Southampton

Theory and Practice of Decentralised Coordination Algorithms exploiting the Generalised Distributive Law

> Dr. Francesco M. Delle Fave University of Southern California fmdf08r@ecs.soton.ac.uk

This seminar is about coordination problems and algorithms

- I. Motivation
- II. Case Study of Coordination on Unmanned Aerial Vehicles
- III. Partially Ordered Distributed Contraint Optimisation Problems (PO-DCOPs)
 - a. Problem and Algorithms Definition
 - b. Multi Objective Distributive Constraint Optimisation Problems (MO-DCOPs)
 - c. Risk Aware Distributive Constraint Optimisation Problems (RA-DCOPs)
- IV. Conclusions and Future Work

This seminar is about coordination problems and algorithms

- I. Motivation
- II. Case Study of Coordination on Unmanned Aerial Vehicles
- III. Partially Ordered Distributed Contraint Optimisation Problems (PO-DCOPs)
 - a. Problem and Algorithms Definition
 - b. Multi Objective Distributive Constraint Optimisation Problems (MO-DCOPs)
 - c. Risk Aware Distributive Constraint Optimisation Problems (RA-DCOPs)
- IV. Conclusions and Future Work

Coordination problems are often represented as Distributed Constraint Optimisation Problems (DCOP)

- A DCOP is a tuple <A, X, D, U> s.t.:
 - ${\ensuremath{\mathsf{A}}}$ is a set of agents
 - X is a set of variables (typically one per agent)
 - D is a set of discrete domains (one per variable)
 - $-\ensuremath{\,\rm U}$ is a set of constraint functions defined over the variables
- To solve a DCOP the agents maximise the sum of the constraints in U.

Max Sum is an approximated message passing algorithm

- Messages flow between function and variable nodes of the factor graph
 - From variable to function

$$Q_{n \to m}(x_n) = \sum_{m' \in M(n) \setminus m} R_{m' \to n}(x_n)$$

From function to variable

$$R_{m \to n}(x_n) = \max_{\mathbf{x}_m \setminus n} \left(U_m(\mathbf{x}_m) + \sum_{n' \in N(m) \setminus n} Q_{n' \to m}(x_{n'}) \right)$$

Max-Sum belongs to a broader class of algorithms: the Generalised Distributive Law

- GDL algorithms proceed over 3 phases:
 - PHASE 1: transform the constraint graph so that no cycles are present.

 2 techniques: junction tree (DFS in DPOP)/ spanning tree

Max-Sum belongs to a broader class of algorithms: the Generalised Distributive Law

- GDL algorithms proceed over 3 phases:
 - PHASE 1: transform the constraint graph so that no cycles are present.
 - 2 techniques: junction tree (DFS in DPOP)/ spanning tree
 - PHASE 2: run the "Max-Sum" message passing algorithms (util propagation in DPOP).
 - Solves the problem optimally because it is acyclic

Max-Sum belongs to a broader class of algorithms: the Generalised Distributive Law

- GDL algorithms proceed over 3 phases:
 - PHASE 1: transform the constraint graph so that no cycles are present.
 - 2 techniques: junction tree (DFS in DPOP)/ spanning tree

However:

- a spanning tree yields an approximate solution (but bounded)
- a junction tree yields an exponential cost in terms of computation and communication.

Max-Sum belongs to a broader class of algorithms: the Generalised Distributive Law

- GDL algorithms proceed over 3 phases:
 - PHASE 1: transform the constraint graph so that no cycles are present.
 - 2 techniques: junction tree (DFS in DPOP)/ spanning tree
 - PHASE 2: run the "Max-Sum" message passing algorithms (util propagation in DPOP).
 - Solves the problem optimally because it is acyclic
 - PHASE 3: use Value Propagation to retrieve a consistent solution.

43

41

This seminar is about coordination problems and algorithms

- I. Motivation
- II. Case Study of Coordination on Unmanned Aerial Vehicles
- III. Partially Ordered Distributed Contraint Optimisation Problems (PO-DCOPs)
 - a. Problem and Algorithms Definition
 - b. Multi Objective Distributive Constraint Optimisation Problems (MO-DCOPs)

- c. Risk Aware Distributive Constraint Optimisation Problems (RA-DCOPs)
- IV. Conclusions and Future Work

This seminar is about coordination problems and algorithms
I. Motivation
II. Case Study of Coordination on Unmanned Aerial Vehicles
III. Partially Ordered Distributed Contraint Optimisation Problems (PO-DCOPs)
a. Problem and Algorithms Definition
 Multi Objective Distributive Constraint Optimisation Problems (MO-DCOPs)
 Risk Aware Distributive Constraint Optimisation Problems (RA-DCOPs)
IV. Conclusions and Future Work
20
80

DCOPs are not sufficient to model complex interactions

Problem: the agents decisions cannot be represented considering a single scalar function

Example: mission objective + computation, communication, and battery life

Consequence: Standard DCOP do not encompass the complexity of the real world

DCOPs + PO functions = new CLASS of problems: PO-DCOPs

- A PO-DCOP is a tuple <A, X, D, U> s.t.:
 - A is a set of agents
 - -X is a set of variables (typically one per agent)
 - D is a set of discrete domains (one per variable)
 - U is a set of partially-ordered constraint functions defined over the variables

The solutions of a PO-DCOP are similar to those of a DCOP

The solutions are all the assignments of the variables in X that optimise (⊕ ≈ counting operator) the aggregation of the partially ordered functions in U (⊗ ≈ aggregation operator)

DCOPs + PO functions = new CLASS of problems: PO-DCOPs

- A PO-DCOP is a tuple <A, X, D, U> s.t.:
 - A is a set of agents
 - X is a set of variables (typically one per agent)
 - D is a set of discrete domains (one per variable)
 - U is a set of partially-ordered constraint functions defined over the variables

What is the solution of a PO-DCOP?

The solutions of a PO-DCOP are similar to those of a DCOP

The solutions are all the assignments of the variables in X that optimise (⊕ ≈ counting operator) the aggregation of the partially ordered functions in U (⊗ ≈ aggregation operator)

87

85

A PO-DCOP has multiple nondominated solutions

Example:

- Bi-objective functions: (1,2), (2,1), (1,1)
- Mean and variance: (3,1.3), (5,2.5), (1,5.4)

PO-DCOPs structure allows to use GDL algorithms

89

91

- The abstract GDL framework uses two operators:
 - \bigoplus for combining sets of values ("sum")
 - $-\otimes$ for selecting values from a set ("max")
- Exploits the fact that \bigoplus distributes over \bigotimes to minimise computation

By changing \oplus and \otimes in the message passing algorithms we can instantiate new algorithms

The solutions of a PO-DCOP are similar to those of a DCOP

The solutions are all the assignments of the variables in X that optimise (⊕ ≈ counting operator) the aggregation of the partially ordered functions in U (⊗ ≈ aggregation operator)

Can we use GDL algorithms to solve them?

The GDL solves PO-DCOPs using local message passing • Messages flow between function and variable nodes of the factor graph – From variable to function $Q_{n \to m}(x_n) = \sum_{m' \in M(n) \setminus m} R_{m' \to n}(x_n)$

PO-DCOPs structure allows to use GDL algorithms

- The abstract GDL framework uses two operators:
 - \bigoplus for combining sets of values ("sum")
 - $-\otimes$ for selecting values from a set ("max")
- Exploits the fact that ⊕ distributes over ⊗ to minimise computation

Main Theorem: if the constraint graph representing a PO-DCOP is acyclic then GDL algorithms produce optimal solutions

This seminar is about coordination problems and algorithms

- I. Motivation
- II. Case Study of Coordination on Unmanned Aerial Vehicles
- III. Partially Ordered Distributed Contraint Optimisation Problems (PO-DCOPs)
 - a. Problem and Algorithms Definition
 - b. Multi Objective Distributive Constraint Optimisation Problems (MO-DCOPs)

95

- c. Risk Aware Distributive Constraint Optimisation Problems (RA-DCOPs)
- IV. Conclusions and Future Work

We instantiate PO-DCOP to solve multi-objective problems

Problem: multiple (conflicting) objectives exist

Example: In search and rescue, agents need to search, track, and maintain communications

MO-DCOPS have multiple optimal solutions which are noncomparable

	$U = U_1 + U_2$	U 2 =[U21, U22]	U 1 =[U11, U12]	X 2	X 1
	(3,2)	(2,0)	(1,2)	0	0
N	(2,3)	(0,2)	(2,1)	1	0
V	(4,3)	(4,3)	(0,0)	0	1
ninates	(3,4) don	(2,3)	(1,1)	1	1
linate	(0,1) uu	(_,0)	(',')	•	<u> </u>

MO-DCOPS have multiple optimal solutions which are noncomparable

X 1	X 2	U 1 =[U11, U12]	U 2 = [U21, U22]	$U = U_1 + U_2$
0	0	(1,2)	(2,0)	(3,2)
0	1	(2,1)	(0,2)	(2,3)
1	0	(0,0)	(4,3)	(4,3)
$\sqrt{1}$	1/	(1,1)	(2,3)	(3,4)

Pareto optimal solutions: *it is not possible to increase the value of one objective without decreasing the value of another.*

103

MO-DCOPS have multiple optimal solutions which are noncomparable $U_1 = [U_{11}, U_{12}]$ $U_2 = [U_{21}, U_{22}]$ $U = U_1 + U_2$ **X**1 **X**2 0 (1,2) (2,0) (3,2) 0 0 1 (2,1)(0,2) (2,3)0 (0,0) (4,3) (4,3) 1 (1,1)(2,3)1 1 (3,4) Non-dominated vectors 102

The new objective is to maximise **expected utility**

Sum of local constraint values (= also random variable)

$$V = \sum_{i=1}^{m} V_i$$

Objective: maximise **expected utility** of the sum of values

$$\mathbf{x}^* = rg \max_{\mathbf{x}} E\left[U\left(\sum_{i=1}^m V_i\right)
ight]$$

What if we ignore uncertainty by using a DCOP algorithm to solve RA-DCOPs?									
	~	<i>m</i> -	f_1		f_2		$f_1 + f_2$		
An example:	x_1	<i>x</i> ₂	μ	σ^2	μ	σ^2	μ	σ^2	
	0	0	9	8^2	10	15^{2}	10	17^{2}	
$U(v) = \mu - \sigma$	0	1	3	5^2	10	12^{2}	13	13^{2}	
	1	0	15	7^2	5	24^{2}	20	25^{2}	
	1	1	2	4^{2}	2	3^{2}	4	5^{2}	
f_1 Adding random variables: convolution operator $V_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ $V_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ x_1 f_2 $v_1 + v_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$									

What if we ignore uncertainty by using a DCOP algorithm to solve U-DCOPs?									
Sub-optimality! $\sum_{i=1}^{m} E[U(V_i)] = E\left[U\left(\sum_{i=1}^{m} V_i\right)\right]$									
x_1	x_2	f	$\frac{1}{\sigma^2}$		f_2 $f_1 + f_2$		$+f_2$	SEU	EUS
0	0	9	8^2	10	15^2	19	17^2	-4	2
0	1	3	5^2	10	12^{2}	13	13^{2}	-4	0
1	0	15	7^2	5	24^{2}	20	25^{2}	-11	-5
1	1	2	4^{2}	2	3^{2}	4	5^{2}	-3	-1
-1 instead of 2! ¹³⁴									

 \oplus selects all random variables that are not dominated under \succeq RA-DCOP $X_i \in \oplus(X_1, \dots, X_n) \Leftrightarrow \nexists X_j \succ X_i$ DCOP $x_i \in \max(x_1, \dots, x_n) \Leftrightarrow \nexists x_j > x_i$

This seminar is about coordination problems and algorithms

- I. Motivation
- II. Case Study of Coordination on Unmanned Aerial Vehicles
- III. Partially Ordered Distributed Contraint Optimisation Problems (PO-DCOPs)
 - a. Problem and Algorithms Definition
 - b. Multi Objective Distributive Constraint Optimisation Problems (MO-DCOPs)
 - c. Risk Aware Distributive Constraint Optimisation Problems (RA-DCOPs)
- IV. Conclusions and Future Work

To summarise:

- Our initial empirical evaluation emphasizes that:
 - Considering the complexity of the problems the algorithms are efficient both in terms of computation and communication.
 - This complexity is, however, still not sufficient to deploy these techniques in the real world.

- In theory: we extended the DCOP and the GDL frameworks to represent problems involving multiple interactions
 - We presented a study on multi-objective and on riskaware coordination problems.

146

148

Future Work:

- We wish to study approximation techniques for these problems
 - Some questions:
 - Can we use standard max-sum?
 - Can we use pruning techniques to cut the search space or the message size?
 - Can we make these algorithms more efficient to solve dynamic problems?

147