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Abstract

As confirmed by recent neurophysiological studies, the use of dynamic information is extremely important for humans in visual per-
ception of biological forms and motion. Apart from the mere computation of the visual motion of the viewed objects, the motion itself
conveys far more information, which helps understanding the scene. This paper provides an overview and some new insights on the use
of dynamic visual information for face recognition. In this context, not only physical features emerge in the face representation, but also
behavioral features should be accounted. While physical features are obtained from the subject’s face appearance, behavioral features are
obtained from the individual motion and articulation of the face. In order to capture both the face appearance and the face dynamics, a
dynamical face model based on a combination of Hidden Markov Models is presented. The number of states (or facial expressions) are
automatically determined from the data by unsupervised clustering of expressions of faces in the video. The underlying architecture clo-
sely recalls the neural patterns activated in the perception of moving faces. Experimental results obtained from real video image data
show the feasibility of the proposed approach.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Because of its natural interpretation (human visual rec-
ognition is mostly based on face analysis) and the low
intrusiveness, face-based recognition, among others, is
one of the most important biometric trait. On the other
hand, the mutual recognition of individuals is a natural
and fundamental capability of most living creatures. There-
fore most living systems have a very well engineered system
for the recognition of other living creatures. This is why
there are many lessons we may learn from natural percep-
tual systems. Among them, the use of minimal energy is a
natural principle of paramount importance, which is often
applied in constrained optimization applied to derive
numerical solutions to computer vision tasks. Many natu-
ral mechanisms also strongly rely on this principle.
0262-8856/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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This paper highlights some basic principles underlying
the perceptual mechanisms of living systems, specially
related to dynamic information processing, to gather
insights on sensory data acquisition and processing for rec-
ognition [1].

Recently, the analysis of video streams of face images
has received an increasing attention in biometric recogni-
tion [2–9]. Not surprisingly, the human visual system also
implements a very sophisticated neural architecture to
detect and process visual motion [30].

A first advantage in using dynamic video information is
the possibility of employing redundancy present in the
video sequence to improve still images recognition systems.
One example is the use of voting schemes to combine
results obtained for all the faces in the video, or the choice
of the faces best suited for the recognition process. Another
advantage is the possibility is to use the frames in a video
sequence to build a 3D representation or super-resolution
images. Besides these motivations, recent psychophysical
and neural studies [1,10] have shown that dynamic
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information is very crucial in the human face recognition
process. These findings inspired the development of
true spatio-temporal video-based face recognition systems
[2–9].

The case study considered in this paper makes use of
both physiological and behavioral visual cues, which can
be inferred from a dynamic video of human faces, for per-
son authentication. The developed system and the theoret-
ical framework is based on an elaboration of a classical
method for sequence analysis, the Hidden Markov Models

(HMM). The basic HMM machinery is extended to
multi-dimensional data analysis in a hierarchical fashion,
to build a Pseudo-Hierarchical Hidden Markov Model

(PH-HMM). The method is based on the modeling of the
entire video sequence with an HMM in which the emission
probability function of each state consists in another
HMM itself (see Fig. 6), resulting in a Pseudo-Hierarchical

HMM. This complex structure represents a well founded,
fully probabilistic, approach to face perception based on
video modeling. This statistical tool, not only shows several
interesting features related to visual recognition, but also
encompasses some structural analogies with the neural
architecture subduing the recognition of familiar faces in
the human visual system.

Several comparative examples are presented showing the
advantages of processing animated face video sequences.

2. Neurophysiology and information processing

Neural systems that mediate face recognition appear to
exist very early in life. In normal infancy, the face holds
particular significance and provides non-verbal informa-
tion important for communication and survival [11].

The ability to recognize human faces is present during
the first 6 months of life, while a visual preference for faces
and the capacity for very rapid face recognition are present
at birth [12,13]. By 4 months, infants recognize upright
faces better than upside down faces, and at 6 months,
infants show differential event-related brain potentials to
familiar versus unfamiliar faces [14,15]. Apart from speech,
face analysis is certainly the first and major biometric cue
used by humans and therefore very important to be accu-
rately studied.

Early studies on face recognition in primates revealed a
consistent neural activity in well identified areas of the brain,
mainly involving the temporal sensory area. More recent
research revealed that this is not the case, but many different
brain areas are taken into play at different stages of face anal-
ysis and recognition. This also recalls the need for a very
complex representation including both photometric and
dynamic information on the facial characteristics.

2.1. Neural mapping of face representations

Much is known about the neural systems that subserve
face recognition in adult humans and primates. Face-selec-
tive neurons have been found in the inferior temporal areas
(TEa and TEm), the superior temporal sensory area, the
amygdala, the ventral striatum (which receives input from
the amygdala) and the inferior convexity [16]. Using func-
tional magnetic resonance imaging (fMRI), an area in the
fusiform gyrus was found significantly activated when the
subjects viewed faces [17–19]. Within this ‘‘general face
activation area’’ specific regions of interest have been
reported responding significantly more strongly to passive
viewing of face-specific stimuli (Figs. 1 and 2). An fMRI
study on individuals with autism and Asperger syndrome
showed a failure to activate the fusiform face area during
face processing. While a damage to fusiform gyrus and to
amygdala results in impaired face recognition [20,21]. As
a result, parts of the inferior and medial temporal cortex
may work together to process faces. For example, the ante-
rior inferior temporal cortex and the superior temporal sul-
cus project to the lateral nucleus of the amygdala, with the
amygdala responsible for assigning affective significance to
faces, and thus affecting both attention and mnemonic
aspects of face processing [22,23].

Behavioral studies suggest that the most salient parts for
face recognition are, in order of importance, eyes, mouth,
and nose [24]. Eye-scanning studies in humans and mon-
keys show that eyes and hair/forehead are scanned more
frequently than the nose [25,26], while human infants focus
on the eyes rather than the mouth [27]. Using eye-tracking
technology to measure visual fixations, Klin [28] recently
reported that adults with autism show abnormal patterns
of attention when viewing naturalistic social scenes. These
patterns include reduced attention to the eyes and
increased attention to mouths, bodies, and objects. The
high specialization of specific brain areas for face analysis
and recognition motivates the relevance of faces for social
relations. On the other hand, this suggests that face under-
standing is not a low level process but involves higher level
functional areas in the brain. These, in turn, must rely on a
rich series of low level processes applied to enhance and
extract face-specific features:

• Face detection and tracking. This process involves the
analysis of dynamic as well as geometric and photomet-
ric data on the retinal projection of the face.

• Extraction of ‘‘facial features’’. Facial features are not
simply distinctive points or landmarks on the segmented
face, but rather a collection of image features represent-
ing specific (and anatomically stable) areas of the face
such as the eyes, eyebrows, ears, mouth, nostrils, etc.
Other, subject-specific, features are also included, such
as the most famous Marilyn Monroe’s naevus [32].

• Face image registration and warping. Humans can easily
recognize faces which are rotated and distorted up to a
limited extent. The increase in time reported for recogni-
tion of rotated and distorted faces implies: the expecta-
tion on the geometric arrangement of facial features,
and a specific process to organize the features (analo-
gous to image registration and warping) before the
actual recognition process can take place.
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• Feature matching. This process involves the comparison
between the extracted set of facial features and the same
set stored in the brain. The two process of feature
extraction and matching (or memory recall) are not
ig. 2. Activation areas from fMRI responding mainly to face stimuli (red
o yellow patterns) or to house pictures (blue patterns). (Reproduced from
29].)

Fig. 1. Schema of the human brain as seen from below. The highlighted
areas are those initially devoted to the perception of faces and object’s
form.
completely separated and sequential. From the eye scan
paths recorded during face recognition experiments, it
seems that, after moving the eyes over few general facial
features, the gaze is directed toward subject-specific fea-
tures, probably to enforce the expected identity.

From these processes higher level reasoning is possible,
not only to determine the subject’s identity, but also to
understand more abstract elements (even uncorrelated to
the subject’s identity) which characterize the observed per-
son (age, race, gender, emotion, etc.). These, in turn, also
require the intervention of task-specific processes, such as
motion analysis and facial features tracking for under-
standing emotion-specific patterns [35–40].

A recent fMRI analysis on the neural architecture sub-
duing face perception, revealed an interesting relation
Fig. 3. Activation areas from fMRI responding to: BM biological motion
(top), gender estimation from face (middle), NRM non-rigid motion
(bottom). The red lines on the top picture indicate the position of the four
axial slices spanning between �12 mm and 4 mm, with respect to the
central position. On the left a schematic representation of the presented
stimuli is shown: moving light dots are used for motion stimuli and face
pictures for face stimuli. (Reproduced from [30].)

Fig. 4. Schematic representation of the perceptual processes and under-
lying neural systems (MT, medio temporal; IT, infero temporal; FFA,
functional fusiform area, and STS, superior temporal sulcus) for dynamic
analysis and recognition of familiar and unfamiliar faces (reproduced from
[10]).
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between perceptual tasks and neural activation. It seems
that face-sensitive areas are involved also in the recogni-
tion of non-face objects such as houses, cars and animals,
while specific tasks related to faces also involve non-face
areas in the brain [29]. This study suggests a double archi-
tecture for face perception, formed by two connected neu-
ral activation patterns: the former devoted to process
static, unchanging and invariant features of the face; the
latter devoted to the analysis of changing features in the
face. This architecture is also in agreement with other
works on the recognition of biological motion and its
relation to face perception [30], also pointing beyond
the relatively narrow view suggested by earlier studies
on the relation between face recognition and visual
motion processing [1]. While Knight et al. discovered that
motion slightly improves face recognition in difficult tasks
(i.e. when 3D features are missing or the face pose is
unexpected), the work by Vaina et al. also relates motion
perception to face-related visual tasks. The presented
fMRI study reveals a multiple activation whenever the
perceptual task involves motion and shape recognition
of living creatures. This also implies that the neural acti-
vation is not limited to a fixed pattern, but more strongly
depends on the visual task than on the viewed subject.

As it is beyond the scope of this paper to trace all face-
specific information processing, we will concentrate on the
advantages of dynamic image processing for face recogni-
tion and authentication, which not only are among the
most studied aspects related to visual processing human
faces, but it is probably the most representative of the tasks
involved in face image analysis.

2.2. Relevance of the time dimension

The high specialization of specific brain areas for face
analysis and recognition motivates the relevance of faces
for social relations. On the other hand, this suggests that
face understanding is not a low level process but involves
higher level functional areas in the brain. These, in turn,
must rely on a rich series of low level processes applied
to enhance and extract face-specific features. Facial fea-
tures are not simply distinctive points on the segmented
face, but rather a collection of image features representing
specific (and anatomically stable) areas of the face such as
the eyes, eyebrows, ears, mouth, nostrils, etc. Other, sub-
ject-specific, features are also included, such as the most
famous Marilyn Monroe’s naevus [31,32].

As shown by Vaina et al. [30], the visual task strongly
influences the areas activated during visual processing. This
is specially true for face perception, where not only face-
specific areas are involved, but a consistent neural activity
is registered in brain areas devoted to motion perception
and gaze control (Fig. 3).

The time dimension is involved also when unexpected
stimuli are presented [1,10,34] (Fig. 4). Humans can easily
recognize faces which are rotated and distorted up to a lim-
ited extent. The increase in time reported for recognition of
rotated and distorted faces implies: the expectation on the
geometric arrangement of facial features, and a specific
process to organize the features (analogous to image regis-
tration and warping) before the actual recognition process
can take place. On the other hand, it has been shown that
the recognition error for an upside-down face decreases
when the face is shown in motion [1].

From the basic element related to the face shape and
color, subduing a multi-area neural activity, cognitive
processes are started not only to determine the subject’s
identity, but also to understand more abstract elements
(even uncorrelated to the subject’s identity) which char-
acterize the observed person (age, race, gender, emotion,
etc.). These, in turn, also recall task-specific processes,
such as motion analysis and facial features tracking for
understanding emotion-specific patterns [30,35–40]. As a
consequence, while the motion stimuli may act as a dis-
tracter for the characterization of the identity of non-
familiar faces in constrained environments. On the other
hand, non-rigid and idiosyncratic facial motions consti-
tutes a very powerful ‘‘dynamic signature’’ which aug-
ments the information stored for familiar faces and
may indeed dramatically improve the memory recall of
structured information for identity determination
[33,10,34].

3. Video-based face image analysis

Conversely to previous assumptions and theories of
human neural activity, face perception rarely involve a sin-
gle, well defined area of the brain. It seems that the tradi-
tional ‘‘face area’’ is responsible for the general shape
analysis but it is not sufficient for recognition as well for
other tasks. In the same way, face recognition by comput-
ers can not be seen as a single, monolithic process, but sev-
eral representations must be devised into a multi-layered
architecture.

An interesting approach to multi-layer face processing
has been proposed by Haxby [29]. The proposed architec-
ture (sketched in Fig. 5) divides the face perception process
into two main layers: the former devoted to the extraction
of basic facial features and the latter processing more
changeable facial features such as lip movements and
expressions. It is worth noting that the encoding of change-
able features of the face also captures some behavioral fea-
tures of the subject, i.e. how the facial traits are changed
according to a specific task or emotion.

This double-layered architecture can be represented by
two distinct but similar processing units devoted to two dis-
tinct tasks. The system proposed in the remainder of the
paper proposes the use of the Hidden Markov Models as
elementary units to build a double layer architecture to
extract shape and motion information from face sequences.
The architecture is based on a multi-dimensional HMM
which is capable of both capturing the shape information
and the change in appearance of the face. This multi-layer
architecture was termed Pseudo Hierarchical Hidden
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Fig. 5. A model of the distributed neural system for face perception (reproduced from [29]).
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Fig. 6. Differences between standard HMMs and PH-HMM, where
emission probabilities are displayed into the state: (a) standard Gaussian
emission; (b) standard discrete emission; (c) Pseudo Hierarchical HMM: in
the PH-HMM the emissions are HMMs.
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Markov Model to emphasize the hierarchical nature of the
process involved [41].
4. Hidden Markov Models and Pseudo Hierarchical Hidden

Markov Models

A discrete-time Hidden Markov Model k can be viewed
as a Markov model whose states cannot be explicitly
observed: a probability distribution function is associated
to each state, modeling the probability of emitting symbols
from that state. More formally, a HMM is defined by the
following entities [42]:
• H = {H1,H2, . . . ,HK} the finite set of the possible hid-
den states;

• the transition matrix A = {aij,1 6 j 6 K} representing
the probability to go from state Hi to state Hj;

• the emission matrix B = {b(ojHj)}, indicating the
probability of the emission of the symbol o when sys-
tem state is Hj; typically continuous HMM were
employed: b(ojHj) is represented by a Gaussian
distribution;

• p = {pi}, the initial state probability distribution, repre-
senting probabilities of initial states;

For convenience, we denote an HMM as a triplet
k = (A,B,p).

Given a set of sequences {Sk}, the training of the model
is usually performed using the standard Baum–Welch re-
estimation [42]. During the training phase, the parameters
(A,B,p) that maximize the probability P({Sk}jk) are com-
puted. The evaluation step (i.e. the computation of the
probability P(Sjk), given a model k and a sequence S to
be evaluated) is performed using the forward–backward

procedure [42].

4.1. Pseudo Hierarchical-HMM

The emission probability of a standard HMM is typ-
ically modeled using simple probability distributions,
like Gaussians or Mixture of Gaussians. Nevertheless,
in the case of sequences of face images, each symbol
of the sequence is a face image, and a simple Gaussian
may not be sufficiently accurate to properly model the
probability of emission. Conversely, for the PH-HMM
model, the emission probability is represented by
another HMM, which has been proven to be very accu-
rate to represent variations in the face appearance [43–
46].
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The PH-HMM can be useful when the data have a dou-
ble sequential profile. This is when the data is composed of
a set of sequences of symbols {Sk}, Sk ¼ sk

1; s
k
2; . . . ; sk

T ,
where each symbol sk

i is a sequence itself:
sk

i ¼ ok
i1; o

k
i2; . . . ; ok

iT i
. Let us call Sk the first-level sequences,

whereas sk
i denotes second-level sequences.

Fixed the number of states K of the PH-HMM, for each
class C the training is performed in two sequential steps:

(1) Training of emission. The first level sequence
Sk ¼ sk

1; s
k
2; . . . ; sk

T is ‘‘unrolled’’, i.e. the fsk
i g are con-

sidered to form an unordered set U (no matter the
order in which they appear in the first level sequence).
This set is subsequently split in K clusters, grouping
together similar fsk

i g. For each cluster j, a standard
HMM kj is trained, using the second-level sequences
contained in that cluster. These HMMs kj represents
the emission HMMs. This process is similar to the
standard Gaussian HMM initialization procedure,
where the sequence is unrolled and a Mixture of K
Gaussians is fitted to the unordered set. The Gaussi-
ans of the mixture are then used to roughly estimate
the emission probability of each state (with a one to
one correspondence with the states).

(2) Training of transition and initial states matrices. Con-
sidering that the emission probability functions are
determined by the emission HMMs, the transition
and the initial states probability matrices of the PH-
HMM are estimated using the first level sequences.
In other words, the standard Baum–Welch procedure
is used, recalling that

bðojHjÞ ¼ kj

The number of clusters determines the number of the
PH-HMM states. This value could be fixed a priori or
could be directly determined from the data (using for
example the Bayesian Inference Criterion [51]). In
this phase, only the transition matrix and the initial
state probability are estimated, since the emission
has been already determined in the previous step.

Because of the sequential estimation of the PH-HMM
components (firstly emission and then transition and initial
state probabilities), the resulting HMM is a ‘‘pseudo’’ hier-
archical HMM. In a truly hierarchical model, the parame-
ters A, p, and B should be jointly estimated, because they
could influence each other (see for example [48]).

5. Authentication of face sequences

A biometric authentication system is based on two steps:
enrollment and identity verification. Given few video
sequences captured from the subject’s face, the enrollment
phase aims at determining the best PH-HMM modeling the
subject’s face appearance. This model encompasses both
the invariant aspects of the face and its changeable fea-
tures. Identity verification is performed by projecting a
captured face video sequence on the PH-HMM model
belonging to the claimed identity.

The enrollment process consists on a series of sequential
steps (for simplicity we assume only one video sequence
S = s1, s2, . . . , sT, the generalization to more than one
sequence is straightforward):

(1) The video sequence S is analyzed to detect all faces
sharing similar expression, i.e. to find clusters of
expressions. Firstly, each face image si of the video
sequence is reduced to a raster scan sequence of pix-
els, used to train a standard spatial HMM [43,46].
The resulting face HMM models are clustered in dif-
ferent groups based on their similarities [49,50]. Faces
in the sequence with similar expression are grouped
together, independently from their appearance in
time. The number of different expressions are auto-
matically determined from the data using the Bayes-
ian Inference Criterion [51].

(2) For each expression cluster, a spatial face HMM is
trained. In this phase all the sequences of the cluster
are used to train the HMM. At the end of the process,
K HMMs are trained. Each spatial HMM models a
particular expression of the face in the video
sequence. These models represents the emission prob-
abilities functions of the PH-HMM.

(3) The transition matrix and the initial state probability
of the PH-HMM are estimated from the sequence
S = s1, s2, . . . , sT, using the Baum–Welch procedure
and the emission probabilities found in the previous
step (see Section 4). This process aims at determining
the temporal evolution of facial expressions over
time. The number of states is fixed to the number
of discovered clusters, this representing a sort of
model selection criterion.

In summary, the main objective of the PH-HMM repre-
sentation scheme is to determine the facial expressions in
the video sequence, modeling each of them with a spatial
HMM. The expressions change during time is then mod-
eled by the transition matrix of the PH-HMM, which con-
stitutes the ‘‘temporal’’ model (as sketched in Fig. 7).

5.1. Spatial HMM modeling: analysis of face form

The process to build spatial HMMs is used in two
stages of the proposed algorithm: in clustering expres-
sions, where one HMM is trained for each face, and in
the PH-HMM emission probabilities estimation, where
one HMM is trained for each cluster of faces. Indepen-
dently of the number of sequences used, in both cases
the method involves two steps. The former is the extrac-
tion of a sequence of sub images of fixed dimension from
the original face image. This is obtained by sliding a fixed
sized square window over the face image, in a raster scan
fashion and keeping a constant overlap during the image
scan (Fig. 8).
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This scheme is similar to the one proposed in [43,46] for
recognition. The main difference stems from the extracted
features. In [43,46] the Discrete Cosine Transform (DCT)
and wavelets were applied to obtain the facial features.
These features, which demonstrated to be very robust for
classification, are computationally very demanding, mak-
ing the method not easily applicable in real operational
environments. In the present approach, the local image
structure is captured computing first and higher order sta-
tistics: the gray level mean, variance, Kurtosis and skew-
ness (which are the third and the fourth moment of the
data) [47].

After the image scanning and feature extraction process,
a sequence of D · R features is obtained, where D is the
number of features extracted from each sub image (four
features in total), and R is the number of image patches.
The learning phase is then performed using standard
Fig. 8. Sampling scheme applied to generate the sequence of sub-images and th
Baum–Welch re-estimation algorithm [42]. In this case
the emission probabilities are all Gaussians, and the num-
ber of states is set to be equal to four. The learning proce-
dure is initialized using a Gaussian clustering process, and
stopped after likelihood convergence.

5.2. Clustering facial expressions

The goal of this step is to group together all face images
in the video sequence with the same appearance, namely
the same facial expression. It is worth noting that this pro-
cess does not imply a segmentation of the sequence into
homogeneous, contiguous fragments. The result is rather
to label each face of the sequence corresponding to its
facial expression, independently from their position in the
sequence. In fact, it is possible that two not contiguous
faces share the same expression, as for example pronoun-
cing the two ‘‘w’’ in the word ‘‘twentytwo’’. In this sense,
the sequence of faces is unrolled before the clustering
process.

Since each face is described with an HMM sequence, the
expression clustering process is casted into the problem of
clustering sequences represented by HMMs [52,49,53,50].
Considering the unrolled set of faces s1, s2, . . . , sT, where
each face si is a sequence si ¼ oi1; oi2; . . . ; oiT i , the clustering
algorithm is based on the following steps:

(1) Train one standard HMM ki for each sequence si.
(2) Compute the distance matrix D = {D(si, sj)}, where

D(si, sj) is defined as:

Dðsi; sjÞ ¼
P ðsjjkiÞ þ P ðsijkjÞ

2

This is a natural way for devising a measure of simi-
larity between stochastic sequences. Since ki is trained
using the sequence si, the closer is sj to si, the higher is
the probability P(sjjki). Please note that this is not a
quantitative but rather a qualitative measure of sim-
ilarity. The validity of this measure in the clustering
context has been already demonstrated [50,49].

(3) Given the similarity matrix D, a pairwise distance-
matrix-based method (e.g. an agglomerative method)
is applied to perform the clustering. In particular, the
agglomerative complete link approach [54] has been
used.
e HMM model of the sampled sequence, representing a single face image.
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In typical clustering applications the number of clusters
is defined a priori. In this application, it is practically
impossible (or not viable in many real cases) to arbitrarily
establish the number of facial expressions which may
appear in a sequence of facial images. Therefore, the num-
ber of clusters has been estimated from the data, using the
standard Bayesian Inference Criterion (BIC) [51]. This is a
penalized likelihood criterion which is able to find the best
number of clusters as the compromise between the model
fitting (HMM likelihood) and the model complexity (num-
ber of parameters).
5.3. PH-HMM modeling: analysis of temporal evolution

From the extracted set of facial expressions, the PH-
HMM is trained. The different PH-HMM emission proba-
bility functions (spatial HMMs) model the facial expres-
sions, while the temporal evolution of the facial
expressions in the video sequence is modeled by the PH-
HMM transition matrix. In particular, for each facial
expression cluster, one spatial HMM is trained, using all
faces belonging to the cluster (see Section 5.1). The transi-
tion and the initial state matrices are estimated using the
procedure described in Section 4.

One of the most important issues when training a HMM
is the model selection, or the estimation of the best number
of states. In fact, this operation can prevent overtraining
and undertraining which may lead to an incorrect model
representation. In the presented approach, The number
of states of the PH-HMM directly derives from the previ-
ous stage (number of clusters), representing a direct smart
approach to the model selection issue.
5.4. Face verification

The verification of a subject’s identity is straightfor-
ward. Captured a sequence of face images from an
Fig. 9. (Top) Example frames of one subject extracted from the collected video
first acquisition session. (Bottom) One sample frame of the same subjects abo
unknown subject, and a claimed identity, the sequence
is fed to the corresponding PH-HMM, which returns a
probability value. The claimed identity is verified if the
computed probability value is over a predetermined
threshold. This comparison corresponds to verifying if
the captured face sequence is well modeled by the given
PH-HMM.
6. Experimental results

The system has been tested using a database composed
of 21 subjects. During the video acquisition, each subject
was requested to vocalize ten digits, from one to ten. A
minimum of five sequences for each subject have been
acquired, in two different sessions. Each sampled video is
composed of 95–195 color images, with several changes
in facial expression and scale (see Fig. 9). The images have
a resolution of 640 · 480 pixels. For the face classification
experiments the images have been reduced to gray level
with 8 bits per pixel.

The proposed approach has been tested against three
other HMM-based methods, which do not fully exploit
the spatio-temporal information. The first method, called
‘‘1 HMM for all’’, applies one spatial HMM (as described
in Section 5.1) to model all images in the video sequence. In
the authentication phase, given an unknown video
sequence, all the composing images are fed into the
HMM, and the sum of their likelihoods represents the
matching score. In the second method, called ‘‘1 HMM
for cluster’’, one spatial HMM is trained for each expres-
sion cluster, using all the sequences belonging to that clus-
ter. Given an unknown video, all images are fed into the
different HMMs (and summed as before): the final match-
ing score is the maximum among the different HMMs’
scores. The last method, called ‘‘1 HMM for image’’, is
based on training one HMM for each image in the video
sequence. As in the ‘‘1 HMM for cluster’’ method, the
database. (Middle) One sample frame of five subjects, extracted from the
ve, extracted from the second acquisition session.
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Fig. 10. The computed ROC curve for the verification experiment from
video sequences of faces for the four methods reported.

Table 3
Identification (accuracy) and verification (EER) results for the reported
baseline PCA-based recognition methods

Combination rule Accuracy EER (%)

PCA with MAX rule 66.67% (14/21) 9.17
PCA with SUM rule 95.23% (20/21) 5
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matching score is computed as the maximum between the
different HMMs’ scores.

In all experiments only one video sequence for each sub-
ject has been used for the enrollment phase. Full client and
impostor tests have been performed computing a Receiving
Operating Characteristic (ROC) curve (Fig. 10). Testing
and training sets were always disjoint, allowing a more reli-
able estimation of the error rate. In Table 1 the Equal
Error Rates (error when false positive and false negatives
are equal) for the four methods are reported.

The analysis of the video sequences with the hierarchi-
cal, spatio-temporal HMM model produced a variable
number of clusters, varying from 2 to 10, depending on
the coding produced by the spatial HMMs. It is worth not-
ing that when incorporating temporal information into the
analysis a remarkable advantage is obtained, thus confirm-
ing the importance of explicitly modeling the face motion
for identification and authentication (Tables 1 and 2).
Table 1
Verification results for the reported HMM based, face modeling methods

Method EER (%)

Still image: 1 HMM for all 20.24
Still image: 1 HMM for cluster 10.60
Still image: 1 HMM for image 13.81
Video: PH-HMM 6.07

Table 2
Identification results (accuracy) for the reported HMM based, face
modeling methods

Method Accuracy

Still image: 1 HMM for all 52.38% (11/21)
Still image: 1 HMM for cluster 66.67% (14/21)
Still image: 1 HMM for image 57.14% (12/21)
Video: PH-HMM 100% (21/21)
6.1. Baseline testing

In order to compare the performances of the PH-HMM
method with standard recognition algorithms, the same
image sequences have been analyzed with a baseline Princi-
pal Component Analysis (PCA) algorithm. In order to
integrate the information from all images in the sequence,
the MAX rule and the SUM rule were applied to combine
the scores from single images. The results obtained are
reported in Table 3.

As it can be noted, while the PCA with the MAX
rule provides very poor results (comparable to modeling
the sequence with one HMM per cluster), the SUM rule
provides results which are very similar to the PH-
HMM. These results confirm the validity of the pro-
posed recognition scheme which demonstrated its capa-
bility to capture both shape and dynamic information
on the face.

The applied test database is very limited and clearly
too small to give a statistically reliable estimate of the
performances of the method. Nonetheless, the results
obtained on this limited data set already show the appli-
cability and the potential of the method in a real appli-
cation scenario. On the other hand, the tests performed
on this limited dataset allowed to compare different mod-
eling schemes where the face dynamics was loosely inte-
grated into the computational model. The proposed PH-
HMM model outperforms all other modeling schemes
based on the HMMs, at the same time it represents a
very interesting computational implementation of the
human model of face recognition, as proposed by Haxby
in [29] and described in Section 3. It is important to
stress that, far from being the best computational solu-
tion for face recognition of faces from video, the pro-
posed scheme closely resembles the computational
processes underlying the recognition of faces in the
human visual system.

In order to further investigate the real potential of the
proposed modeling scheme, the results obtained will be fur-
ther verified performing a more extensive test on a database
including at least 50 subjects and 10 image sequences for
each subject.
7. Conclusions

Despite of the simple neural architectures for face per-
ception hypothesized in early neurological studies, the per-
ception of human faces is a very complex task which
involves several areas of the brain. The neural activation
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pattern depends on the specific task required rather than on
the nature of the stimulus. This task-driven model may be
represented by a dual layer architecture where static and
dynamic features are analyzed separately to devise a unique
face model.

The dual nature of the neural architecture, subduing
face perception, allows to capture both static and dynamic
data. As a consequence, not only physiological features are
processed, but also behavioral features, which are related
to the way the face traits are changing over time. This last
property is characteristic of each individual and implicitly
represents the changeable features of the face.

A statistical model of the face appearance, which
reflects the described dual-layered neural architecture,
has been presented. In order to capture both static and
dynamic features, the model is based on the analysis of
face video sequences using a multi-dimensional extension
of Hidden Markov Models, called Pseudo Hierarchical
HMM. In the PH-HMM model, the emission probability
of each state is represented by another HMM, while the
number of states is determined from the data by unsuper-
vised clustering of facial expressions in the video. The
resulting architecture is then capable of modeling both
physiological and behavioral features, represented in the
face image sequence and well represents the dual neural
architecture described by Haxby in [29]. It is worth noting
that the proposed approach far from being the best per-
forming computational solution for face recognition from
video, has been explicitly devised to copy the neural pro-
cesses subduing face recognition in the human visual
system.

Even though the experiments performed are very preli-
minary, already demonstrate the potential of the algorithm
in coupling photometric appearance of the face and the
temporal evolution of facial expressions. The proposed
approach can be very effective in face identification or ver-
ification to exploit the subject’s cooperation in order to
enforce the required behavioral features and strengthen
the discrimination power of a biometric system.
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