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Drinfeld [2] suggested to use flat Mittag–Leffler modules instead of finitely gen-
erated projective modules in the definition of an infinite dimensional vector bundle
on a scheme X. We call such bundles the Drinfeld vector bundles. Flat Mittag–
Leffler modules over a general ring R were studied in [9] and [1], but only recently
[7], they were proved to coincide with the ℵ1–projective modules in the sense of
Eklof and Mekler [3].

Classic work of Quillen [10] made it possible to compute morphisms between two
objects A and B of the derived category of the category Q(X) of all quasi–coherent
sheaves on X. First, one introduces a model category structure on U(X) (= the
category of unbounded chain complexes on Q(X)). Morphisms between A and
B can then be computed as the U(X)–morphisms between cofibrant and fibrant
replacements of A and B, respectively, modulo chain homotopy.

Hovey [8] showed that model category structures naturally arise from small co-
torsion pairs on U(X). Thus Gillespie [6] produced a model category structure on
U(X) using flat quasi–coherent sheaves. By a different approach, a model category
structure was produced on U(X) when X is the projective line, using quasi–coherent
sheaves all of whose sections in open affine sets are projective, [4].

In [5] a general method of constructing model category structures was presented
that includes the results of [4] and [6]. The method also works for all bounded flat
Mittag–Leffler quasi–coherent sheaves. But it does not apply to the unbounded
(i.e., Drinfeld vector bundle) case, because by [7], the class of all ℵ1–projective
modules is deconstructible only if R is perfect. This shows a remarkable difference
between Drinfeld vector bundles and flat (or projective) quasi–coherent sheaves.

In my talk I will present the main results of [5] and [7], and some related open
problems.
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