

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Consistency Enforcing and Constraint Propagation: Node and Arc Consistency

Constraint Processing, R. Dechter
Sections 3.1, 3.2, 3.4 (briefly)

Summary

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

■ Node consistency and Arc Consistency

Solution Techniques for Constraint Network

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Solving Constraint Networks

- Inference:
 - Infer new constraints based on existing ones
 - Eliminate values from variables that do not meet constraints
- Search:
 - Look for a solution trying different values of variables
 - backtracking and similar approaches
 - local search

Backtracking

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

general ideas

- Choose a variable x
- list its domain values
- for each value add a constraint $x = v$ and recursively evaluate the rest of the problem

Local Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

general ideas

- Partial assignments can lead to constraint violations
 - We can evaluate a constraint as soon as all variables in its scope are assigned
- We can backtrack as soon as a constraint is not locally consistent

Inference and constraint propagation

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Example (inference)

- Variables: $\{A, B, C\}$
- Domain: $\{0, 1\}$ or true, false
- Constraint: $\{A \Rightarrow B, C \Rightarrow A, C\}$
- Propagating the constraints we can infer $\{A, B\}$
- Similar reasoning if we know $\{\neg B\}$ holds

Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Consistency Methods

- Approximation of inference
 - arc, path and i-consistency
- **tighter** networks \Rightarrow more efficient search
- Partial assignments can be discarded earlier

Consistency approaches

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

consistency enforcing

- Given a partial solution of length $i - 1$ we extend the solution to one more variable
- i consistency:
 - for any legal value for $i - 1$ variables
 - we can find a legal value for any other connected variables.
- Arc-Consistency: from 1 variable to 2
- Path-Consistency: from 2 variables to 3
- A network that is i -consistent for $i = 1, \dots, n$ is **globally consistent**

Consistency and computational issues

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

consistency and computation

- The higher is i the better a search algorithm will behave
- time and space cost to ensure i -consistency is exponential in i
- Trade-off addressed with experimental evaluation

Example

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques
Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Example (Constraint Propagation)

- Variables: $\{X, Y, T, Z\}$, $D_i = 1, 2, 3$
- Constraints: $X < Y, Y = Z, T < Z, X < T$

Node consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Node consistency

- Variable x_i , Domain D_i
- x_i is node consistent if **every** value of its domain satisfy **every** unary constraint
- $\forall v \in D_i \ \forall C = \{<x>, R_{x_i}\} \ a \in R_{x_i}$

Constraint propagation

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Constraint Propagation

- We modify the constraint network so that:
 - local consistency is satisfied (enforcing consistency)
 - solutions do not change (maintaining equivalence)

Constraint propagation for node consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

CP for node consistency

- If a variable x_i is not node consistent:
 - remove all values from D_i that do not satisfy all unary constraints
 - $D'_i = D_i \setminus \{v \mid \exists C = \{<x_i>, R_{x_i}\} \wedge v \notin R_{x_i}\}$
- D'_i contains only values that satisfy all unary constraints (enforcing consistency)
- all removed values could not be part of any solution (maintaining equivalence)

Arc Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Example (Arc consistency)

- Variables x, y with domains $D_x = D_y = \{1, 2, 3\}$.
- $C = \{< x, y >, R_{x,y} = x < y\}$
- D_x and D_y are not arc consistent with $R_{x,y}$
- $D'_x = \{1, 2\}$ $D'_y = \{2, 3\}$ are arc consistent
- $D''_x = \{1\}$ $D''_y = \{2\}$ are arc consistent but...

Constraint propagation for arc consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

CP for arc consistency

- If a variable x_i is not arc consistent w.r.t. x_j :
 - remove all values from D_i that do not have a matching value in x_j
- D'_i contains only values that satisfy binary constraints (enforcing consistency)
- all removed values could not be part of any solution (maintaining equivalence)

Arc Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Arc Consistency

- Network $\mathcal{R} = \langle X, D, C \rangle$
- $x_i, x_j \in X$
- x_i arc consistent w.r.t. x_j iff
 - $\forall a_i \in D_i \exists a_j \in D_j | (a_i, a_j) \in R_{x_i, x_j}$
- R_{x_i, x_j} is arc consistent iff x_i arc consistent w.r.t. x_j and x_j arc consistent w.r.t. x_i
- \mathcal{R} is arc consistent iff all its constraints are arc consistent

Revise Procedure

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Revise proc.

Algorithm 1 Revise($(x_i), x_j$)

Require: R_{x_i, x_j}, D_i, D_j

Ensure: D_i such that x_i is arc consistent w.r.t. x_j

```
for all  $a_i \in D_i$  do
    if  $\neg \exists a_j \in D_j | (a_i, a_j) \in R_{x_i, x_j}$  then
        delete  $a_i$  from  $D_i$ 
    end if
end for
```

Equivalent to $D_i \leftarrow D_i \cap \pi_i(R_{ij} \bowtie D_j)$

Revise Procedure for Networks

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Revise for Network

```
for all Pairs  $x_i, x_j$  that participate in a constraint do
    Revise( $(x_i, x_j)$ );
    Revise( $(x_j, x_i)$ );
end for
```

- This algorithm does not work!
- Revising arc consistency on a variable might make another variable not-arc consistent

Revising Networks

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Example (Revise for Network)

- Variables x, y, z with domains
 $D_x = \{0, 1, 2, 3\}, D_y = \{1, 2\}, D_z = \{0, 1, 2\}$.
- $C_{x,y} = \{<x, y>, R_{x,y} = x < y\},$
 $C_{z,x} = \{<z, x>, R_{z,x} = z < x\}$

Revising Networks

An algorithm that does work!

AC-1

Require: $\mathcal{R} = \langle X, D, C \rangle$

Ensure: \mathcal{R}' the loosest arc consistent network for \mathcal{R}

repeat

for all Pairs x_i, x_j that participate in a constraint **do**

 Revise($(x_i), x_j$);

 Revise($(x_j), x_i$);

end for

until no domain is changed

■ This algorithm does work!

Inconsistent Networks

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

AC-1 always terminate

- If we do not change any domain then we stop and \mathcal{R} is AC
- If we remove a value we make at least one domain smaller
- If a domain is empty the network is inconsistent: we can not find any solution

Inconsistent Networks: Example

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Example

Example

- Variables: $\{x, y, z\}$, domains $D_x = D_y = D_z = \{1, 2, 3\}$
- Constraints $\{x < y, y < z, z < x\}$
- apply AC-1

Computational complexity of AC-1

Comp. complexity

AC-1 is $O(nek^3)$

- n : nodes, e : edges, k : max number of values of a domain
- each cycle: $2ek^2$ operations
- worst case we delete 1 element from one domain at each cycle
- we can have at most nk cycles

Improving AC-1: AC-3

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

AC-3

Require: $\mathcal{R} = \langle X, D, C \rangle$

Ensure: \mathcal{R}' the loosest arc consistent network for \mathcal{R}

for all pairs (x_i, x_j) that participate in a constraint $R_{x_i, x_j} \in \mathcal{R}$
do

$Q \leftarrow Q \cup \{(x_i, x_j), (x_j, x_i)\}$

end for

while $Q \neq \{ \}$ **do**

 pop (x_i, x_j) from Q

 REVISE $((x_i), x_j)$

if D_i changed **then**

$Q \leftarrow Q \cup \{(x_k, x_i), k \neq i, k \neq j\}$

end if

end while

AC-3 Example

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Example

AC-3

- Variables x, y, z , domains $D_x = D_z = \{2, 5\}$, $D_y = \{2, 4\}$
- Constraints: $R_{x,z} = \{a_x, a_z, |(a_x \bmod a_z = 0)\}$
 $R_{y,z} = \{a_y, a_z, |(a_y \bmod a_z = 0)\}$
- Run AC-3

AC-3 Computational Complexity

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Comp. Complexity

- $O(ek^3)$
- Revise for each couple is $O(k^2)$
- worst case we evaluate $2ek$
- because we can put back each couple at most k times

Consistency and Arc Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Empty Domain and Arc Consistency

- Arc consistency + empty domain \rightarrow inconsistent problem
- Arc consistent + all domains are not empty $\not\rightarrow$ consistent problem
- Arc consistency is not complete
 - It checks only single (binary) constraints and single domain constraint

Example: incompleteness of AC for consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Example

Binary Graph Colouring

- Variables: x, y, z Domain: $D_i = \{R, Y\}$
- Constraints: $x! = y, y! = z, z! = x$

Inconsistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Inconsistencies when forcing consistency

- When forcing local consistency we can find out that the problem is inconsistent (e.g., arc consistency and empty domain).
- The opposite is not **always** true... but it is true in some cases
- For this class of problems local consistency ensures consistency of the problem: **tractable cases**
- **Tractable** because they are polynomial

Not tractable problem: example

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Local consistent problem that is inconsistent

- Variables: x_1, x_2, x_3, x_4 Domain: $D = \{0, 1, 2\}$
- Constraints
 $x_1 \neq x_2, x_1 \neq x_3, x_1 \neq x_4, x_2 \neq x_3, x_2 \neq x_4, x_3 \neq x_4$
- For every value of every variable (e.g., 0) there is always a different value for another variable (e.g., 2) (arc consistent)
- For every couple of values of two variables (e.g., 0,1) there is always another value of another variable (e.g., 2)
- But we can not find 4 values that are all different in the domain $\{0, 1, 2\}$

Arc Consistency and Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Why we have local consistency but global inconsistency

- Consider a tree.
- If each node is arc consistent with its children then the problem is arc consistent
- The problem is also **globally consistent**
- This is because siblings will never introduce inconsistency
- **Cycles** are the problem

Complete case for Arc Consistency

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

completeness for arc consistency

An arc (and node) consistent problem is globally consistent iff

- no empty domain
- only binary constraints
- primal graph contains no cycle

Solution algorithm for this type of problems

- Enforce arc consistency
- Note: no constraint addition → still acyclic
- If no domain is empty
 - Choose a node
 - Choose a value for the node and extend it to all its children
 - Propagate the choice **value propagation**
- Otherwise the problem is inconsistent

i-consistency for network

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

i-consistent \mathcal{R}

- \mathcal{R} is i-consistent iff:
 - for any consistent instantiation of $i - 1$ distinct variables
 - there is a value of the i th values
 - such that the i values satisfy all constraints among them

i-consistency example

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Example

4-Queens problem

- The 4-Queen problem is 2-consistent
- The 4-Queen problem is not 3-consistent
- The 4-Queen problem is not 4-consistent

strong i-consistency for network

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

strong i-consistent \mathcal{R}

- \mathcal{R} is **strong** i-consistent iff: \mathcal{R} is j-consistent for any $j \leq i$
- If \mathcal{R} is **strong** n-consistent then it is **globally** consistent
- For a globally consistent network we can extend any consistent partial instantiation to a complete instantiation without dead end: **backtrack free**

Exercise

Consistency
Enforcing
and
Constraint
Propagation:
Node and
Arc
Consistency

Solution
Techniques

Consistency
Enforcing
and
Constraint
Propagation

Arc-
Consistency

Exercise 1

Consider the following network:

- Variables: $\{X, Y, Z, W\}$, Domain $D_i = \{0, 1, 2\}$
- Constraints: $X < Y$, $Z = X$, $Z < W$, $W < Y$

describe an execution of AC-3. Is the resulting network arc consistent ? Is the resulting network consistent ? Motivate your answers.