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Abstract. We give logical characterizations of bisimulation relations for
the probabilistic automata of Segala in terms of three Hennessy-Milner
style logics. The three logics characterize strong, strong probabilistic and
weak probabilistic bisimulation, and differ only for the kind of diamond
operator used. Compared to the Larsen and Skou logic for reactive sys-
tems, these logics introduce a new operator that measures the probability
of the set of states that satisfy a formula. Moreover, the satisfaction re-
lation is defined on measures rather than single states.
We rederive previous results of Desharnais et. al. by defining sublogics for
Reactive and Alternating Models viewed as restrictions of probabilistic
automata. Finally, we identify restrictions on probabilistic automata,
weaker than those imposed by the Alternating Models, that preserve the
logical characterization of Desharnais et. al. These restrictions require
that each state either enables several ordinary transitions or enables a
single probabilistic transition.

1 Introduction

In concurrency, tools like process algebras, axiomatizations and logical charac-
terizations are useful to study the properties of systems and the relations that
exist between them in a very simple way. Bisimulation is a simple and useful re-
lation that describes the operational equivalence of concurrent systems. Logical
characterizations permit to understand what properties are preserved by bisim-
ulation. In particular, two processes are bisimilar if and only if they satisfy the
same formulas of the logic.

Concurrent system are also studied in the presence of randomization, and
most of the results in the framework of labeled transition systems have been
extended to the probabilistic nondeterministic setting. Probabilistic automata
[14], also known as non-alternating models, are a conservative extension of la-
beled transition systems where a state may enable several probabilistic transi-
tions with the same label, each one leading to a discrete probability measure
over states. This model permits to describe processes where probability and
nondeterminism interact together.

The goal of this paper is to study logical characterizations of bisimulations for
probabilistic automata in the context of Hennessy-Milner style logics [8]. Logical
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characterizations have been studied already by Larsen and Skou [11] for reactive
systems [6] and by Desharnais et. al. [5] for labeled concurrent Markov chains (al-
ternating model) [7, 13]. These logics are derived from the Hennessy-Milner logic
by replacing the diamond operator with a probabilistic diamond operator that
measures bounds on the probability of performing an externally visible action
and then satisfying some formula. Unfortunately, such characterizations are not
adequate for probabilistic automata where, as opposed to reactive systems and
alternating models, probability and nondeterminism coexist in the same states.

Our main contribution is a Hennessy-Milner logic that keeps the original di-
amond operator of [8], is defined on measures over states rather than on single
states, and includes a new operator [φ]p that is true whenever the probabil-
ity of the states that satisfy a formula φ is at least p. Thus, a conjunction of
formulas with such operator can characterize entire probability measures. We
study three logics for strong, strong probabilistic and weak probabilistic bisim-
ulation, respectively, each one differing only on the definition of the diamond
operator to account for the kind of transitions that are used in the definition of
the bisimulation relation.

We then view the logics studied for the reactive and alternating models as re-
strictions of our logic, where ♦pφ can be encoded by ♦a[φ]p, and we rederive the
known logical characterizations for such systems. In particular, for the alternat-
ing models we study minimal restrictions to impose on probabilistic automata
so that the logical characterizations of [5] continue to hold. It turns out that it is
sufficient to require that each state that enables a probabilistic transition enables
only one transition. That is, each probabilistic choice should have a state that
describes it. In this way, indeed, the characterization of bisimulation in terms of
maximal probabilities [13, 5], which is the key technical machinery to derive the
corresponding logical characterizations, continues to hold.

The paper is organized as follows. Section 2 gives some preliminary mathe-
matical notions; Section 3 defines probabilistic automata and related concepts;
Section 4, recalls the definition for Hennessy-Milner logic [8] and introduces our
logics for probabilistic automata; Section 5 recalls the results for reactive and
alternating systems and compares them with our results; Section 6 gives two
logics for strong and weak probabilistic bisimulation for the restriction of prob-
abilistic automata where states that enable probabilistic transitions enable only
one transition, which embed all known alternating models; Section ?? gives some
concluding remarks.

2 Mathematical Preliminaries

Given a set S, a σ-algebra over S is a family Σ of subsets of S that is closed under
complementation and countable union. A measurable space is the pair (S,Σ),
and each element of Σ is called a measurable set. The σ-algebra generated by a
family G of subsets of S is the smallest σ-algebra including G, and is denoted
by σ(G). Given a measurable space (S,Σ), a measure over (S,Σ) is a function
µ : Σ → <+ such that, for every countable family {Ai}I ⊆ Σ of pairwise disjoint



measurable sets, µ(∪IAi) =
∑

I µ(Ai). A (sub-)probability measure is a measure
µ : Σ → [0, 1] for which (µ(S) ≤ 1) µ(S) = 1. Probability measures are ranged
over by µ, η, . . . and we propagate indices and primes where necessary. A set
A ⊆ S is called a support for a measure µ on Σ if µ(S − A) = 0. Denote by
(SubDisc(S)) Disc(S) the set of discrete (sub-)probability measures over S and,
given an element s ∈ S, denote by δ(s) the probability measure that assigns
probability 1 to {s}. This is called the Dirac measure on s. Given a countable
set of distributions {µi}I and a set {pi}I of real numbers in [0, 1] such that∑

I pi = 1, define the convex combination
∑

I piµi of {µi}I as the probability
measure µ such that, for each set X, µ(X) =

∑
I piµi(X).

Sometimes it is necessary to lift a relation over sets to a relation over measures
on sets. We give here a definition proposed in [14] using an idea of [9]. Let
R⊆ X × Y . The lifting of R is a new relation L(R)⊆ Disc(X) × Disc(Y ),
such that µ1 L(R) µ2 iff there exists a weight function (or witness function)
ω : X × Y −→ [0, 1] such that the following lifting conditions hold:

1. ∀(x, y) ∈ X × Y , if ω(x, y) > 0 then x R y;

2. ∀x ∈ X,
∑

y∈Y ω(x, y) = µ1(x);

3. ∀y ∈ Y,
∑

x∈X ω(x, y) = µ2(y).

If R is an equivalence relation, then for each pair of measures µ1, µ2, it can be
shown that µ1 L(R) µ2 if and only if µ([t]) = µ′([t]) for each equivalence class [t]
of R. In the following we will use R instead of L(R) if it is clear from the contest
that we refer to a lifted relation. A set E is R-closed if E = {s | ∃r s.t. s R r},
that is, it is a collection of equivalence classes of R.

3 Probabilistic Automata

In this section we recall some concepts of ordinary automata theory that will be
useful to understand the definitions of executions, traces, combined transitions,
schedulers, weak combined transitions and bisimulation relations for probabilis-
tic automata. All the definitions concerning ordinary automata are standard and
the definition for probabilistic automata are taken from [14].

An automaton is a tuple A = (S,Act,D) where S is the set of states, Act is
the set of actions, and D ⊆ S × Act × S is the transition relation. Each triple
(s, a, s′) ∈ D is called a transition, and is denoted by s

a−→ s′. The set Act is
partitioned into two sets E,H of external and internal actions, respectively. For
the purpose of this paper we assume that H = {τ}.

Probabilistic automata are conservative extensions of Labeled Transition Sys-
tems where transitions lead to discrete probability measures over states instead
of single states. Indeed, an ordinary automaton can be seen as a probabilistic
automaton where each transition leads to a Dirac measure. A probabilistic au-
tomaton is a tuple P = (S,Act,D), where S is the set of states, Act is the set of
actions, and D is the transition relation, where D ⊆ S ×Act×Disc(S). Denote
a transition (s, a, µ) ∈ D by s

a−→ µ. States and actions are ranged over by
s, r, t, . . . and a, b, . . ., respectively.



An execution of a probabilistic automaton P is a finite or infinite sequence
α = s0a1s1a2s2 · · · of alternating states and actions, starting with a state and,
if the sequence is finite, ending in a state, where for each i, there exists a mea-
sure µ such that (si, ai+1, µ) ∈ D and µ(si+1) > 0. State s0 is called the first
state of α and is denoted by fstate(α). If α is a finite sequence, then the last
state of α is denoted by lstate(α). Denote by execs(P) the set of executions of
P and by execs∗(P) the set of finite executions of P. Executions are the re-
sult of the resolution of both probabilistic and nondeterministic choices. If we
resolve nondeterministic choices only, then we obtain a structure on which we
can study probability measures over executions. Nondeterminism is resolved in
a randomized way by an entity called scheduler.

A scheduler for a probabilistic automaton P is a function σ : execs∗(P) →
SubDisc(D) such that σ(α)(s, a, µ) > 0 implies s = lstate(α). A scheduler σ is
deterministic if for each finite execution α, σ(α) ≡ 0 or σ(α) = δ(tr), with tr ∈ D.
A scheduler and a starting state s induce a probability measure over executions
on a σ-field whose construction is standard. Specifically, we consider the σ-field
generated by cones, where the cone of a finite execution α, denoted by Cα, is the
set of executions that have α as a prefix, i.e., Cα = {α′ ∈ execs(P) | α ≤ α′}.
Fixed a starting state s0, the measure of a cone Cα, where α = s0a1s1 · · · sk, is
defined as follows:

µ(Cα) =
∏

i∈{0,k−1}

 ∑
(si,ai+1,µ′)∈D

σ(s0a1 · · · aisi)(si, ai+1, µ
′)µ′(si+1)

 .

Standard measure theoretical arguments ensure that the measure defined on
cones extends uniquely to a measure defined on the generated σ-field.

Let {s a−→ µi}i∈I be a collection of transitions of P, and let {pi}i∈I be a
collection of probabilities such that

∑
i∈I pi = 1. Then the triple {s, a,

∑
i∈I piµi}

is called a combined transition. Combined transitions represent the result of
choosing the transitions randomly from some state s. They are useful in the
definition of probabilistic bisimulations.

We say that s a=⇒ s′ is a weak transition of an automaton A if there is a
finite execution α of A with fstate(α) = s and lstate(α) = s′, and such that
trace(α) = trace(a), where the trace function restricts a sequence to external
actions only. In other words, a weak transition is a way to abstract from internal
computation. For probabilistic automata, consider a measure µ, induced by a
scheduler σ from a starting state s, that assigns probability 1 to the set of all
finite executions with trace a. Let µ′ be the measure defined by µ′(s) = µ({α |
lstate(α) = s}). Then s

a=⇒ µ′ is a weak combined transition of P. The term
“combined” reflects the fact that σ is a randomized scheduler.

We define three types of bisimulation relations that will be studied in the
rest of this paper. These relations differ for the kind of transitions used.

1. An equivalence relation R⊆ S × S is a strong bisimulation if for each pair
s, r of states such that s R r and for each transition s a−→ µ, there exists µ′

such that r a−→ µ′ and µ R µ′. Denote by ∼ the largest bisimulation.



2. An equivalence relation R⊆ S×S is a strong probabilistic bisimulation if for
each pair s, r of states such that s R r and for each transition s a−→ µ, there
exists a combined transition r

a−→ µ′ such that µ R µ′. Denote by ∼p the
largest probabilistic bisimulation.

3. An equivalence relation R⊆ S × S is a weak probabilistic bisimulation if for
each pair s, r of states such that s R r and for each transition s a−→ µ, there
exists a weak combined transition r a=⇒ µ′ such that µ R µ′. Denote by ≈p

the largest weak probabilistic bisimulation.

There would be a fourth obvious relation that uses weak transitions induced by
deterministic schedulers. However, this relation is not transitive, as shown in [3],
and thus it is not interesting.

We recall an alternative way of defining bisimulation [8] as
⋂

i≥0 ∼n, where
∼0= S × S (all states are related) and for each pair of states s, r, s ∼n+1 r

if for each action a, s a−→ µ implies that there exists µ′ such that r a−→ µ′

and µ ∼n µ
′. The same definition style applies to strong probabilistic and weak

probabilistic bisimulation, as well.

4 Hennessy-Milner Logic for Probabilistic Automata

In this section, we give logical characterizations of bisimulations for probabilistic
automata. We start by recalling the logic from [8]; then we analyze in detail the
logics for strong, strong probabilistic and weak probabilistic bisimulations.

4.1 Hennessy-Milner Logic

The syntax of the Hennessy-Milner Logic [8] is the following:

Lhm ::= > | ¬ϕ | ϕ1 ∧ ϕ2 | ♦aϕ.

The satisfaction relation |=⊆ S × F is defined by structural induction on the
formulas of Lhm as follows:

– s |= > for each state s
– s |= ¬ϕ iff s 6|= ϕ
– s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

– s |= ♦aϕ iff there exists a transition s a−→ s′ and s′ |= ϕ.

The only non-trivial operator is the “diamond” ♦, which is used to describe the
existence of transitions. It was shown in [8] that the logic Lhm characterizes
strong bisimulation for ordinary automata. In particular, two states s and r of
an automaton are bisimilar if and only if they satisfy the same formulas of Lhm.
If we extend the logic above with a countably infinite conjunction, then the
characterization of strong bisimulation holds also for automata with countably
many states. In this paper we deal with countable state spaces, and therefore
we use an infinitary conjunction operator. However, our results hold for finite
conjunction operators and finite-state spaces.



The logics that we study in this paper share a lot of structure of Lhm, thus,
we introduce here some useful notation. We let ϕ,ψ, . . . range over formulas, and
we define the depth of a formula ϕ as the maximum number of nested diamond
operators that occur in ϕ. We let FL denote the set of the formulas of the logic
L, and let FL,n denote set of the formulas of L of depth at most n. We define
a new relation ./L⊆ S × S such that s ./L r if and only if FL(s) = FL(r), and
similarly we define ./L,n⊆ S × S as the relation such that s ./L,n r if and only
if FL,n(s) = FL,n(r). We drop the subscript L whenever it is clear from the
contest. Finally, denote by [[ϕ]] the set of all the states that satisfy ϕ.

4.2 Hennessy-Milner Logic for Strong Bisimulation

The main difference between probabilistic automata and ordinary automata is
that in probabilistic automata, the target of each transition is a probability
measure. Thus, informally, our logic should be able to distinguish the properties
of a set of states rather than single states. ¿From every state there might be
several outgoing transitions labeled by the same action. Thus, a naive extension
of ♦, where we study the probability of a formula in the target of a transition
[11] does not suffice. Our proposal is to define a new operator that, together
with conjunction, can characterize exactly a probability measure. The syntax of
the logic LN for strong bisimulation is the following:

LN ::= > | ¬ϕ |
∧
I

ϕi | ♦aϕ | [ϕ]p.

The semantics of this logic is given in terms of probability measures over states
rather than single states. Specifically, the satisfaction relation is defined as fol-
lows:

– µ |= > for each measure µ
– µ |= ¬ϕ iff µ 6|= ϕ
– µ |=

∧
I ϕi iff for each i ∈ I, µ |= ϕi

– µ |= ♦aϕ iff for each s ∈ supp(µ) there exists a distribution η and a transition
s

a−→ η such that η |= ϕ
– µ |= [ϕ]p iff µ([[ϕ]]) ≥ p.

The first three clauses are trivial extensions of those of the Hennessy-Milner
logic. The diamond operator is exactly that of Lhm if we restrict our study to
Dirac distributions, and the operator [·]p expresses the probability of a set of
states with respect to a given probability measure.

The rest of this section is dedicated to the proofs of soundness and complete-
ness of LN . We start with a few preliminary lemmas that are used to prove the
soundness and completeness of LN . This first lemma states that, when consider-
ing logics with negation, if two states satisfy two different sets of formulas, then
none of these sets is contained in the other.

Lemma 1. Given a logic with negation, for each pair of states s and r of a
probabilistic automaton, if F(s) 6= F(r) then F(s) 6⊆ F(r).



The second lemma shows that the states of a probabilistic automaton satisfy the
same sets of formulas of depth zero.
Lemma 2. For each pair of states s, r, F0(s) = F0(r).
The third lemma relates diamond formulas with probability measures and the
states in their support.
Lemma 3. For each measure µ, such that µ |= ♦aϕ, µ |= ϕ iff for each s ∈
supp(µ), s |= ϕ.
The last lemma states that the lifting of ./n preserves the sets of formulas sat-
isfied by two probability distributions µ and µ′.
Lemma 4. Let R be a subset of ./n. Then, for each pair of distributions µ, µ′,
µ R µ′ implies Fn(µ) = Fn(µ′).
We are now ready to prove the soundness and completeness of the logic LN for
probabilistic automata.
Theorem 1. Given the logic LN , for each pair of states s, r of a probabilistic
automaton, s ∼ r iff F(s) = F(r).

Proof. By induction on n, we show that s ∼n r iff Fn(s) = Fn(r) for each n ≥ 0.
The base case follows trivially by Lemma 2 and the definition of ∼0 (all states
are related). For the inductive step we prove separately the two directions of our
claim.

(=⇒). Let s ∼n+1 r. We show by induction on the structure of a formula
ϕ ∈ Fn+1 that s |= ϕ iff r |= ϕ. Let s |= ϕ (the case for r |= ϕ is symmetric). If
ϕ = >, then r |= ϕ trivially. If ϕ = ¬ψ, then s 6|= ψ and by structural induction,
r 6|= ψ. Thus, r |= ¬ψ. If ϕ =

∧
I ψi, then for each i ∈ I, s |= ψi. By structural

induction, r |= ψi for each i ∈ I and thus, r |= ϕ. If ϕ = [ψ]p, then either p = 0
or s |= ψ. In the first case r |= ϕ trivially; in the second case, by structural
induction, r |= ψ and thus, r |= ϕ. If ϕ = ♦aψ, then ψ ∈ Fn. By definition,
there exists a transition s a−→ µ such that µ |= ψ. Since s ∼n+1 r, there exists a
distribution µ′ and a transition r

a−→ µ′ such that µ ∼n µ
′. By induction on n,

∼n⊆./n. Thus, by Lemma 4 and since µ ∼n µ
′, Fn(µ) = Fn(µ′). Since ψ ∈ Fn,

and since µ |= ψ, then also µ′ |= ψ. That is, r |= ♦aψ.
(⇐=). We show that s 6∼n+1 r implies Fn+1(s) 6= Fn+1(r). Let {[ti]n}I be an

enumeration of the equivalence classes of∼n. By induction on n and by Lemma 1,
for each i, j ∈ I, if i 6= j, there exists a formula ϕij ∈ Fn such that ti |= ϕij

and tj 6|= ϕij . For each i ∈ I, define ϕi =
∧

j∈Ir{i} ϕij . Then ϕi is satisfied only
by the states of [ti]n. Let s 6∼n+1 r and suppose, for the sake of contradiction,
that Fn+1(s) = Fn+1(r). Without loss of generality, there exists a transition
s

a−→ µ such that there is no transition r
a−→ µ′ with µ ∼n µ′. For each i ∈ I

let pi = µ([ti]n). Now, define ϕ =
∧

I [ϕi]pi
. By definition, µ |= ϕ. Furthermore,

ϕ ∈ Fn. By the semantics of ♦, s |= ♦aϕ. Since ♦aϕ ∈ Fn+1, by hypothesis,
r |= ♦aϕ as well. Thus, there exists a distribution µ′′ such that r a−→ µ′′ and
µ′′ |= ϕ. This means that for each i ∈ I, µ′′([ti]n) ≥ pi. Since

∑
I pi = 1 and

since
∑

I µ
′′([ti]n) = 1, then for each i ∈ I, µ′′([ti]n) = pi. That is, for each i ∈ I,

µ([ti]n) = µ′′([ti]n), which means that µ ∼n µ
′′, a contradiction.



4.3 Hennessy-Milner Logic for Strong Probabilistic Bisimulation

In the definition of probabilistic bisimulation, a transition can be matched by
combining transitions. Thus, it is reasonable to believe that the diamond for
strong probabilistic bisimulation should take into account this possibility. Indeed,
the logic LN

p for strong probabilistic bisimulation is obtained by replacing the
operator ♦ with ♦· . The syntax of LN

p is:

LN
p ::= > | ¬ϕ |

∧
I

ϕi | ♦· aϕ | [ϕ]p.

The semantics of the operator ♦· is:

– µ |= ♦· aϕ iff for each s ∈ supp(µ) there exists a distribution η and a combined
transition s

a−→ η such that η |= ϕ.

Since, as shown in [16], ∼p is weaker than ∼, adding the operator ♦· to LN does
not change its expressivity. Hence, the operator ♦· is weaker than ♦. Soundness
and completeness of LN

p are stated by the following theorem.

Theorem 2. Given the logic LN
p , for each pair of states s, r of a probabilistic

automaton, s ∼p r iff F(s) = F(r).

Proof outline. Lemma 1, 2, 3 and 4 hold also here. Then, the proof of this
theorem follows the lines of that of Theorem 1, by replacing strong transitions
with combined transitions in the appropriate places. ut

4.4 Logic for Weak Probabilistic Bisimulation

The definition of the logic LN
w follows the same ideas of LN

p . We replace the ♦
of LN with operator ♦·w, and the new syntax is:

LN
w ::= > | ¬ϕ |

∧
I

ϕi | ♦·waϕ | [ϕ]p.

The semantics of ♦·w is:

– µ |= ♦·waϕ iff for each s ∈ supp(µ) there exists a distribution η and a weak
combined transition s

a=⇒ η such that η |= ϕ.

By the preceding considerations, we can easily infer that the operator ♦·w is
weaker than ♦· . As for strong probabilistic bisimulation, we can prove that LN

w

characterizes weak probabilistic bisimulation.

Theorem 3. Given the logic LN
w , for each pair of states s, r of a probabilistic

automaton, s ≈p r iff F(s) = F(r).

Proof outline. Lemma 1, 2, 3 and 4 hold also here. Then, the proof of this theorem
follows the lines of that of Theorem 1, by replacing strong transitions with weak
combined transitions in the appropriate places. ut



5 Hennessy-Milner Logic for Reactive Systems

Reactive systems [6] are essentially deterministic probabilistic automata, i.e.,
for each state and for each label, there exists at most one transition. There is
already a logical characterization of bisimulation for reactive systems by Larsen
and Skou [11]. The syntax of the Larsen and Skou logic is the following:

Lls ::= > | ¬ϕ | ϕ1 ∧ ϕ2 | ♦paϕ,

where p is a rational number in [0, 1]. The only new operator is ♦p, whose
semantics is:

– s |= ♦paϕ iff there exists a transition s a−→ µ such that µ([[ϕ]]) ≥ p.

Desharnais, Panangaden et. al. [4] have shown that negation is not necessary to
characterize bisimulation for reactive systems. Moreover, they have shown that
infinitary conjunction is not needed even if the state space is uncountable, and
can be replaced by a finite conjunction operator. The syntax of their logic is the
following:

LR ::= > | ϕ1 ∧ ϕ2 | ♦paϕ.

It is immediate to see that LR is a sublogic of Lls. We can see the logic LR as
a sublogic of LN as well. From this, we see clearly that negation is needed to
handle nondeterminism. Also the operator [·]p is necessary when nondeterminism
is present. However, as shown in the next section, this operator can be dropped
in favor of ♦p if nondeterminism is partially restricted.

6 Hennessy-Milner Logic for Alternating Models

In this section, we define two logics for strong and weak probabilistic bisimulation
for a restriction of probabilistic automata that embeds the alternating models
and we show that the logical characterization of [5] continues to hold.

We say that a probabilistic automaton is alternating if the states that enable a
non-Dirac transition enable only one transition. We call probabilistic those states
that enable non-Dirac transitions, and nondeterministic all the other states. This
definition of alternating probabilistic automaton, indeed, describes a class of sys-
tems that is more general than the labeled concurrent Markov chains of Hans-
son [7] and of Philippou et. al. [13], since it does not impose any alternation
between nondeterministic and probabilistic states, and it allows probabilistic
transitions to be labeled by external actions. As shown in [16], the notion of
bisimulation of this paper coincides with those of Hansson and of Philippou et.
al. when applied to their models. Thus, a logical characterization for alternat-
ing probabilistic automata is also a logical characterization for the alternating
models.

Following the lines of [5], we restrict to compact systems when studying
weak probabilistic bisimulation. Indeed, the logical characterization does not
hold in general for non-compact systems. We do not handle strong probabilistic
bisimulation explicitly since it coincides with strong bisimulation [16].



6.1 Hennessy-Milner Logic for Strong Bisimulation

Since in alternating probabilistic automata each probabilistic transition is de-
scribed by some state, then intuitively the target measure of a probabilistic
transition that leaves from a state s be studies by observing the probability of
reaching each equivalence class from s. For this reason the operator ♦p should
suffice. Indeed, bisimulation relations can be characterized in terms of maximal
probabilities of reaching equivalence classes (Lemma 5), and thus, an operator
♦p suffices.

The overall idea of maximal probabilities is taken from [13]. The syntax of
the logic LA for strong bisimulation is the following:

LA ::= > | ¬ϕ |
∧
I

ϕi | ♦paϕ.

The semantics of the operator ♦p is exactly the same as for reactive systems.
Note that if we drop the operator [·]p, it is no more necessary to define the
satisfaction relation on measures, since it can be defined on single states. In
a similar way as in [13], for each action a and for each equivalence class [t]
of ∼, we define µs,a([t]) as the maximal probability to reach [t] from s with a
strong transition labeled a. The following lemma relates maximal probabilities
and strong bisimulation.

Lemma 5. For each pair of states s and r of an alternating automaton, if
µs,a([t]) = µr,a([t]) for each action a and each equivalence class [t] of ∼, then
s ∼ r.

Proof. Let {[ti]}I be an enumeration of the equivalence classes of ∼. Without
loss of generality, we distinguish the following cases.

1. s is nondeterministic. Let s a−→ µ. Then, µ is a Dirac measure δ(s′). Let
k ∈ I be the index of the class such that s′ ∈ [tk]. Then, µ([tk]) = 1. This
means that µ([tk]) = µs,a([tk]). Then, by hypothesis, there exists µ′ such
that µ′([tk]) = µr,a([tk]) and µ′([tk]) = 1. By definition, for each equivalence
class [tj ], µ′([tj ]) = 0. Thus, µ ∼ µ′.

2. s is probabilistic. Then, let s a−→ µ be the only transition from s. By def-
inition, for each i ∈ I, µ([ti]) = µs,a([ti]). If r is probabilistic, then by
hypothesis, r a−→ µ′ is the only transition from r, and µ, µ′ agree on all the
equivalence classes. If r is nondeterministic, then each transition is of the
form r

a−→ δ(r′) and for each i ∈ I, δ([ti]) = µr,a([ti]) = 1 only if r′ ∈ [ti].
By hypothesis, there exists an equivalence class [tk] such that µ([tk]) = 1.
This also implies that all the target Dirac distributions δ(r′) reached from r
are related, since by hypothesis, each r′ must belong to [tk]. Thus, for each
transition r a−→ δ(r′), µ ∼ δ(r′).

Now we can prove the completeness of LA using the result of the previous lemma.

Theorem 4. Given the logic LA, for each pair of states s, r of an alternating
automaton, s ∼ r iff F(s) = F(r).



Proof. (=⇒). Soundness follows by Theorem 1, by the fact that alternating au-
tomata are a special case of probabilistic automata via embedding [16] and since
LA is a sublogic of LN .
(⇐=). Let s ./ r, and let {〈ti〉}I be an enumeration of the equivalence classes
of ./. We show that ./ is a bisimulation between s and r that is, by Lemma 5,
for each action a and for each i ∈ I, µs,a(〈ti〉) = µr,a(〈ti〉). By hypothesis and
by Lemma 1, for each pair of classes 〈ti〉, 〈tj〉, there exists a formula ϕij such
that ti |= ϕij and tj 6|= ϕij . For each i ∈ I, let ϕi =

∧
Ir{i} ϕij . Then, ϕi

is satisfied only by the states of 〈ti〉. For the sake of contradiction, suppose
that there exists an action a and a class 〈tk〉 such that µs,a(〈tk〉) 6= µr,a(〈tk〉).
For each i ∈ I, let µ(〈ti〉) = µs,a(〈ti〉) and µ′(〈ti〉) = µs,a(〈ti〉). Without loss
of generality, let µ′(〈tk〉) < µ(〈tk〉) Then, there exists a rational p such that
µ′(〈tk〉) < p < µ(〈tk〉). By definition, s |= ♦paϕk. By hypothesis, r |= ♦paϕk

as well. This means that there exists a measure µ′′ such that r a−→ µ′′ and
µ′′([[ϕk]]) ≥ p. By hypothesis, [[ϕk]] = 〈tk〉, and by definition, µ′′(〈tk〉) ≤ µ′(〈tk〉),
a contradiction.

6.2 Hennessy-Milner Logic for Weak Probabilistic Bisimulation

As shown by Desharnais et. al. [5], in countable-state systems compactness im-
plies that maximal probabilities work correctly, that is, for each maximal prob-
ability reachable, there is a corresponding weak probabilistic transition giving
the same probability. This requirements is not needed in finite-state systems [13]
since finite systems are compact. In the following, we will implicitly assume that
the alternating models considered are compact, thus allowing us to handle max-
imal probabilities in our proofs.

The logical characterizing weak bisimulation for labeled concurrent Markov
chains [5] is reported in the following:

LA
w ::= > | ¬ϕ |

∧
I

ϕi | ♦·wp aϕ.

In [5], disjunction is also used since it simplifies their proof of completeness, but
it is not necessary. This logic is exactly that of Larsen and Skou, except for the
diamond operator, whose semantics ♦·wp is defined as follows:

– s |= ♦·wp aϕ iff µs,a([[ϕ]]) ≥ p.

This definition underlines the strict correlation between weak bisimulation for
alternating models and maximal probabilities. Philippou et. al. [13] restrict their
study to deterministic schedulers, while Desharnais et. al. [5] permit linear com-
bination of deterministically scheduled paths to reach maximal probabilities.
These linear combinations reflect the concept of convex combinations for proba-
bilistic automata. Anyway, deterministic schedulers are enough to reach maximal
probabilities, allowing us to simplify some proofs using deterministic schedulers
instead of randomized ones.



Keeping the same notation of the previous section, for each action a and
for each formula ϕ, µs,a([[ϕ]]) is defined as the maximal probability (over all
schedulers) of [[ϕ]] over all the distributions reached via weak combined transitions
from s with label a. Like for strong bisimulation, for each action a and for each
formula ϕ, we can state that ♦·wp aϕ ≡ ♦·wa[ϕ]p. In the following, we prove the
completeness of the logic LA

w, extending some results of [5] to our definition of
alternating model.

We define a new relation .= such that, for each pair of states s, r of an
alternating automaton, s .= r iff

– s and r are nondeterministic and for each action a and for each .=-closed set
E, µs,a(E) = µr,a(E), or

– s is probabilistic with action τ and for each .=-closed set E such that s 6∈ E,
µs,τ (E) = µr,τ (E), or

– s is probabilistic with external action and for each .=-closed set E, µs,a(E) =
µr,a(E).

The following lemma states a property of deterministic schedulers [1], and per-
mits to use indifferently deterministic or randomized schedulers when calculating
maximal probabilities. The assumption is to work in compact systems, since this
result requires that each set considered must be reachable by a weak transition.

Lemma 6. In compact systems, maximal probabilities can be reached with de-
terministic schedulers.

The next lemma shows that the relation ./ implies the relation .= which directly
talks about maximal probabilities reachable. This result is basilar to prove the
soundness of the logic LN

w .

Lemma 7. For each pair of states s, r of an alternating automaton, if s ./ r
then s

.= r.

Proof. Let s ./ r, and let {〈ti〉}I be an enumeration of the equivalence classes
of ./. We prove a stronger result, showing that for each action a and for each
equivalence class 〈tk〉, µs,a(〈tk〉) = µr,a(〈tk〉), which directly implies that s .= r.
By hypothesis and by Lemma 1, for each pair of classes 〈ti〉, 〈tj〉, there exists a
formula ϕij such that ti |= ϕij and tj 6|= ϕij . For each i ∈ I, let ϕi =

∧
Ir{i} ϕij .

Then, ϕi is satisfied only by the states of 〈ti〉. For the sake of contradiction,
suppose that there exists an action a and a class 〈tk〉 such that µs,a(〈tk〉) 6=
µr,a(〈tk〉). Without loss of generality, let µs,a(〈tk〉) < µr,a(〈tk〉). Then, there
exists a rational p such that µs,a(〈tk〉) < p < µr,a(〈tk〉). By definition, r |= ♦·wp aϕk

since µr,a([[ϕk]]) ≥ p. By hypothesis, s |= ♦·wp aϕk, that is, µs,a([[ϕk]]) ≥ p. Then,
µs,a(〈tk〉) ≥ p, a contradiction.

Theorem 5 extends a result by [5] to alternating automata. This theorem is
necessary to prove the completeness of the logic for weak probabilistic bisimula-
tion in Theorem 6.

Theorem 5. The relation .= is a weak probabilistic bisimulation.



Proof outline. The proof follows the lines of Theorem 2 of [5], considering also
probabilistic states enabling an external transition. ut

Theorem 6. Given the logic LA
w, for each pair of states s, r of an alternating

automaton, s ≈p r iff F(s) = F(r).

Proof outline. Soundness follows by Theorem 1, by the fact that alternating
automata are a special case of probabilistic automata via embedding [16] and
since LA

w is a sublogic of LN . Completeness follows by Theorem 5 and Lemma 7.
ut

Model Logic Syntax Bisimulation

Non-Alternating LN > | ¬ϕ | ∧Iϕi | ♦aϕ | [ϕ]p ∼
LN

p > | ¬ϕ | ∧Iϕi | ♦· aϕ | [ϕ]p ∼p

LN
w > | ¬ϕ | ∧Iϕi | ♦·waϕ | [ϕ]p ≈p

Alternating LA > | ¬ϕ | ∧Iϕi | ♦paϕ ∼
LA

w > | ¬ϕ | ∧Iϕi | ♦·wp aϕ ≈p

Reactive LR > | ϕ1 ∧ ϕ2 | ♦paϕ ∼

Table 1. Hennessy-Milner logics for discrete probabilistic systems.

7 Concluding Remarks

We have studied logical characterizations, in terms of Hennessy-Milner style
logics, of strong, strong probabilistic and weak probabilistic bisimulations for
probabilistic automata [14]. Our logics are defined on measures over states rather
than on single states, and add a new operator the classical Hennessy-Milner
logic that measures the probability of the set of states that satisfy a formula.
Compared to other existing logics for reactive and alternating systems [11, 5],
our logics keep the ♦ operator of Hennessy-Milner rather than replacing it with
♦p, at the cost of adding a more powerful operator to measure probabilities.

We have studied restrictions on probabilistic automata that embed the al-
ternating models and at the same time can be characterized by the logics of [5].
These restrictions impose that each state that enables a probabilistic transition
enables only one transition, which is the key property to keep alternative char-
acterizations of bisimulation relations in terms of maximal probabilities [13, 5].
This result is important because it explains what are the key features of the



alternating models that make them more tractable from the algorithmic point
of view. Recall, indeed that weak bisimulations are decidable in polynomial time
in the alternating models [13] due to their characterization in terms of maxi-
mal probabilities, while they are decidable in exponential time for probabilistic
automata [1].

Our long term goal is to extend the theory of probabilistic automata to non-
discrete probability measures. The logical characterizations studied in this paper
will provide us important guidelines for the definitions to propose in this more
general setting.
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