \mathbb{Q} \). \(\square \)
There is an important case when \(\varinjlim \mathcal{C} \) is always closed under direct limits. The characterization goes back to Lenzing:

Lemma 1.2 [23] Let \(R \) be a ring, and let \(\mathcal{C} \) be a full additive subcategory of \(\text{mod} \, R \) which is closed under isomorphisms and direct summands. The following statements are equivalent for a module \(A \).
1. \(A \in \varinjlim \mathcal{C} \).
2. There is a pure epimorphism \(\prod_{i \in I} X_i \to A \) for a sequence \((X_i | i \in I) \) of modules from \(\mathcal{C} \).
3. Every homomorphism \(h : F \to A \) where \(F \) is finitely presented factors through a module in \(\mathcal{C} \).

In particular, \(\varinjlim \mathcal{C} \) is closed under direct limits, and \(\varinjlim \mathcal{C} \cap \text{mod} \, R = \mathcal{C} \).

Crawley-Boevey and Krause observed that Lenzing’s result implies a characterization of when \(\varinjlim \mathcal{C} \) is a definable class of modules. Recall that a subcategory \(\mathcal{M} \) of \(\text{Mod} \, R \) is *definable* provided it is closed under direct limits, direct products and pure submodules.

Theorem 1.3 [9, 4.2] [21, 3.11] Let \(R \) be a ring, and let \(\mathcal{C} \) be a full additive subcategory of \(\text{mod} \, R \) which is closed under isomorphisms and direct summands. The following statements are equivalent.
1. \(\mathcal{C} \) is covariantly finite in \(\text{mod} \, R \).
2. \(\varinjlim \mathcal{C} \) is closed under products.
3. Every right \(R \)-module has a \(\varinjlim \mathcal{C} \)-preenvelope.
4. \(\varinjlim \mathcal{C} \) is definable.

For example, if \(R \) is a left coherent and right perfect ring, then \(\varinjlim \mathcal{P}_1^{<\infty} = \mathcal{P}_1 \) is closed under products, so \(\mathcal{P}_1^{<\infty} \) is covariantly finite in \(\text{mod} \, R \), cf. [4], [18].

C. **Cotorsion pairs.** Next, we recall the notion of a cotorsion pair. This is the analog of the classical (non-hereditary) torsion pair where \(\text{Hom} \) is replaced by \(\text{Ext}^1 \).

For a class of modules \(\mathcal{M} \subseteq \text{Mod} \, R \), we set \(\mathcal{M}^{\perp 1} = \{ X \in \text{Mod} \, R \mid \text{Ext}^1_R(M, X) = 0 \text{ for all } M \in \mathcal{M} \} \) and \(^{\perp 1} \mathcal{M} = \{ X \in \text{Mod} \, R \mid \text{Ext}^1_R(X, M) = 0 \text{ for all } M \in \mathcal{M} \} \).

By the well-known properties of \(\text{Ext} \) collected below in Lemma 1.4, the class \(\mathcal{M}^{\perp 1} \) is definable if \(\mathcal{M} \) consists of finitely presented modules over a right coherent ring, and the class \(^{\perp 1} \mathcal{M} \) is closed under direct limits if \(\mathcal{M} \) consists of pure-injective modules.
Lemma 1.4 [13, Lemma 10.2.4], [5, Chap 1, Proposition 10.1] Let R be a ring, M an R-module, and $\{(N_{a}, f_{a}) | \alpha \leq \beta \in I\}$ an arbitrary direct system of modules. Then the following hold true for each $n < \omega$.

1. $\text{Ext}^n_R(M, \lim_{\alpha \in I} N_{a}) \cong \lim_{\alpha \in I} \text{Ext}^n_R(M, N_{a})$ provided that M is FP$_{n+1}$.

2. $\text{Ext}^n_R(\lim_{\alpha \in I} N_{a}, M) \cong \lim_{\alpha \in I} \text{Ext}^n_R(N_{a}, M)$ provided that M is pure-injective.

Let $\mathcal{A}, \mathcal{B} \subseteq \text{Mod}R$ be classes of modules. Then $(\mathcal{A}, \mathcal{B})$ is said to be a cotorsion pair if $\mathcal{A} = \perp^{\perp} \mathcal{B}$ and $\mathcal{B} = \mathcal{A}^{\perp}$. The class $\mathcal{A} \cap \mathcal{B}$ is called the kernel of the cotorsion pair $(\mathcal{A}, \mathcal{B})$.

The basic relation between cotorsion pairs and approximations goes back to Salce [27]. It may be viewed as a substitute for the non-existence of a duality for arbitrary modules:

Lemma 1.5 [27, Corollary 2.4] Let R be a ring and $(\mathcal{A}, \mathcal{B})$ be a cotorsion pair. The following are equivalent:

1. Every module has a special \mathcal{A}-precover.

2. Every module has a special \mathcal{B}-preenvelope.

In this case, the cotorsion pair $(\mathcal{A}, \mathcal{B})$ is called complete.

Moreover, we say that a cotorsion pair $(\mathcal{A}, \mathcal{B})$ is closed if \mathcal{A} is closed under direct limits. The importance of this notion comes from the following result of Enochs: If $(\mathcal{A}, \mathcal{B})$ is a complete and closed cotorsion pair, then every module has an \mathcal{A}-cover and a \mathcal{B}-envelope [13, 7.2.6].

Complete and/or closed cotorsion pairs occur quite frequently. For a class of modules \mathcal{C}, let $(\mathcal{A}, \mathcal{B})$ be the cotorsion pair cogenerated by \mathcal{C}, that is, let $\mathcal{B} = \mathcal{C}^{\perp}$ and $\mathcal{A} = \perp^{\perp}(\mathcal{C}^{\perp})$. Then we know from [11] that $(\mathcal{A}, \mathcal{B})$ is complete provided that the isomorphism classes of modules in \mathcal{C} form a set.

In this case, there is a useful description of the modules in \mathcal{A}. Recall that for an ordinal σ, a chain of modules $(M_{\alpha} | \alpha \leq \sigma)$ is said to be continuous provided that $M_{\alpha} \subseteq M_{\alpha+1}$ for all $\alpha < \sigma$ and $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ for all limit ordinals $\alpha \leq \sigma$. Moreover, if \mathcal{S} is a class of modules, a module M is \mathcal{S}-filtered provided that there is a continuous chain $(M_{\alpha} | \alpha \leq \sigma)$ consisting of submodules of M such that $M = M_{\sigma}$, and each of the modules $M_{0}, M_{\alpha+1}/M_{\alpha} (\alpha < \sigma)$, is isomorphic to an element of \mathcal{S}. Now, if the isomorphism classes of \mathcal{C} form a set \mathcal{S}, then $\mathcal{A} = \perp^{\perp}(\mathcal{C}^{\perp})$ consists of all direct summands of $\mathcal{S} \cup \{R\}$-filtered modules, [28, Theorem 2.2].
Dually, let \((\mathcal{A}, \mathcal{B})\) be the cotorsion pair generated by \(\mathcal{C}\), that is, let \(\mathcal{A} = \perp \mathcal{C}\) and \(\mathcal{B} = (\perp \mathcal{C})\perp\). Then we know from [12] that \((\mathcal{A}, \mathcal{B})\) is complete and closed provided that \(\mathcal{C}\) consists of pure injective modules.

D. Examples of Complete Cotorsion Pairs. Let \(n < \omega\). Denote by \(\mathcal{P}_n\) (\(\mathcal{I}_n\)) the class of all modules of projective (injective) dimension at most \(n\), and by \(\mathcal{F}_n\) the class of all modules of flat (= weak) dimension at most \(n\). Then \((\mathcal{P}_n, (\mathcal{P}_n)^\perp)\) and \((\mathcal{I}_n, \mathcal{I}_n)\) are complete cotorsion pairs, cf. [13, 7.4.6] and [28, 2.1]. Moreover, \((\mathcal{F}_n, (\mathcal{F}_n)^\perp)\) is complete and closed, [12].

For \(N \in \text{Mod-}\mathcal{R}\), let \(N^c = \text{Hom}_\mathcal{R}(N, \mathbb{Q}/\mathbb{Z})\) be the dual module of \(N\). Denote by \(\mathcal{H}\) the class of all dual modules of all left \(\mathcal{R}\)-modules. It is well-known that the class \(\mathcal{P}\) of all pure-injective modules consists of all direct summands of modules in \(\mathcal{H}\), and that the cotorsion pair \((\mathcal{F}_0, (\mathcal{F}_0)^\perp)\) is generated by \(\mathcal{H}\) (and by \(\mathcal{P}\)), cf. [13].

Next, we give a criterion for equality of two cotorsion pairs. Recall that a class \(\mathcal{M} \subseteq \text{Mod}\mathcal{R}\) is resolving (coresolving) if it is closed under extensions, kernels of epimorphisms (cokernels of monomorphisms), and it contains all projective (injective) modules. For example, the class \(\perp \mathcal{M} = \{X \in \text{Mod}\mathcal{R} \mid \text{Ext}^i_{\mathcal{R}}(X, M) = 0\text{ for all }M \in \mathcal{M}\text{ and all }i > 0\}\) is resolving, while \(\mathcal{M}^\perp = \{X \in \text{Mod}\mathcal{R} \mid \text{Ext}^i_{\mathcal{R}}(M, X) = 0\text{ for all }M \in \mathcal{M}\text{ and all }i > 0\}\) is coresolving.

Lemma 1.6 Let \((\mathcal{E}, \mathcal{D})\) be a complete cotorsion pair such that \(\mathcal{E}\) is resolving. Let further \((\mathcal{X}, \mathcal{Y})\) be a cotorsion pair with \(\mathcal{E} \subseteq \mathcal{X}\). Then the two cotorsion pairs coincide if and only if \(\mathcal{X} \cap \mathcal{D} \subseteq \mathcal{E} \cap \mathcal{D}\).

Proof: It is enough to verify \(\mathcal{X} \subseteq \mathcal{E}\) in case \(\mathcal{X} \cap \mathcal{D} \subseteq \mathcal{E} \cap \mathcal{D}\). Take \(X \in \mathcal{X}\) and consider a special \(\mathcal{D}\)-preenvelope \(0 \rightarrow X \rightarrow D \rightarrow E \rightarrow 0\). Since \(E \in \mathcal{E} \subseteq \mathcal{X}\) and \(\mathcal{X}\) is closed under extensions, we have \(D \in \mathcal{X} \cap \mathcal{D} \subseteq \mathcal{E} \cap \mathcal{D}\). Thus \(X \in \mathcal{E}\) because \(\mathcal{E}\) is resolving. □

Finally, we consider cotorsion pairs induced by a tilting module. Recall from [3] that a module \(T\) is a tilting module provided that

1. \(\text{pd} T < \infty\);
2. \(\text{Ext}^i_{\mathcal{R}}(T, T(I)) = 0\) for each \(i > 0\) and all sets \(I\);
3. There is \(r \geq 0\) and a long exact sequence \(0 \rightarrow R \rightarrow T_0 \rightarrow \cdots \rightarrow T_r \rightarrow 0\) with \(T_i \in \text{Add} T\) for each \(0 \leq i \leq r\).

In this case \((\perp (T\perp), T\perp)\) is a complete cotorsion pair with the kernel \(\text{Add} T\), and \((T\perp) \subseteq \mathcal{P}_n\) where \(n = \text{pd} T\), see [3, Section 2].
2 The closure of a cotorsion pair

We now consider the natural partial order \(\leq \) on the class of all cotorsion pairs induced by inclusion of the first components. Observe that \(\leq \) is a complete lattice order, the least element being \(\mathcal{G} = (\mathcal{P}_0, \text{Mod-}R) \), the largest \(\mathcal{E} = (\text{Mod-}R, \mathcal{I}_0) \), and the meet of the cotorsion pairs \(\{(A_\alpha, B_\alpha) \mid \alpha \in I\} \) being \((\bigcap_{\alpha \in I} A_\alpha, (\bigcap_{\alpha \in I} A_\alpha)^{-1}) \).

Since \(\mathcal{E} \) is closed, and meets of closed cotorsion pairs are likewise closed, each cotorsion pair \(\mathcal{C} \) is contained in the smallest closed one, the closure of \(\mathcal{C} \).

The interesting case is when the closure is complete, hence provides for envelopes and covers of modules. We will show that this always occurs when \(\mathcal{C} \) is cogenerated by a class of finitely presented modules over a right coherent ring (see Corollary 2.4 below).

For a class of modules \(\mathcal{C} \) we denote by \(\widetilde{\mathcal{C}} \) the class of all pure epimorphic images of elements of \(\mathcal{C} \). Clearly, \(\mathcal{C} \cap \text{mod} \, R = \widetilde{\mathcal{C}} \cap \text{mod} \, R \) provided that \(\mathcal{C} \) is closed under direct summands.

For example, if \((\mathcal{A}, \mathcal{B}) \) is a complete cotorsion pair, then the class \(\widehat{\mathcal{A}} \) is easily seen to coincide with the class of all modules \(M \) such that each (or some) special \(\mathcal{A} \)-precover of \(M \) is a pure epimorphism.

Define \(\mathcal{C}^r = \ker \text{Tor}_1^R(\mathcal{C}, -) \) for a class \(\mathcal{C} \subseteq \text{Mod} \, R \), and \(\mathcal{D}^r = \ker \text{Tor}_1^R(-, \mathcal{D}) \) for a class \(\mathcal{D} \subseteq \text{RMod} \). For a class \(\mathcal{C} \subseteq \text{Mod} \, R \), we define \(\widehat{\mathcal{C}} = \mathcal{C}^r \).

Note that \(\varprojlim \mathcal{C} \subseteq \widehat{\mathcal{C}} \), and \(\mathcal{C} \subseteq \widehat{\mathcal{C}} \), since \(\widehat{\mathcal{C}} \) is obviously closed under direct limits and pure epimorphic images. Moreover, we have

Lemma 2.1 Let \(R \) be a ring, \(\mathcal{C} \) be a class of modules, and \((\mathcal{A}, \mathcal{B}) \) be the cotorsion pair cogenerated by \(\mathcal{C} \).

1. \(\widehat{\mathcal{C}} = \mathcal{C}^r (\mathcal{B} \cap \mathcal{H}) = \widehat{\mathcal{A}} \).

2. Assume that \(\mathcal{C} \) is closed under arbitrary direct sums. Then \(\varprojlim \mathcal{C} \subseteq \widetilde{\mathcal{C}} \subseteq \widehat{\mathcal{C}} \).

3. Assume that \(\mathcal{C} \) consists of \(\text{FP}_2 \) modules. Then \(M \in \mathcal{B} \) if and only if \(M^{cn} \in \mathcal{B} \) for any module \(M \). In particular, \(\widehat{\mathcal{C}} = \mathcal{C}^r (\mathcal{B} \cap \mathcal{P} \mathcal{I}) \).

Proof: 1. Let \(M \in \text{Mod} \, R \). The well-known Ext-Tor relations yield \(M \in \widehat{\mathcal{C}} \) iff \(M \in (N^c) \) for all \(N \in \mathcal{C}^r \). Moreover, \(N \in \mathcal{C}^r \) iff \(N^c \in \mathcal{C}^{11} \cap \mathcal{H} = \mathcal{B} \cap \mathcal{H} \). Taking \(\mathcal{C} = \mathcal{A} \), we get in particular \(\widehat{\mathcal{A}} = \mathcal{C}^r (\mathcal{B} \cap \mathcal{H}) \).

2. This is clear since \(\widetilde{\mathcal{C}} \) is closed under direct limits in this case.

3. Let \(M \in \text{Mod} \, R \). In this setting, the Ext-Tor relations yield \(M \in \mathcal{B} \) iff \(M^c \in \mathcal{C}^r \).

iff $M^{cc} \in \mathcal{B}$. Since each pure-injective module M is a direct summand in M^{cc},
$\downarrow^1(B \cap H) = \downarrow^1(\mathcal{B} \cap \mathcal{P} \mathcal{T})$, and the assertion follows by part 1. □

Lemma 2.2 Let R be a ring. Let $\mathcal{C} = (\mathcal{A}, \mathcal{B})$ be a complete cotorsion pair such that
\mathcal{B} is closed under taking double dual modules. Then $\widehat{\mathcal{A}} = \widehat{\mathcal{A}}$.

Proof: Let $M \in \widehat{\mathcal{A}}$. By Lemma 2.1.1, $M \in \downarrow^1(B \cap H)$. Let $0 \to B \xrightarrow{\mu} A \to M \to 0$ be an exact sequence with $A \in \mathcal{A}$ and $B \in \mathcal{B}$. Consider the canonical pure embedding $\nu : B \to B^{cc}$, and take the push-out of μ and ν:

$$
\begin{array}{c}
0 \to B \xrightarrow{\mu} A \to M \to 0 \\
\nu \downarrow \quad \quad \eta \downarrow \\
0 \to B^{cc} \xrightarrow{\tau} N \to M \to 0
\end{array}
$$

By assumption, $B^{cc} \in \mathcal{B} \cap H$, so the bottom row splits. It follows that ν factors through μ, hence μ is pure, and $M \in \widehat{\mathcal{A}}$. □

By Lemma 2.1, each cotorsion pair $\mathcal{C} = (\mathcal{A}, \mathcal{B})$ is contained in the complete and
closed cotorsion pair $(\widehat{\mathcal{A}}, \widehat{\mathcal{A}}^\perp)$ generated by the class $\mathcal{B} \cap H$. We now investigate
whether the latter is the closure of \mathcal{C}.

Theorem 2.3 Let R be a ring. Let \mathcal{C} be a class consisting of FP$_2$ modules such that
\mathcal{C} is closed under extensions and direct summands and $R \in \mathcal{C}$. Then $\varinjlim \mathcal{C} = \widehat{\mathcal{C}}$.

If $(\mathcal{A}, \mathcal{B})$ denotes the cotorsion pair cogenerated by \mathcal{C} then $\varinjlim \mathcal{C} = \varinjlim \widehat{\mathcal{A}} = \widehat{\mathcal{A}} = \widehat{\mathcal{A}}$.

Proof: From Lemmas 2.1.1, 2.1.3 and 2.2 we get that $\widehat{\mathcal{A}} = \widehat{\mathcal{A}} = \widehat{\mathcal{C}}$.

Next, we show that $\mathcal{A} \subseteq \varinjlim \mathcal{C}$. The proof is a generalization of a particular case
considered in [4, 2.1]. First, the isomorphism classes of \mathcal{C} form a set, so \mathcal{A} consists
of all direct summands of \mathcal{C}-filtered modules. By Lemma 1.2, $\varinjlim \mathcal{C}$ is closed under
direct limits, hence under direct summands. So it suffices to prove that $\varinjlim \mathcal{C}$ contains
all \mathcal{C}-filtered modules.

We proceed by induction on the length, δ, of the filtration. The cases when $\delta = 0$
and δ is a limit ordinal are clear (the latter by Lemma 1.2). Let δ be non-limit, so
we have an exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ with $A \in \varinjlim \mathcal{C}$ and $C \in \mathcal{C}$.
We will apply Lemma 1.2 to prove that $B \in \varinjlim \mathcal{C}$.

Let $h : F \to B$ be a homomorphism with F finitely presented. Since C is FP$_2$,
there is a presentation $0 \to G \to P \xrightarrow{p} C \to 0$ with P finitely generated.
projective and G finitely presented. There is also $q : P \to B$ such that $p = gq$. We have the commutative diagram

$$
\begin{array}{c}
0 \rightarrow F' \xrightarrow{f'} F \oplus P \xrightarrow{(gh) \oplus p} C \rightarrow 0 \\
h' \downarrow & & h \oplus q \downarrow & & \parallel \\
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
\end{array}
$$

Considering the pull-back of p and $(gh) \oplus p$, we see that the pull-back module U is an extension of G by $F \oplus P$, and F' is isomorphic to a direct summand in U. So U, and F', are finitely presented. Since $A \in \lim \mathcal{C}$, Lemma 1.2 provides for a module $C' \in \mathcal{C}$ and maps $\sigma' : F' \to C'$, $\tau' : C' \to A$ such that $h' = \tau' \sigma'$. Consider the push-out of f' and σ':

$$
\begin{array}{c}
0 \rightarrow F' \xrightarrow{f'} F \oplus P \xrightarrow{g(h \oplus p)} C \rightarrow 0 \\
\sigma' \downarrow & & \sigma \downarrow & & \parallel \\
0 \rightarrow C' \xrightarrow{\rho} D \xrightarrow{\sigma} C \rightarrow 0
\end{array}
$$

By assumption, $D \in \mathcal{C}$. By the push-out property, there is $\tau : D \to B$ such that $\tau \sigma = h \oplus q$, hence $\tau \sigma \upharpoonright F = h$. So h factors through D, and $B \in \lim \mathcal{C}$.

Now, since $\lim \mathcal{C}$ is closed under pure epimorphic images by Lemma 1.2, we infer that $\tilde{A} \subseteq \lim \mathcal{C}$. So $\lim \mathcal{C} = \tilde{A} = \lim \mathcal{A}$. □

Corollary 2.4 Let R be a ring and $\mathcal{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair cogenerated by a class of FP$_2$ modules. (For example, let R be right coherent and \mathcal{C} be cogenerated by a subclass of modR.) Then the closure $\overline{\mathcal{C}} = (\overline{\mathcal{A}}, \overline{\mathcal{B}})$ of \mathcal{C} is generated by the class $\mathcal{B} \cap \mathcal{P}$. In particular, $\overline{\mathcal{C}}$ is complete, and $\overline{\mathcal{A}} = \lim \overline{\mathcal{A}} = \tilde{\mathcal{A}}$.

Proof: If \mathcal{C} is cogenerated by a class of FP$_2$ modules \mathcal{D}, we let \mathcal{C} be the smallest class of modules closed under extensions and direct summands which contains $\mathcal{D} \cup \{R\}$. Then \mathcal{C} also consists of FP$_2$ modules, and it cogenerates \mathcal{C}, so Lemma 2.1.3 and Theorem 2.3 apply. □

Corollary 2.5 Let R be a ring and \mathcal{C} be a class consisting of FP$_2$ modules. Assume $R \in \mathcal{C}$. Then the class $\mathcal{A}(\mathcal{C})$ consists of all direct summands of \mathcal{C}-filtered modules while $\mathcal{C}(\mathcal{C})$ consists of all pure-epimorphic images of \mathcal{C}-filtered modules.

One of the ingredients in the proof of Theorem 2.3 was Lemma 1.4.1. Part 2 of that Lemma yields another case of coincidence of the classes $\lim \mathcal{A}$ and $\tilde{\mathcal{A}}$: 9
Proposition 2.6 Let R be a ring and $\mathcal{C} = (\mathcal{A}, \mathcal{B})$ be a cotorsion pair generated by a class of dual modules. Then $\mathcal{A} = \lim\limits_\leftarrow \mathcal{A} = \widehat{\mathcal{A}}$.

Proof: By Lemma 1.4.2, $\mathcal{A} = \lim\limits_\leftarrow \mathcal{A}$. By Lemma 2.1.2, it suffices to prove that $\widehat{\mathcal{A}} \subseteq \mathcal{A}$. But $\widehat{\mathcal{A}} = \perp_1(\mathcal{B} \cap \mathcal{H})$ by Lemma 2.1.1. Since $\mathcal{C} \subseteq \mathcal{B} \cap \mathcal{H}$, we have $\widehat{\mathcal{A}} \subseteq \perp_1 \mathcal{C} = \mathcal{A}$. □

As an application, we consider the classes of modules of bounded flat dimension:

Corollary 2.7 Let R be a ring and $n < \infty$. Let $\mathcal{H}_n = \{\Omega^{-n}(M) \mid M \in \mathcal{H}\}$ where $\Omega^{-n}(M)$ denotes an n-th cosyzygy of M. Then $\mathcal{F}_n = \perp_1 \mathcal{H}_n = \widehat{\mathcal{F}_n}$.

Proof: First, $\mathcal{F}_0 = \tau(R\text{Mod}) = \perp_1 \mathcal{H}_0$. Let $n > 0$. For a module N, denote by $\Omega_n(N)$ the n-th syzygy (in a projective resolution) of N. We have $N \in \mathcal{F}_n$ iff $\Omega_n(N) \in \mathcal{F}_0$ iff $\text{Ext}_R^1(\Omega_n(N), \mathcal{H}_0) = 0$ iff $\text{Ext}_R^{n+1}(N, \mathcal{H}_0) = 0$ iff $\text{Ext}_R^1(N, \mathcal{H}_n) = 0$. This proves that $\mathcal{F}_n = \perp_1 \mathcal{H}_n$. Finally, all cosyzygies of a dual module can be taken to be dual modules as well, so Proposition 2.6 applies. □

3 Modules of projective dimension at most one over commutative domains

In this section, R will denote a commutative domain and Q its quotient field.

We start by reviewing some properties of the class \mathcal{DI} of all divisible modules. Recall that $\mathcal{DI} = \mathcal{CP}^{\perp_1}$ where $\mathcal{CP} = \{R/rR \mid r \in R\}$ denotes a set of representatives of all cyclically presented modules. It is well-known that the complete cotorsion pair $(\perp_1 \mathcal{DI}, \mathcal{DI})$ is cogenerated by a tilting module of projective dimension one, namely the Fuchs' divisible module δ, cf. [15, VII.1], [28].

Denote by \mathcal{HD} the class of all h-divisible modules, that is, of all modules that are homomorphic images of direct sums of copies of Q. Clearly, $\mathcal{HD} \subseteq \mathcal{DI}$, and the equality holds true if and only if R is a Matlis domain, that is, pd$Q = 1$, cf. [15, VII.2].

For any domain R, we have $\mathcal{P}_1 = \perp_1 \mathcal{HD}$ by [15, VII.2.5], so the complete cotorsion pair $(\mathcal{P}_1, (\mathcal{P}_1)^{\perp_1})$ is generated by the class of all h-divisible modules.

Let us look more closely at the case when R is a Prüfer domain.

Example 3.1 Assume R is Prüfer. Then $(\perp_1 \mathcal{DI}, \mathcal{DI})$ coincides with $(\mathcal{P}_1, (\mathcal{P}_1)^{\perp_1})$ and also with the cotorsion pair $(\mathcal{A}, \mathcal{B})$ cogenerated by $\mathcal{P}^{\perp_\infty}$, so the Fuchs' divisible module δ is just the tilting module considered in [4].
Indeed, in this case we have $\mathcal{P}^{<\infty} = \mathcal{P}_1^{<\infty} = \text{mod } R$, hence $\mathcal{A} \subseteq \mathcal{P}_1$, cf. [4, Section 2]. So, we have a chain of complete cotorsion pairs $(\mathcal{A}^1, \mathcal{D}^1) \leq (\mathcal{A}, \mathcal{B}) \leq (\mathcal{P}_1, (\mathcal{P}_1)^{\perp_1})$. On the other hand, $\mathcal{P}_1 \subseteq \mathcal{D}^1$ by [14, VI.3.9], and the claim follows.

Note that, in contrast to the artin algebra case [4, 4.2], the fact that $\mathcal{P}^{<\infty}$ is contravariantly finite in $\text{mod } R$ does not force \mathcal{A} to coincide with $\varprojlim \mathcal{P}^{<\infty}$. Indeed, \mathcal{A} is not closed under direct limits unless R is a Dedekind domain. □

In particular, the above observations show that for all Matlis and all Prüfer domains, all divisible modules of projective dimension at most one belong to $\text{Add } \delta$, cf. [14, VI.3.10]. Problem 6 of [14, Chapter VI] asks whether this is true for any domain. The following result provides for an answer.

Proposition 3.2 The following are equivalent for a commutative domain R.

1. All divisible modules of projective dimension at most one belong to $\text{Add } \delta$.
2. The cotorsion pairs $(\mathcal{A}^1, \mathcal{D}^1)$ and $(\mathcal{P}_1, (\mathcal{P}_1)^{\perp_1})$ coincide.
3. $\mathcal{D}^1 = (\mathcal{A}^1)^{\perp_1}$.
4. A module has projective dimension at most one if and only if it is a direct summand of a \mathcal{CP}-filtered module.

Proof: We always have $\mathcal{D} = (\mathcal{A}^1, \mathcal{D}^1) \leq (\mathcal{P}_1, (\mathcal{P}_1)^{\perp_1}) = \mathfrak{P}$. Condition (1) states that $\mathcal{P}_1 \cap \mathcal{D} = \text{Add } \delta = \mathcal{A}^1 \cap \mathcal{D}^1$. This is equivalent to condition (2) by Lemma 1.6. Further, (2) is equivalent to (3), since the cotorsion pair \mathfrak{P} is generated by $\mathcal{H} \mathcal{D}$. On the other hand, the cotorsion pair \mathcal{D} is cogenerated by the set \mathcal{CP}, hence $\mathcal{A}^1 \mathcal{D}^1$ consists of all direct summands of \mathcal{CP}-filtered modules, cf. section 1.C. So (2) is equivalent to (4). □

Next, we consider the class $\mathcal{T} \mathcal{F}$ of all torsion-free modules, that is, $\mathcal{T} \mathcal{F} = (\mathcal{CP})^\perp$. There is a duality between torsion-free and divisible modules: a module N is torsion-free iff N^c is divisible, [28, §4]. By a result of Warfield, $(\mathcal{T} \mathcal{F}, Q^{\perp_1} \cap \mathcal{I}_1)$ is a closed cotorsion pair, cf. [28, §2].

First, we show that $(\mathcal{T} \mathcal{F}, Q^{\perp_1} \cap \mathcal{I}_1)$ is generated by the class of all pure-injective modules of injective dimension at most one:

Lemma 3.3 Let R be a commutative domain. Then $\mathcal{T} \mathcal{F} = \mathcal{I}_1 \cap \mathcal{P} \mathcal{I} = (\mathcal{F}_1)^\perp$.

Proof: Since Q is a flat module, Q^{\perp_1} contains all pure-injective modules, so $Q^{\perp_1} \cap \mathcal{I}_1 \cap \mathcal{P} \mathcal{I} = \mathcal{I}_1 \cap \mathcal{P} \mathcal{I}$ and $\mathcal{T} \mathcal{F} \subseteq \mathcal{I}_1 \cap \mathcal{P} \mathcal{I}$. Consider $M \in \mathcal{I}_1 \cap \mathcal{P} \mathcal{I}$. Let
$N \in F_1$. Then $N^c \subseteq I_1$, so $0 = \text{Ext}^1_R(M,N^c) \cong (\text{Tor}_n^R(M,N))^c$. It follows that $\perp^1(I_1 \cap PI) \subseteq (F_1)^\perp$. Finally, since $R/\perp R \in F_1$, we get $(F_1)^\perp \subseteq T F_1$. □

Similarly, the cotorsion pair $(F_1, (F_1)^\perp)$ is generated by the class of all divisible pure-injective modules. In fact, there is a more general result (where, for a class of modules C, $\perp^1 C$ denotes the class $\{M \in \text{Mod}R \mid \text{Ext}^1_R(M,C) = 0 \text{ for all } C \in C\}$):

Lemma 3.4 Let R be a commutative domain and $n > 0$. Then $F_n = \perp^1(\mathcal{DI} \cap PI)$. In particular, $F_1 = \widehat{\mathcal{P}} = \perp^1(\mathcal{DI} \cap PI)$.

Proof: First, $F_1 = \widehat{\mathcal{P}}$ by Corollary 2.7 and Lemma 3.3. Let $n > 0$. By Corollary 2.7, $F_n = \perp^1 \mathcal{H}_n = \perp^1 \mathcal{H}_1$. Since $\mathcal{H}_1 \subseteq \mathcal{DI}$, we have $F_n \subseteq \perp^1(\mathcal{DI} \cap PI)$.

Conversely, let $M \in F_n$, and let N be a module such that $N^c \subseteq \mathcal{DI}$. Then $N \in T F_1 = (F_1)^\perp$ by Lemma 3.3. So $0 = \text{Tor}_n^R(\Omega^{n-1}M,N) \cong \text{Tor}_n^R(M,N)$. This shows that $M \in \perp^1(\mathcal{DI} \cap \mathcal{H})$. Finally, by Lemma 2.1.3, $\perp^1(\mathcal{DI} \cap \mathcal{H}) = \perp^1(\mathcal{DI} \cap PI)$. □

Altogether, we have the following chain of complete cotorsion pairs

$$\perp^1(\mathcal{DI}, \mathcal{DI}) \subseteq (\mathcal{P}_1, (\mathcal{P}_1)^\perp) \subseteq (F_1, (F_1)^\perp) = (\widehat{\mathcal{P}}, (\widehat{\mathcal{P}})^\perp) = (\perp^1(\mathcal{DI}, \mathcal{DI}))^{-1}.$$

By Corollary 2.4 and Lemma 3.4, $(F_1, (F_1)^\perp)$ is the closure of $\perp^1(\mathcal{DI}, \mathcal{DI})$ and hence of $(\mathcal{P}_1, (\mathcal{P}_1)^\perp)$.

Problem 22 in [15, p.246] asks for the structure of the modules which are direct limits of modules in \mathcal{P}_1. The answer has already been known for Prüfer domains: $\varprojlim \mathcal{P}_1 = \text{Mod}R$, cf. Example 3.1. Since Prüfer domains are characterized as the domains of weak global dimension at most one, $\varprojlim \mathcal{P}_1$ then coincides with the class of all modules of flat dimension at most one. The latter description extends to any commutative domain:

Theorem 3.5 Let R be a commutative domain. Then

$$\varprojlim \mathcal{P}_1^\perp = \varprojlim \mathcal{P}_1 = F_1.$$

Proof: Theorem 2.3 applied to the cotorsion pair (A_1, B_1) cogenerated by \mathcal{P}_1^\perp and combined with Lemma 2.1.3 yields $\varprojlim \mathcal{P}_1^\perp = \mathcal{P}_1^\perp = \perp^1(B_1 \cap \mathcal{PI})$.

We now claim that $\perp^1(B_1 \cap \mathcal{PI}) = F_1$. By Lemma 3.4, it suffices to show that $B_1 \cap \mathcal{H} = DI \cap \mathcal{H}$. Now, for a module $N \in R\text{-Mod}$, we have $N^c \subseteq B_1 = (\mathcal{P}_1^\perp)^{\perp^1}$ iff $N \in (\mathcal{P}_1^\perp)^{\perp^1}$. By Lemma 3.3, the latter is equivalent to $N \in T F_1$, and hence to $N^c \in DI$.

12
So, the claim is proven, and we obtain \(\mathcal{F}_1 = \lim_{\rightarrow} P_1^{<\infty} \subseteq \lim_{\rightarrow} P_1 \). On the other hand, \(P_1 \subseteq \mathcal{F}_1 \), and \(\lim_{\rightarrow} P_1^{<\infty} \) is closed under direct limits by Lemma 1.2. Thus \(\lim_{\rightarrow} P_1 = \mathcal{F}_1 \). \(\square \)

We don’t know whether this result can be extended to higher dimensions, that is, whether the limit closure of \(\mathcal{P}_n \) always coincides with \(\mathcal{F}_n \).

4 Direct limits of finitely presented modules of finite projective dimension

Throughout this section, \(R \) will denote a right coherent ring, and \((\mathcal{A}, \mathcal{B}) \) will be the (complete) cotorsion pair cogenerated by \(\mathcal{P}^{<\infty} \). From Section 2 we obtain

\[(\mathcal{A}, \mathcal{B}) \leq (\lim_{\rightarrow} \mathcal{P}^{<\infty}, (\lim_{\rightarrow} \mathcal{P}^{<\infty})^\perp)\]

where the right-hand term is the closure. In general, \((\mathcal{A}, \mathcal{B}) \) is not closed.

Example 4.1 Let \(R \) be a von-Neumann-regular ring. Then \(\mathcal{P}^{<\infty} \) consists of the finitely generated projective modules, so \(\mathcal{A} = \mathcal{P}_0 \), while \(\lim_{\rightarrow} \mathcal{P}^{<\infty} = \text{Mod} R \). \(\square \)

In order to investigate when \((\mathcal{A}, \mathcal{B}) \) is a closed cotorsion pair, we will assume \(\text{findim} R < \infty \) and use the tilting module \(T \) from [4] satisfying \(\mathcal{B} = T^\perp \).

Moreover, we will deal with the property that all pure submodules of a given module \(M \) are direct summands. Modules \(M \) with such property are called \(\sum\text{-pure-split} \) in [7]. We will say that \(M \) is \(\sum\text{-pure-split} \) if all modules in \(\text{Add} M \) are pure-split. For example, every \(\sum\text{-pure-injective} \) module is \(\sum\text{-pure-split} \).

Theorem 4.2 Let \(R \) be a right coherent ring with \(\text{findim} R < \infty \), and let \(T \) be a tilting module with \(\mathcal{B} = T^\perp \). Then the following statements are equivalent.

1. \(\mathcal{A} \) is closed under direct limits (that is, \(\mathcal{A} = \lim_{\rightarrow} \mathcal{P}^{<\infty} \)).
2. \(T \) is \(\sum\text{-pure-split} \).

Proof: (1)\(\Rightarrow \) (2): If \(\mathcal{A} \) is closed under direct limits then it is closed under pure-epimorphic images by Theorem 2.3. Recall further that \(\mathcal{B} \) is always closed under pure submodules as it is definable. So, if \(0 \rightarrow X \rightarrow T' \rightarrow Y \rightarrow 0 \) is a pure-exact sequence with \(T' \in \text{Add} T \), we have \(Y \in \mathcal{A} \) and \(X \in \mathcal{B} \), which shows that the sequence splits.

For the implication (2)\(\Rightarrow \) (1), we first observe that \((\lim_{\rightarrow} \mathcal{P}^{<\infty}, (\lim_{\rightarrow} \mathcal{P}^{<\infty})^\perp) \) is a cotorsion pair such that \(\lim_{\rightarrow} \mathcal{P}^{<\infty} = \mathcal{A} \) contains the resolving class \(\mathcal{A} \), cf. Theorem 2.3 and
Corollary 2.4. So, by Lemma 1.6, it suffices to prove that \(\lim \mathcal{P}^{<\infty} \cap \mathcal{B} \subseteq \mathcal{A} \cap \mathcal{B} = \text{Add} T \). For this purpose, consider \(M \in \lim \mathcal{P}^{<\infty} \cap \mathcal{B} \) and let \(0 \to B \to A \to M \to 0 \) be an exact sequence with \(A \in \mathcal{A} \) and \(B \in \mathcal{B} \). Then \(A \in \text{Add} T \). Further, since \(M \in \mathcal{A} \), the exact sequence above is pure-exact. Hence it splits by assumption, and \(M \in \text{Add} T \). \(\square \)

Closure under direct limits of \(\mathcal{A} \) can thus be interpreted as a pure-injectivity property of the module \(T \). We now exhibit a further closure property of \(\mathcal{A} \) that can be tested on \(T \). Recall that a module \(M \) with \(\text{Add} M \) being closed under products is said to be \emph{product-complete}, see [22].

Theorem 4.3 Let \(R \) be a right coherent ring with \(\text{findim} R < \infty \), and let \(T \) be a tilting module with \(\mathcal{B} = T^\perp \). The following statements are equivalent.

1. \(\mathcal{A} \) is definable.
2. \(\mathcal{A} \) is closed under direct products.
3. \(T \) is product-complete.
4. \(\mathcal{A} \) is closed under direct limits, and \(\mathcal{P}^{<\infty} \) is covariantly finite in \(\text{mod} R \).

Proof: (1)\(\Rightarrow \) (2) is clear. Further, (2) implies (3) because \(\text{Add} T = \mathcal{A} \cap \mathcal{B} \), see Section 1.D. The implication (4)\(\Rightarrow \) (1) holds by Theorems 1.3 and 2.3.

(3)\(\Rightarrow \) (4): Observe that a module \(A \) belongs to \(\mathcal{A} \) if and only if there is a long exact sequence \(0 \to A \to T_0 \to T_1 \to \ldots \to T_n \to 0 \) with \(n = \text{findim} R \) and \(T_i \in \text{Add} T \) for all \(0 \leq i \leq n \). In fact, the if-part holds since \(\mathcal{A} \) is resolving, and the only-if-part is shown as for the special case \(\mathcal{A} = R \) in the proof of [3, 4.1]. This shows that \(\mathcal{A} \) is closed under direct products if so is \(\text{Add} T \). Moreover, \(T \) is \(\Sigma \)-pure-injective by [22] and thus \(\Sigma \)-pure-split, hence \(\mathcal{A} = \lim \mathcal{P}^{<\infty} \) by Theorem 4.2. From Theorem 1.3 it now follows that the category \(\mathcal{P}^{<\infty} \) is covariantly finite in \(\text{mod} R \). \(\square \)

Note that with the results above we can refine [4, 3.4 and 3.7]:

Corollary 4.4 Let \(R \) be a right coherent ring with \(\text{findim} R < \infty \), and let \(T \) be a tilting module with \(\mathcal{B} = T^\perp \). Assume that \(\mathcal{P}^{<\infty} \) is covariantly finite (this happens when \(R \) is a two-sided coherent and right perfect ring with \(\text{Findim} R = 1 \), or more generally, with \(\mathcal{P} = \lim \mathcal{P}^{<\infty} \), see [4]). Then \(\mathcal{A} \) is definable if and only if it is closed under direct limits. In other words, \(T \) is product-complete if and only if \(T \) is \(\Sigma \)-pure-split.
Recall that a family \((M_i)_{i \in I}\) is called \emph{locally} (right) \emph{t-nilpotent} if for each sequence of non-isomorphisms \(M_{i_1} \overset{f_1}{\to} M_{i_2} \overset{f_2}{\to} M_{i_3} \ldots\) with indices \((i_n)_{n \in \mathbb{N}}\) from \(I\), and each element \(x \in M_{i_1}\), there exists \(m = m_x \in \mathbb{N}\) such that \(f_m f_{m-1} \ldots f_1(x) = 0\).

Corollary 4.5 Let \(R\) be a right coherent ring with \(\text{findim} \ R < \infty\), and assume that \(\mathcal{A}\) is closed under direct limits. If \(T\) is a tilting module with \(\mathcal{B} = T^\perp\), then there is a locally t-nilpotent family \((T_i)_{i \in I}\) of modules with local endomorphism ring such that \(T = \bigoplus_{i \in I} T_i\). In particular, the direct sum \(M\) of a representative set of all indecomposable modules from \(\mathcal{A} \cap \mathcal{B}\) is a tilting module with \(\mathcal{B} = M^\perp\).

Proof: Recall that a submodule \(X\) of a module \(Y\) is called a local direct summand of \(Y\) if there is a decomposition \(X = \bigsqcup_{k \in K} X_k\) with the property that \(\bigsqcup_{k \in K_0} X_k\) is a direct summand of \(Y\) for every finite subset \(K_0 \subset K\). Of course, \(X\) then is a pure submodule of \(Y\). So, we can now conclude from Theorem 4.2 that all local direct summands of modules in \(\text{Add} T\) are direct summands. By [16, 2.3] this implies that \(T\) has a decomposition \(T = \bigoplus_{i \in I} T_i\) in modules with local endomorphism ring. By [17, 7.3.5] and [1, 2.7] we further know that the family \((T_i)_{i \in I}\) is locally t-nilpotent. The statement on \(M\) then follows from Azumaya’s Decomposition Theorem. □

The next result shows that we can test contravariant finiteness of \(\mathcal{P}^{< \infty}\) on the indecomposable modules in \(\mathcal{P}^{< \infty} \cap \mathcal{B}\). Note however that in general \(\mathcal{P}^{< \infty} \cap \mathcal{B}\) can be zero, see Remark 5.6.

Corollary 4.6 The following statements are equivalent for an artin algebra \(R\) with \(\text{findim} \ R < \infty\).

\(\text{(a)}\) \(\mathcal{P}^{< \infty}\) is contravariantly finite in \(\text{mod} \ R\).

\(\text{(b)}\) \(\mathcal{P}^{< \infty}\) is covariantly finite in \(\text{mod} \ R\), and the direct sum \(U\) of a representative set of all indecomposable modules from \(\mathcal{P}^{< \infty} \cap \mathcal{B}\) is a \(\Sigma\)-pure-split tilting module with \(U^\perp = \mathcal{B}\).

Proof: Of course, if \(\mathcal{P}^{< \infty} \cap \mathcal{B} \neq 0\), then \(U \in \mathcal{A} \cap \mathcal{B} = \text{Add} \ T\). Now, we know from [4, 4.2 and 4.3] that \(\mathcal{P}^{< \infty}\) is contravariantly finite if and only if \(T\) is finitely presented, and that in this case \(\mathcal{A} = \mathcal{P}\) is closed under direct limits. This proves that (a) implies the second statement in (b), while the first is shown in [18]. Conversely, if (b) is satisfied, then we know from Theorems 4.2 and 4.3 that \(U\) is product-complete, which implies by [2, 5.2] that \(U\) is finitely presented, hence (a) holds true. □
If $\text{Findim} \, R < \infty$ and \mathcal{P} is closed under direct limits (e.g. if R is right perfect), we also have
\[
(\lim_{\to} \mathcal{P}^{< \infty}, (\lim_{\to} \mathcal{P}^{< \infty})^\perp) \leq (\mathcal{P}, \mathcal{P}^\perp).
\]
Our next aim is a criterion for $\mathcal{P} = \lim_{\to} \mathcal{P}^{< \infty}$. More generally, for an integer $n \geq 0$, we will consider the cotorsion pair $(\mathcal{A}_n, \mathcal{B}_n)$ cogenerated by $\mathcal{P}^{< \infty}_n$ and describe when $\mathcal{P}_n = \lim_{\to} \mathcal{P}^{< \infty}_n$. Our criterion is in terms of properties of pure-injective modules:

Theorem 4.7 Let R be a right perfect and right coherent ring.

1. Let $n < \infty$. Then $\mathcal{P}_n = \mathcal{P}^{< \infty}_n \cap \mathcal{H}$.
 Moreover, $\mathcal{P}_n = \lim_{\to} \mathcal{P}^{< \infty}_n$ iff $\mathcal{B}_n \cap \mathcal{P} \mathcal{I} = \mathcal{P}_n^{\perp} \cap \mathcal{P} \mathcal{I}$ iff $\mathcal{P}_n = (\mathcal{P}^{< \infty}_n)^\tau$.

2. Assume $\text{Findim} \, R < \infty$. Then $\mathcal{P} = \mathcal{P}^{< \infty} \cap \mathcal{H}$.
 Moreover, $\mathcal{P} = \lim_{\to} \mathcal{P}^{< \infty}$ iff $\mathcal{B} \cap \mathcal{P} \mathcal{I} = \mathcal{P}^{\perp} \cap \mathcal{P} \mathcal{I}$ iff $\mathcal{P}^\tau = (\mathcal{P}^{< \infty})^\tau$.

Proof: 1. By assumption, $\mathcal{P}_n = \mathcal{F}_n$, so Corollary 2.7 and Lemma 2.1.1 give the first assertion.
 Assume $\mathcal{P}_n = \lim_{\to} \mathcal{P}^{< \infty}_n$. Then $\mathcal{B}_n \cap \mathcal{P} \mathcal{I} = \mathcal{P}_n^{\perp} \cap \mathcal{P} \mathcal{I}$ by Lemma 1.4.2. Furthermore, if $\mathcal{B}_n \cap \mathcal{P} \mathcal{I} = \mathcal{P}_n^{\perp} \cap \mathcal{P} \mathcal{I}$, then $\mathcal{B}_n \cap \mathcal{H} = \mathcal{P}_n^{\perp} \cap \mathcal{H}$, so $\mathcal{P}_n^{\tau} = (\mathcal{P}^{< \infty}_n)^\tau$. The latter implies $\mathcal{P}_n^{\tau} = (\mathcal{P}^{< \infty}_n)^\tau = \lim_{\to} \mathcal{P}^{< \infty}_n$ by Corollary 2.7 and Theorem 2.3.

2. By assumption, $\mathcal{P} = \mathcal{P}_n$ and $\mathcal{P}^{< \infty} = \mathcal{P}^{< \infty}_n$ for some $n < \infty$, and part 1. applies. □

5 **On an example of Igusa, Smalø, and Todorov**

Examples 3.1 and 4.1 already yield cases where $\mathcal{P} = \lim_{\to} \mathcal{P}^{< \infty}$ and $\mathcal{A} = \mathcal{P}^{< \infty}$ is not closed under direct limits. We now show that the same can happen over an artin algebra. To this end, we study the following example from [19].

Let k be an algebraically closed field and R the finite-dimensional algebra given by the quiver

\[
\begin{array}{ccc}
1 & \xrightarrow{\gamma} & 2 \\
\alpha & \parallel & \beta
\end{array}
\]

with the relations $\alpha \gamma = \beta \gamma = \gamma \alpha = 0$.

It was shown in [19] that $\text{Findim} \, R = \text{findim} \, R = 1$, but $\mathcal{P}^{< \infty}$ is not contravariantly finite in $\text{mod} \, R$. We then know from [4] that there is a $\mathcal{P}^{< \infty}$-filtered tilting module T of projective dimension 1 which is not finitely generated and satisfies $T^\perp = B$.

16
Moreover, each module of finite projective dimension is a direct limit of elements of $\mathcal{P}^{<\infty}$.

We are now going to show that \mathcal{A} is not closed under direct limits. Let us start by collecting further information on the algebra R.

Conventions: We write R-modules by specifying the vector space V_i corresponding to the vertex, $i = 1, 2$, together with three maps $f_\alpha, f_\beta, f_\gamma$ corresponding to the three arrows.

For each of the two vertices $i = 1, 2$, we denote by $P_i, I_i,$ and S_i the corresponding projective, injective or simple module respectively, and set $I = I_1 \oplus I_2$.

R has a factor algebra isomorphic to the Kronecker algebra which we will denote by Λ. The R-modules where the map f_γ corresponding to the arrow γ is zero are also Λ-modules and will be called Kronecker modules.

Note that every R-module X admits a canonical short exact sequence $0 \to P_1^{(I)} \to X \to \tilde{X} \to 0$ where I is a set and \tilde{X} is a Kronecker module.

Recall the classification of the indecomposable finite length Kronecker modules:

i) The preprojectives $D_n, n \in \mathbb{N}_0$: Set $V_1 = k^{n+1}, V_2 = k^n, f_\beta = (E, 0)$ and $f_\alpha = (0, E)$ where E denotes the unit in $K^{n \times n}$;

ii) The preinjectives $M_n, n \in \mathbb{N}_0$: Set $V_1 = k^n, V_2 = k^{n+1}, f_\beta = (E, 0)^t$ and $f_\alpha = (0, E)^t$;

iii) The simple regulars: A family R_λ indexed by $\lambda \in k$ defined as $V_1 = V_2 = k, f_\beta$ the multiplication with $\lambda \in k, f_\alpha$ the identity, and further a module R_∞ defined as $V_1 = V_2 = k, f_\beta$ the identity, and $f_\alpha = 0$;

iv) Every simple regular module R_λ with $\lambda \in k \cup \{\infty\}$ moreover defines a tube \mathcal{T}_λ, that is a chain of indecomposable modules X_i starting in the simple regular X_0 linked by non-split exact sequences $0 \to X_i \to X_{i-1} \oplus X_{i+1} \to X_i \to 0$ which are almost split in modΛ. Any finite length indecomposable regular module occurs in this way.

The following is implicitly proven in [19].

Proposition 5.1 An indecomposable finite length Kronecker module X has finite projective dimension if and only if it lies in $\bigcup_{\lambda \in k} \mathcal{T}_\lambda$. In particular, $\mathcal{P}^{<\infty}$ consists of the finitely $\{P_1\} \cup \bigcup_{\lambda \in k} \mathcal{T}_\lambda$-filtered modules.

Proof: Since preprojectives and preinjectives have odd dimension, they are not in $\mathcal{P}^{<\infty}$, see [19]. So $X \in \mathcal{P}^{<\infty}$ must be regular, and taking into account the shape of the regular components (see iv), we see that all other modules in the tube X belongs
to will be in $\mathcal{P}^{<\infty}$ too. But since the simple regular R_{∞} is isomorphic to $P_2/\text{Soc } P_2,$ where $\text{Soc } P_2 \notin \mathcal{P}^{<\infty},$ we have $R_{\infty} \notin \mathcal{P}^{<\infty},$ hence X belongs to one of the other tubes. For the if-part, note that $R_{\lambda} \cong P_2/P_1$ for each $\lambda \in k.$ Again, we have that all modules in the corresponding tube are then in $\mathcal{P}^{<\infty}.$ □

Lemma 5.2 [6] The finitely generated modules in \mathcal{B} are precisely the finitely genI-filtered modules. In particular, $S_2,$ and all the finite length indecomposable regular modules in \mathcal{T}_∞ are in $\mathcal{B}.$

Proof: $S_2 \cong I_2/\text{Rad } I_2$ and $R_\infty \cong I_2/S_2$ belong to gen$I,$ hence to $\mathcal{B}.$ Since \mathcal{B} is extension-closed, all the tube \mathcal{T}_∞ lies in $\mathcal{B}.$ □

Lemma 5.3 Let X, Y be Kronecker modules. Assume that either $Y \in \mathcal{A},$ or $\text{Hom}_R(S_2, X) = 0.$ Then $\text{Ext}^1_\lambda(Y, X) = 0$ if and only if $\text{Ext}^1_R(Y, X) = 0.$

Proof: The if-part is always true. For the only-if-part, observe that $S_2 = M_0$ is a simple injective λ-module, and write $X = X' \oplus S_2^{(J)}$ with $\text{Hom}_R(S_2, X') = 0.$ If $Y \in \mathcal{A},$ then $\text{Ext}^1_R(Y, S_2^{(J)}) = 0$ by 5.2, so we can assume that we are in the second case, that is $X = X'.$ To verify $\text{Ext}^1_R(Y, X) = 0,$ we now show that every extension E_R of X by Y is actually a Kronecker module. In fact, consider a short exact sequence $0 \rightarrow X_R \rightarrow E_R \rightarrow Y_R \rightarrow 0,$ and assume that E_R contains a submodule isomorphic to $P_1.$ Since P_1 is uniserial and its socle S_2 is not contained in $\text{Im} f,$ we deduce that $g |_{P_1}$ is a monomorphism. But this is not possible because Y is a Kronecker module. □

For each tube \mathcal{T}_λ with $\lambda \in k \cup \{\infty\},$ we denote by Y_λ the corresponding Prüfer module, that is, the direct limit of the chain of inclusions $X_0 \subset X_1 \ldots$ in the tube. It follows from 5.1 that the Y_λ with $\lambda \in k$ are $\mathcal{P}^{<\infty}$-filtered and therefore belong to $\mathcal{A}.$

Proposition 5.4 (1) Let $Y = \bigoplus_{\lambda \in k} Y_\lambda.$ Then $\mathcal{B} = Y \perp.$

(2) A Kronecker module X belongs to \mathcal{B} if and only if $\text{Ext}^1_\lambda(R_\lambda, X) = 0$ for all $\lambda \in k.$

Proof: (1) The inclusion \subseteq is clear. For the other inclusion, let X be a module in $Y \perp.$ For any $\lambda \in k$ and any $A \in \mathcal{T}_\lambda$ we have an exact sequence $0 \rightarrow A \rightarrow Y \rightarrow C \rightarrow 0$ where C must belong to \mathcal{P} and thus must have projective dimension at most one. This shows that $\text{Ext}^1_R(A, X) = 0.$ Then we infer from 5.1 that $\text{Ext}^1_R(A, X) = 0$ vanishes on all modules in $\mathcal{P}^{<\infty},$ that is $X \in \mathcal{B}.$

18
(2) The only-if-part is clear since $R_\lambda \in \mathcal{P}^{<\infty} \subseteq \mathcal{A}$ for all $\lambda \in k$. For the if-part, we deduce from 5.3 that $\text{Ext}_R^1 (R_\lambda, X) = 0$. Then $\text{Ext}_R^1 (-, X) = 0$ vanishes also on all modules in \mathcal{T}_λ and on the \mathcal{T}_λ-filtered module Y_λ, see [13, 7.3.4]. Hence $\text{Ext}_R^1 (Y, X) = 0$, and even $X \in Y^\perp$ since $Y \in \mathcal{P} = \mathcal{P}_1$. The claim now follows from (1). □

We will need some further notions from [25]. For a Λ-module X, we denote by τX the sum of its finitely generated submodules without nonzero preprojective direct summand. If $X = \tau X$, then X is said to be torsion, and if $\tau X = 0$, or equivalently, if $\text{Hom}_\Lambda (R_\lambda, X) = 0$ for all $\lambda \in k \cup \{\infty\}$, then X is said to be torsionfree. Moreover, X is called divisible if $\text{Ext}_\Lambda^1 (R_\lambda, X) = 0$ for all $\lambda \in k \cup \{\infty\}$. It is shown in [25] that the divisible modules are precisely the direct sums of preinjectives, Prüfer modules and copies of a module Q which is the unique indecomposable torsionfree divisible module. Finally, X is called regular if it does not have any preprojective, nor any preinjective summand.

We have the following immediate consequence of 5.4.

Corollary 5.5 All Kronecker modules X which are divisible over Λ belong to \mathcal{B}. In particular, this shows that Y belongs to $\mathcal{A} \cap \mathcal{B} = \text{Add} T$.

Remark 5.6 (1) The finite length indecomposable Kronecker modules in \mathcal{B} are precisely the preinjectives and the regular modules in \mathcal{T}_∞. Indeed, if X is a finite length indecomposable Kronecker modules in \mathcal{B}, then we know from 5.2 that there is a nonzero map $f : I_i \rightarrow X$ with $i = 1$ or $i = 2$. In case $i = 1$, the module X is preinjective since $I_1 = M_1$. In case $i = 2$, the map f cannot be a monomorphism and therefore factors through $I_2 / \text{Soc} I_2 \cong R_\infty$, which shows that X is preinjective or regular in \mathcal{T}_∞.

In particular, this shows that there are no non-zero modules in $\mathcal{P}^{<\infty} \cap \mathcal{B}$. For Kronecker modules, this follows immediately from 5.1. But then no other module X can belong to $\mathcal{P}^{<\infty} \cap \mathcal{B}$, because otherwise we would obtain a contradiction from the canonical exact sequence $0 \rightarrow P_1^n \rightarrow X \rightarrow \tilde{X} \rightarrow 0$ where $n \geq 0$ and \tilde{X} is a Kronecker module.

(2) It is well known that Q is a direct summand of a product of copies of Y. Hence Q belongs to \mathcal{P} and is a direct limit of modules in $\mathcal{P}^{<\infty}$. Note however that Q is not $\mathcal{P}^{<\infty}$-filtered. In fact, it follows from 5.1 that a Kronecker module which is $\mathcal{P}^{<\infty}$-filtered is always filtered by finite length regular modules and is therefore torsion.
Let us draw a further consequence from Proposition 5.4. For each tube \(T_\lambda \) with \(\lambda \in k \cup \{ \infty \} \), we denote by \(Z_\lambda \) the corresponding adic module, that is, the inverse limit of the chain of epimorphisms \(\ldots X_1 \to X_0 \) in the tube.

Corollary 5.7 The adic module \(Z_\lambda \) belongs to \(\mathcal{B} \) if and only if \(\lambda = \infty \).

Proof: We know from [20, proof of 9.3] that for each \(\lambda \) there is a universal exact sequence \(0 \to Z_\lambda \to Q_\lambda \to Y_\lambda \to 0 \) where \(Q_\lambda \) is a direct sum of copies of \(Q \). This shows that the \(Z_\lambda \) with \(\lambda \in k \) do not belong to \(Y^\perp = \mathcal{B} \). On the other hand, applying \(\text{Hom}_R(Y, _) \) on the sequence for \(\lambda = \infty \), we deduce from long exact sequence \(\ldots = \text{Hom}_R(Y, Y_\infty) \to \text{Ext}^1_R(Y, Z_\infty) \to \text{Ext}^1_R(Y, Q_\infty) = 0 \ldots \) that \(Z_\infty \in \mathcal{B} \). \(\square \)

We are now in a position to decide whether \(\mathcal{A} \) is closed under direct limits.

Theorem 5.8 \(T \) is not product-complete, hence \(\mathcal{A} \neq \mathcal{P} \), and \(\mathcal{A} \) is not closed under direct limits.

Proof: Assume that \(T \) is product-complete. Recall that \(Q \) is a direct summand of a product of copies of \(Y \), and \(Y \) lies in \(\text{Add} T \) by Corollary 5.5. So, we infer that \(Q \) must belong to \(\mathcal{A} \). On the other hand, we have just seen that the adic module \(Z_\infty \) is in \(\mathcal{B} \), and it is well-known that \(Z_\infty \) is pure-injective but not \(\Sigma \)-pure-injective. Then there is a cardinal \(\beta \) such that \(Z_\infty ^{(\beta)} \) is not pure-injective, but still is a torsionfree regular module in \(\mathcal{B} \). Now since \(Q \in \mathcal{A} \), we have \(\text{Ext}^1_\lambda (Q, Z_\infty ^{(\beta)}) = 0 \). But it was shown by Okoh in [26, Prop.1 and Remark on p.265] that a torsionfree regular module belongs to \(\text{Ker} \text{Ext}^1_\lambda (Q, -) \) if and only if it is pure-injective. So, we obtain a contradiction. Thus \(T \) is not product-complete. From Corollary 4.4 we then conclude that \(\mathcal{A} \) is not closed under direct limits, and in particular \(\mathcal{A} \neq \mathcal{P} \). \(\square \)

Acknowledgment We would like to thank Birge Huisgen-Zimmermann, Robert El Bashir, Mike Prest and Sverre Smalø for interesting comments.

References

20

21

Address of the authors:

Lidia Angeleri-Hügel
Mathematisches Institut der Universität,
Theresienstrasse 39,
D-80333 München, Germany
e-mail: angeleri@rz.mathematik.uni-muenchen.de

Jan Trlifaj
Katedra algebry MFF UK,
Sokolovská 83, 186 75 Prague 8,
Czech Republic
e-mail: trlifaj@karlin.mff.cuni.cz

Current address:
Università degli Studi dell’Insubria
Dipartimento di Informatica e Comunicazione
Via Mazzini 5, I - 21100 Varese, Italy