
Designing the Minimal Structure
of Hidden Markov Model by Bisimulation

Manuele Bicego, Agostino Dovier, and Vittorio Murino

Dip. di Informatica, Univ. di Verona
Strada Le Grazie 15, 37134 Verona, Italy
{bicego,dovier,murino}@sci.univr.it

Abstract. Hidden Markov Models (HMMs) are an useful and widely
utilized approach to the modeling of data sequences. One of the prob-
lems related to this technique is finding the optimal structure of the
model, namely, its number of states. Although a lot of work has been
carried out in the context of the model selection, few work address this
specific problem, and heuristics rules are often used to define the model
depending on the tackled application. In this paper, instead, we use the
notion of probabilistic bisimulation to automatically and efficiently de-
termine the minimal structure of HMM. Bisimulation allows to merge
HMM states in order to obtain a minimal set that do not significantly
affect model performances. The approach has been tested on DNA se-
quence modeling and 2D shape classification. Results are presented in
function of reduction rates, classification performances, and noise sensi-
tivity.

1 Introduction

Hidden Markov Models (HMMs) represent a widespread approach to the mod-
eling of sequences: they attempt to capture the underlying structure of a set
of symbol strings. HMMs can be viewed as stochastic generalizations of finite-
state automata, when both transitions between states and generation of output
symbols are governed by probability distributions [1].

The basic theory of HMMs was developed by Baum et al. [2,3] in the late
1960s, but only in the last decade it has been extensively applied in a large
number of problems. A non-exhaustive list of such problems consists of speech
recognition [1], handwritten character recognition [4], DNA and protein mod-
elling [5], gesture recognition [6] and, more in general, behavior analysis and
synthesis [7].

HMMs fit very well in a large number of situations, in particular where the
state sequence structure of the process examined can be assumed to be Marko-
vian. Unfortunately, there are some drawbacks [8]. First, the iterative technique
for the HMM learning (Baum-Welch re-estimation) converges to a local opti-
mum, not necessarily the global one, and the choice of appropriate initial parame-
ters’ estimates is crucial for convergence. Second, a large amount of training data
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is generally necessary to estimate HMM parameters. Finally, the HMM topol-
ogy and number of states have to be determined prior to learning, and usually
heuristic rules are pursued for this purpose (e.g., [9]). This paper proposes a novel
approach for resolving this final problem, in particular to determine the number
of states. This issue could be tackled by using traditional methods of model selec-
tion; numerous paradigms have been proposed in this context, a non-exhaustive
list includes [10]: Minimum Description Length (MDL), Bayesian Inference Cri-
terion (BIC), Minimum Message Length (MML), Mixture Minimal Description
Length (MMDL), Evidence Based Bayesian (EBB) etc.. More computational in-
tensive approaches are stochastic approaches (e.g., Markov Chain Monte Carlo
(MCMC)), re-sampling based schemes, and cross-validation methods. Although
principally derived for fitting mixture models, many of these techniques could
be applied also in the HMM context, as proposed in [11] and [12]. It is worth
noting that these approaches are devoted to find the optimal model on the basis
of a criterion function by exploring all (or a large part of) the search space. Our
work proposes instead a direct method to identify the model without search-
ing the whole space, resulting less computationally intensive. In [11], starting
with redundant configuration, an optimal structure can be obtained by repeated
Bayesian merging of states in an incremental way, as far as new evidence arrives.
In [12], a method for simultaneous learning of HMM structure and parameters
is proposed. Parameters’ uncertainty is minimized by introducing an entropic
prior and Maximum a Posteriori Probability (MAP) estimation. In this way,
redundant parameters are eliminated and the model becomes sparse; moreover
posterior probability increases, and an easier interpretation of resulting archi-
tecture is allowed.

Our approach consists in eliminating syntactic redundancy of an Hidden
Markov Model using a technique called bisimulation. Bisimulation is a notion
of equivalence between graphs whose usefulness has been demonstrated in var-
ious fields of Computer Science. In Concurrency it is used for testing process
equivalence [18], in Model-Checking as a notion of equivalence between Kripke
Structures [20], in Web-like databases for providing operational semantics to
query languages [17], in Set Theory, for replacing extensionality in the context
of non well-founded sets [13].

With our approach, the structure of an HMM is reduced by computing bisim-
ulation equivalence relation between states of the model, so that equivalent states
can be collapsed. We employed both the notions of probabilistic and standard
bisimulation. We will prove that bisimulation reduces the number of states with-
out significant loss in term of likelihood and classification accuracy. We will test
this approach reporting experiments on DNA sequence modelling and 2D shape
recognition using chain code. We will show that the proposed procedure is fully
automatic, efficient, and provides promising results. We also compare our ap-
proach with BIC (Bayesian Inference Criterion) method, which is equivalent to
MDL [10], showing that this technique is nearly as acceptable as our, as far as
classification accuracy is concerned, but is more computationally demanding.
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The rest of the paper is organized as follows: Sect. 2 contains formal descrip-
tion of HMM. In Sect. 3, the notion of bisimulation and the algorithm to compute
equivalence classes are described. In Sect. 4 we detail our strategy and in Sect. 5
experiments and results are presented. Finally, Sect. 6 contains conclusions and
future perspectives.

2 Hidden Markov Models

An HMM is formally defined by the following elements (see [1] for further de-
tails):

– A set S = {S1, S2, · · · , SN} of (hidden) states.
– A state transition probability distribution, also called transition matrix A =

{aij}, representing the probability to go from state Si to state Sj .

aij = P [qt+1 = Sj |qt = Si] 1 ≤ i, j ≤ N (1)

with aij ≥ 0 and
∑N

j=1 aij = 1.
– A set V = {v1, v2, · · · , vM} of observation symbols.
– An observation symbol probability distribution, also called emission matrix

B = {bj(k)}, indicating the probability of emission of symbol vk when system
state is Sj .

bj(k) = P [vk at time t |qt = Sj ] 1 ≤ j ≤ N, 1 ≤ k ≤ M (2)

with bi(k) ≥ 0 and
∑M

j=1 bj(k) = 1.
– An initial state probability distribution π = {πi}, representing probabilities

of initial states.
πi = P [q1 = Si] 1 ≤ i ≤ N (3)

with πi ≥ 0 and
∑N

i=1 πi = 1. For convenience, we denote an HMM as a
triplet λ = (A,B, π), which determines uniquely the model.

3 Bisimulation

Bisimulation is a notion of equivalence between graphs useful in several fields of
Computer Science. The notion was introduced by Park for testing process equiv-
alence, extending a previous notion of automata simulation by Milner. Milner
then employed bisimulation as the core for establishing observational equivalence
of the Calculus of Communicating Systems [18].

Kanellakis and Smolka in [16] relate the bisimulation problem with the gen-
eral (relational) coarsest partition problem and pointed out that the partition
refinement algorithm in [19] solves this task. More precisely, in [19] Paige and
Tarjan solve the problem in which the stability requirement is relative to a re-
lation E (edges) on a set N (nodes) with an algorithm whose complexity is
O(|E| log |N |).
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Standard Bisimulation. Bisimulation can be equivalently formulated as a relation
between two graphs and as a relation between nodes of a single graph. We adopt
the latter definition since we are interested in reducing states of a unique graph.

Definition 1. Given a graph G = 〈N,E〉 a bisimulation on G is a relation
b ⊆ N × N s.t. for all u0, u1 ∈ N s.t. u0 b u1 and for i = 0, 1: if 〈ui, vi〉 ∈ E,
then there exists 〈u1−i, v1−i〉 ∈ E s.t. v0 b v1.

In order to minimize the number of nodes of a graph, we look for the maximal
bisimulation ≡ on G. Such a maximal bisimulation always exists, it is unique,
and it is an equivalence relation over the set of nodes of G [13]. The minimal
representation of G = 〈N,E〉 is therefore the graph:

〈N/ ≡, {〈[m]≡, [n]≡〉 : 〈m,n〉 ∈ E}〉
which is usually called the bisimulation contraction of G. Using the algorithm
in [19] the problem can be solved in time O(|E| log |N |); for acyclic graphs and for
some classes of cyclic graphs it can be solved in linear time w.r.t. |N | + |E| [15].

Bisimulation on labeled graphs. If the graphs are such that nodes and/or edges
are labeled, the notion can be reformulated as follows:

Definition 2. Let G = 〈N,E, �〉 be a graph with a labeling function � for nodes,
and labeled edges of the form m

a→ n (a belongs to a set of labels). A bisimulation
on G is a relation b ⊆ N × N s.t. for all u0, u1 ∈ N s.t. u0 b u1 it holds that:
�(u1) = �(u2) and for i = 0, 1, if ui

a→ vi ∈ E, then there exists u1−i
a→ v1−i ∈ E

s.t. v0 b v1.

If only the nodes are labeled, the procedure in [19] can be employed to find the
bisimulation contraction, provided that in the initialization phase nodes with
the same labels are put in the same class. The case in which edges are labeled
can be reduced to the last one by replacing a labeled edge m

a→ n by a new
node ν labeled by a and by the edges 〈m, ν〉 and 〈ν, n〉. Therefore, finding the
bisimulation contraction also in this case can be done using the algorithm of [19];
moreover, the procedure of [19] can be modified in order to deal directly (i.e.,
without preprocessing) with the general case described.

Probabilistic Bisimulation The notion of bisimulation over labeled graphs (Def. 2)
has been introduced in a context where labels denote actions executed (e.g. a
symbol is emitted) by processes during their run. Labels can also store pairs of
values 〈x, y〉: an action x and a probability value y (that could be read as: this
edge can be crossed with probability y and in this case an action x is done).
In this case another notion of bisimulation is perhaps more suitable. Consider,
for instance, the graph of Fig. 1 (we use n1–n8 to refer to the nodes: they are
not labels). n7 and n8 are trivially equivalent since they have no outgoing edges.
Nothing can be done in both the cases. The four nodes n2, n3, n5, n6 are in the
same equivalence class, since they have equivalent successors (reachable perform-
ing the same action b, with probability 1). The nodes n1 and n4 are instead not
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n1

n3

n4

n5 n6n2

<a,0.4> <a,0.3> <a,0.2> <a,0.5>

<b,1> <b,1> <b,1> <b,1>n7 n8

Fig. 1. n1 and n4 are not bisimilar, but probabilistically bisimilar.

equivalent, since, for instance, there is the edge n1
〈a,0.4〉→ n3 but no edges labeled

〈a, 0.4〉 starts from n4. However, both from n1 and n4 it can be reached one of
the equivalent states, performing action a with probability 0.7: the two nodes
should be considered equivalent. These graphs are called Fully Probabilistic La-
belled Transition System (FPLTS).

The notion of probabilistic bisimulation [14] is aimed at formally justifying
this intuitive concept. We start by providing two auxiliary notions: Given a graph
G = 〈N,E〉 with edge labeled by pairs as above, and b ⊆ N ×N a relation, then
for two nodes m,n ∈ N and a symbol a, we define the functions B and S as
follows

B(m,n, a) = {µ : ∃q(m
〈a,q〉→ µ ∈ E ∧ µ b n)} and S(m,n, a) =

∑

m
〈a,q〉→ µ∈E,µbn

q

Definition 3. Let G = 〈N,E〉 be a graph with edge labeled by pairs consisting
of symbols and probability values, a probabilistic bisimulation on G is a relation

b ⊆ N × N s.t.: for all u0, u1 ∈ N , if u0 b u1 then for i = 0, 1 if ui
〈a,p〉→ vi ∈ E,

then then there exists v1−i ∈ N s.t.:

– u1−i
〈a,p′〉→ v1−i ∈ E,

– S(ui, vi, a) = S(u1−i, v1−i, a), and
– and for all m ∈ B(ui, vi, a) and n ∈ B(u1−i, v1−i, a) it holds that m b n.

In [14] a modification of the Paige-Tarjan procedure is presented in this
case and proved to correctly return the probabilistic contraction of a graph
G = 〈N,E〉 in time O(|N ||E| log |N |). In the example of Fig. 1 the two nodes
n1 and n4 are put in the same class.

In this paper we will further extend the possible labels for edges. We admit
triplets 〈p1, a, p2〉 where a is a symbol while p1 and p2 are probabilistic values.
We extend the notion of the above Definition 3 point to point. In other words,
we reason as if the edge 〈p1, a, p2〉 is replaced by the two edges 〈a, p1〉, 〈â, p2〉
and â can not be confused with a (see Fig. 2).

4 The Strategy

HMM as labeled graphs. Probabilistic bisimulation is defined on FPLTS, which
are slightly different from HMMs. Neglecting notation, the real problem is rep-
resented by emission probability of each state, which has not counterpart in
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n1

n2 n3

n5

<0.1,a,0.2>

<0.3,a,0.2>

n7

n4

n6

<0.2,a,0.2>
<0.2,a,0.3> <0.4,a,0.3>

n9 n10

n8

<0.2,a,0.4> <0.4,a,0.3>

Fig. 2. n1 and n4 are probabilistically bisimilar. n1 and n8 are not.

FPLTS. As described in Sect. 3, we can solve the problem by choosing an appro-
priate initial partition, whose sets contains states with same emission probability
and then run the algorithm of [19]. This approach is correct, but it is too restric-
tive with respect to the concept of probabilistic bisimulation. In other words,
using this initialization we create classes of bisimulation equivalence using con-
cept of syntactic labelling, loosing instead the semantic labeling concept, which
is the kernel of the probabilistic bisimulation.

Thus, we propose another method, a bit more expensive in terms of memory
allocation and computational cost, but offering a better semantic characteriza-
tion.

Definition 4. Given a HMM λ = (A,B, π), trained with a set of strings from
an alphabet V = {v1, v2, · · · , vM}, the equivalent FPLTS is obtained as follows.
For each state Si:

– Let Ai be the set of edges outgoing from the state Si, defined as

Ai = {〈Si, Sj〉 : aij �= 0, 1 ≤ j ≤ N}
– each edge e in Ai is replaced by M edges, whose labels are 〈aij , vk, Bi(k)〉,
where, for 1 ≤ i, j ≤ N , 1 ≤ k ≤ M :

• aij is probability of e;
• vk is k-th symbol of V ;
• Bi(k) is probability of emission of vk from state Si.

<0.56,b,0.50>

<0.56,c,0.12>

X

<0.56,a,0.33>

0.56
X

a 0.33
0.50b
0.12c

Fig. 3. Basic idea of procedure to represent HMM as a FPLTS.

Given an HMM with N states, K edges and M symbols, with this ap-
proach the complexity of bisimulation contraction grows from O(KNlogN) to
O(MKNlogN) for time, and from O(KN) to O(MKN) for space.

By applying bisimulation to a HMM we have to face another important issue:
the partial control of compression rate of our strategy. To this end, we introduce
the concept of quantization of probability: given a set of quantization level values
(prototypes) in the interval [0, 1], we approximate each probability with the
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closest prototype. A uniform quantization is adopted on interval [0, 1]. To control
this approximation we define a reduction factor, representing the number of levels
that subdivide the interval: it is calculated as (number of prototypes - 2). For
example, reduction factor 3 means that probability are approximated with the
values {0, 0.25, 0.5, 0.75, 1}. Thus, the notion of equivalent labels is governed
by the test of equality of their quantization, where quant(p) is define as the
prototype j closest to p.

As a final consideration, the reduction factor represents a tuning parameter
for deciding the degree of compression adopted. Obviously, for a low value of the
factor, information lost in approximation is high, and the resulting model can
be a very poor representation of the original one.

Algorithm. Given a problem, determining optimal number of HMM states is
performed following the following steps:

1. Training of HMM with a number of states that is reasonably large with re-
spect to the problem considered. This number strongly depends from avail-
able data, and it can be determined using some heuristics.

2. Transform HMM in labelled graph (FPLTS), using procedure described in
Def. 4 of Sect. 4. In this step we have to choose a reduction factor, that pro-
vides a measure of accuracy adopted in the conversion. It also gives a rough
meaning of reduction rate: lower precision likely means higher compression.

3. Run bisimulation algorithm on such graph, obtaining equivalence classes.
Optimal number of states N ′ is represented by cardinality of the quotient
set (i.e. the number of different classes determined by bisimulation).

4. Retraining of the HMM using N ′ states.

This method is designed for discrete HMM, but can be generalized for other
typologies by working on Step 2 of the procedure.

5 Experimental Results

The aim of the following experiments is to show that this method reduces HMM
states without significant loss in terms of likelihood and classification accuracy.
We tested these two properties on two distinct problems: DNA modeling, i.e. us-
ing HMM to model and recognize different DNA sequences (typically, fragments
of genes), and 2D shape classification using chain code (modeled by HMM). In
all tests, each HMM was trained in three learning sessions, using Baum-Welch
re-estimation and choosing the one presenting the maximum likelihood. Each
learning started using random initial estimates of A, B and π and ended when
likelihood is converged or after 100 training cycles. Performances are measured
in terms of some indices:

– Compression Rate, representing a percentage measure of the number of states
eliminated by bisimulation: CR = 100

(
Norig−Nreduct

Norig

)
, where Nreduct are the

number of states after bisimulation on a HMM with Norig states;
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– Log Likelihood Loss, estimating the difference in LL between original and re-
duced HMM: LLL = 100

(
LLorig−LLreduct

LLorig

)
, where LLreduct and LLorig are

log likelihood of HMM with Nreduct and Norig number of states, respectively.

5.1 DNA Modeling

Genomics offers tremendous challenges and opportunities for computational sci-
entists. DNA are sequences of various lengths formed by using 4 symbols: A,
T , C, and G. Each symbol represent a base, Adenine, Thymine, Cytosine, and
Guanine respectively. Recent advances in biotechnology have produced enormous
volumes of DNA related information, needing suitable computational techniques
to manage them [21].

From a machine learning point of view [22], there are three main problems to
deal with : genome annotation, including identification of genes and classification
into functional categories, computational comparative genomics, for comparing
complete genomic sequences at different levels of detail, and genomic patterns,
including identification of regular pattern in sequence data. Hidden Markov Mod-
els are widely used in resolving these problems, in particular for classification of
genes, protein family modeling, and sequence alignment. This is because they
are very suitable in modeling strings (as DNA or protein sequences), and can
provide useful measures of similarity (LL) in comparing genes.

In this paper, we employ HMM to model gene sequences for classification pur-
poses. This simple example is nevertheless significant to demonstrate HMM abil-
ity in recognizing genes, also in conditions of noise (as biological mutations). Data
were obtained extracting a 200 bp (base pair) fragment of recA gene sequence
of a lactobacillus. We trained 95 HMMs on this sequence, where N (number of
states) grows from 10 to 200 (step 2). We applied the bisimulation contraction
algorithm on each HMM, with reduction factor varying from 1 to 9 (step 2),
computing the number of resulting states. We then compared Log Likelihood
(LL) of original sequence produced by original and reduced HMMs, obtaining
results plotted on Fig. 4(b). One can notice that the two curves are very similar,
in particular when reduction factor is high. In Table 1, average and maximum
loss of likelihood (LLL) are presented for each value of resolution factor, with
maximum compression rate: loss of Log Likelihood is fairly low, decreasing when
augmenting precision of bisimulation (reduction factor). This kind of analysis is
performed to show the graceful evolution of the HMM likelihood when number
of states is decreased using bisimulation.

In Fig. 4(a) original number of states vs. reduced number of states are plotted,
at varying number of states. More precisely, for a generic value N on abscissa,
ordinate represents the number of states obtained after running bisimulation on
N -states HMM. It is worth noting that compression rate increases when the
number of states grows: this is reasonable, because small structures cannot have
a large redundancy.

The second part of this experiment tries to exploit performance of our al-
gorithm regarding classification accuracy. To perform this step we trained two
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Fig. 4. Compression rate (a) and comparison of Likelihood curve for original and re-
duced HMM (b) on DNA modeling experiment. Reduction factor are 1, 5 and 9.

Table 1. Maximum compression rate, average and maximum Log Likelihood loss for
DNA modeling experiment at varying reduction factors.

Reduction factor Maximum CR (%) Average LLL (%) Maximum LLL (%)
1 50.00 9.57 32.20
3 38.16 6.69 20.07
5 33.14 5.45 20.31
7 34.87 5.91 18.90
9 34.04 5.77 22.30

HMMs with 150 states on 200 bases fragments of two different recA genes: one
was from glutamicum bacillus and second was from tubercolosis bacillus. Each
HMM was then reduced using bisimulation, varying reduction factor from 1 to 9
(step 2). Then, HMMs were retrained with reduced number of states, resulting
in 10 reduced HMMs (5 for each sequence). Compression rate varies from 32%
for reduction factor 1 to 22% for reduction factor 9 (see Table 2). We tested
classification accuracy of HMMs using 300 sequences, obtained by adding syn-
thetic noise to the original two. The noising procedure is the following: each
base is changed with fixed probability p (ranging from 0.3 to 0.4), and following
determined biological rules (for examples, A becomes T with probability higher
than G). Each sequence of this set was evaluated using both models, and clas-
sified as belonging to the class whose model showed highest LL. Error rate was
then calculated counting misclassified trials and dividing by the total number
of trials. Figure 5 shows error rate for original and reduced HMMs, varying the
probability of noise. One can notice that error rate trend is quite similar, and
that error is very low, always below 5%, proving that HMMs work very well on
this type of problems. In Table 2 (a–b), average errors on original and reduced
HMMs are presented, respectively, varying noise level and reduction factor value.
For the latter, maximum compression rate and maximum LL loss are also pre-
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Fig. 5. Error rate for different noise level for DNA modeling experiment.

Table 2. Error on original and reduced HMMs for DNA modeling experiments in
function of (a) varying noise level, and (b) varying reduction factor value.

(a) (b)
Noised Error on Error on
Level Original Reduced

(%) (%)
0.3 0.00 0.00
0.325 0.33 0.13
0.35 1.67 0.80
0.375 1.67 1.07
0.4 4.67 2.60

Reduction Average Average Error on Error on
Factor CR LLL Original Reduced

(%) (%) (%) (%)
1 32.00 3.89 1.67 1.27
3 25.33 1.72 1.67 0.80
5 22.00 4.15 1.67 0.80
7 21.33 5.61 1.67 0.80
9 21.66 2.14 1.67 0.93

sented. One can notice that the difference between two errors grows with noise
level, i.e., error value becomes higher when noise level increases, and differences
can be more significant. Nevertheless, LL losses are very low if compared with
compression rate and amount of noise. Actually, classification errors remain be-
low 5%, even on experiments with 40% noise level. Moreover, error level seems
to be lower in the reduced case than in the original one. Reasonably, HMMs
with less states are able to generalize better, so as recognize also sequences with
higher noise, even if we expect a breakdown point, causing a reversing behavior
between original and reduced HMMs.

5.2 2D Shape Recognition

Object recognition, shape modeling, and classification are related issues in com-
puter vision. A lot of three-dimensional (3-D) object recognition techniques are
based on the analysis of two-dimensional (2-D) aspects (images) and several work
can be found in literature on the analysis of 2-D shape or presenting methods
devoted to planar object recognition.

A key issue is the kind of image feature used to describe an object, and its
representation. Object contours are widely chosen as features, and their represen-
tation is basic to the design of shape analysis techniques. Different types of ap-
proaches have been proposed in the previous years, like, e.g., Fourier descriptors,
chain code, curvature-based techniques, invariants, auto-regressive coefficients,
Hough-based transforms, associative memories, and others, each one featured
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Fig. 6. Toy images for 2D shape recognition using Chain Code.

by different characteristics like robustness to noise and occlusions, invariance to
translation, rotation and scale, computational requirements, and accuracy.

In this paper, HMMs are proposed as a tool for shape classification. This
preliminary experiment aims at presenting a simple example on the capability of
HMM on discriminating object classes, showing its robustness in terms of partial
views and, in minor way, of noise. Shape is modeled using chain code, a well-
known method to represent contours, which presents some inherent characteristic
like the invariance to rotation (if code local differences are considered), and
translation.

Although a large literature addresses these issues, the use of HMM for shape
analysis has not been widely addressed. To our knowledge, only the work of
He and Kundu [9] has been found to have some similarities with our approach.
They utilize HMMs to model shape contours represented as auto-regressive (AR)
coefficients. Results are quite interesting and presented in function of the number
of HMM states ranging from 2 to 6. Moreover, shapes are constrained to be a
closed contour.

In our experiment, although limited to a pair of similar objects, the degree
of occlusion is quite large, and noise has been included to affect object coding,
(without heavily degrading classification performances). Due to lack of space, we
will not present results on rotational and scale invariance. Let us only state that
scale is not a problem, as the HMM structure can manage it due to the possibility
of permanence in the same state. Actually, simple tests on some differently scaled
and noised objects have confirmed that HMMS behave correctly in this case. A
detailed description of our approach with extensive experiments is not in the
scope of this paper, and will be the subject of our future work. In this paper, we
would only like to show the capabilities of the HMM to discriminate (also similar)
shapes and its stable performances when the minimal structure is obtained by
bisimulation with respect to the redundant topology.

In our experiment, given an image of 2D objects, data are gathered assigning
at each object its chain code, calculated on object contours. Edges are extracted
using Canny edge detector [23], while chain code is calculated as described in [24].
Fig. 6 shows the two simple objects, a stylized hammer and a screwdriver, used in
the experiment. We train one HMM for each object, varying the number of states
from 4 to 20. After applying bisimulation contraction, with reduction factor
from 1 to 9, we re-trained HMMs with reduced number of states and compared
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Table 3. Maximum compression rate, average and maximum Log Likelihood loss for
2D shape recognition test, at varying reduction factor.

Reduction factor Maximum CR Average LLL Maximum LLL
1 16.74 4.91 72.20
3 9.43 0.55 29.39
5 6.33 2.30 72.26
7 6.40 1.72 72.85
9 4.71 1.28 68.73

them in term of Log Likelihood. Average and maximum Log Likelihood loss
are calculated, and results are shown in Table 3, with maximum compression
rate for different reduction factor values. Average LLL values are confortantly
low: bisimulation does not seem to affect HMM characteristics. Nevertheless, we
can also observe that average loss is very low compared with related maximum
LLL. This is because compression is not so strong, as evident in Table 3, and
therefore some learning session on reduced HMM can produce better results in
terms of Log Likelihood. LL of an HMM on a sequence typically grows with N .
On the other hand, LL depends on how well the training algorithm worked on
the data. Baum-Welch re-estimation ensures to reach the nearest local optimum,
without any information about global optimum. So, it is possible that for closed
N1, N2, with N1 < N2, a HMM with N1 states shows larger LL than those
with N2 states, because the training algorithm worked better. To partially solve
the problem of convergence, each HMM was trained three times, starting with
different random initial conditions. The case of so high LL loss may be explained
by a low compression rate (the HMMs have the similar number of states) and
very bad training (in this case three trials seems to be insufficient to ensure
correct learning).

For testing classification accuracy, we synthetically create two test sets. The
first set is obtained considering, for each object, fragments of their chain code of
variable length, expressed as percentage rate of the whole length. It varies from
20 to 90 percent, and the point where fragment starts was randomly chosen.
The second set is obtained by adding synthetic noise to the two chain codes,
using a procedure similar to that used for DNA noising procedure. Each code is
changed with fixed probability P , i.e. if cci is the original code, with probability
P , (((cci − 1) ± 1) mod 8) + 1 is carried out. Probability ranges from 0.05 to
0.35, and, for each value, 60 sequences are generated. As usual, a sequence is
assigned to the class whose model shows the highest Log Likelihood, and error
rate is estimated counting misclassified patterns. For each of the two test sets, we
calculate performance using original and reduced HMMs and varying reduction
factor from 1 to 9. In Table 4, average error for original and reduced HMMs on
set of pieces are presented varying reduction factor from 1 to 9. We can see that
the difference between two errors is very low.

The same results are presented in Table 5 for a set of noisy sequences, varying
reduction factor (Table 5(a)) and noise level (Table 5(b)).
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Table 4. Error on original and reduced HMMs for 2D shape recognition experiment
(fragments set): (a) varying resolution factor; (b) varying fragment length.

(a) (b)

Reduction Error on Error on
factor Original (%) Reduced (%)
1 2.52 2.91
3 2.52 2.19
5 2.52 1.51
7 2.52 0.44
9 2.52 2.70

Fragment Error on Error on
Length (%) Original (%) Reduced (%)
20 % 4.50 4.33
30 % 3.60 3.28
40 % 2.77 2.32
50 % 3.23 2.31
60 % 3.23 1.75
70 % 2.83 1.36
80 % 0.00 0.23
90 % 0.00 0.01

Table 5. Error on original and reduced HMMs for 2D shape recognition experiment
(noised set): (a) varying resolution factor; (b) varying noise level (b).

(a) (b)

Reduction Error on Error on
factor Original (%) Reduced (%)
1 29.08 24.83
3 29.08 29.05
5 29.08 21.14
7 29.08 28.23
9 29.08 25.97

Noise Error on Error on
level (%) Original (%) Reduced (%)
5 11.33 9.64
10 20.5 17.24
15 27.11 23.61
20 31.67 28.21
25 35.24 31.70
30 37.78 34.16
35 39.95 36.33

A consideration can be made on performance of HMMs applied to this prob-
lem: average error in recognizing the fragment sequence is 1.21%, a very low
value. This means that a simple HMM can be invariant of some type of object
occlusions. Nevertheless, noise seems to be a more serious problem, but working
on topology and training algorithms classification accuracy may be less affected
by this problem.

Another point regards the similarity of the two objects which may seriously
affect performances. Using very different objects this problems may be attenu-
ated. More extensive tests on invariance on scale and rotation should be carried
out to better evaluate HMM performance for shape classification.

5.3 Comparison with Other Methods

Regarding the model selection approaches present in literature and listed in Sec-
tion 1, an interesting comparative evaluation is presented in [25]. In that paper,
a comparison between MDL/BIC, EBB and MDL for gaussian mixture model is
reported, showing comparable performances and proving their superiority with
respect to other methods. For convenience, we choose the BIC method [26] for our
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comparative analysis. BIC is a likelihood criterion penalized by the model com-
plexity, i.e., in our case, the number of HMM states. Let X = {xi, i = 1, · · · , N}
be the data set we are modeling and M = {Mi, i = 1, · · · ,K} be the candidate
models. Let us denote as |Mi| the number of parameters of the model Mi, and
assuming to maximize the likelihood function L(X,Mi) for each possible model
structure Mi, the BIC criterion is defined as:

BIC(Mi) = log L(X,Mi) − 1
2
|Mi| log(N)

This strategy selects the model for which the BIC criterion is maximized.
We compare our strategy with this approach related to the 2D shape experi-

ment. We train 18 HMMs, with states number varying from 3 to 20, and for each
model we compute the BIC value. BIC vs number of states curves are plotted
in Fig. 7, for the two objects. We then choose the HMM showing the highest
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Fig. 7. BIC value vs number of states curves for the 2D shape recognition experiment
with (a) the hammer and (b) the screwdriver.

BIC value (corresponding to 12 and 14 states, respectively for screwdriver and
hammer).

With our bisimulation approach we train one HMM with 20 states, apply
bisimulation and train another HMM with calculated number of states, varying
reduction factor fro 1 to 9 (step 2). To compare the two methods we create a test
set by adding synthetic noise (of various entity) to the two chain codes, in a way
similar to that presented in the previous section, obtaining, for each noise level,
120 sequences to be classified. We then calculate the classification error applying
the two approaches, presenting results in Table 6, in function of variable noise
level. We can notice that, on the average, classification accuracy is quite similar:
in fact BIC method needs 18 training session, while our method only two, plus
the time for determining bisimulation contraction (that is O(MKN logN), given
an HMM with N states, K edges and M symbols). In problems with a short
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Table 6. Comparison between BIC method and our approach.

States Classification Error
Method Screw. Hammer Noise Noise Noise Noise Noise Noise Noise

0.05 0.10 0.15 0.20 0.25 0.30 0.35
BIC 12 14 13.33 25.00 32.50 36.88 39.83 41.81 42.98

Bisim RF 1 14 15 20.00 30.00 33.89 36.25 42.67 44.44 48.57
Bisim RF 3 15 16 21.67 34.17 39.44 42.08 43.67 44.72 45.48
Bisim RF 5 18 18 10.00 10.83 22.78 29.17 34.67 40.28 35.71
Bisim RF 7 17 19 28.33 38.33 42.22 44.17 45.33 46.11 46.67
Bisim RF 9 20 20 31.67 37.50 37.22 37.08 37.00 34.17 30.24

alphabet (as DNA modeling and chain code problems), our method is definitively
faster than BIC, giving approximately the same classification accuracy.

6 Conclusions

In this paper, probabilistic bisimulation is used to estimate the minimal structure
of a HMM. It has been shown that starting from a redundant configuration,
bisimulation allows to merge equivalent states while preserving classification
performances. Redundant and minimal HMM architectures have been tested
on two different cases, DNA modeling and 2D shape classification, showing the
usefulness of the approach. Moreover, our method has been compared with a
classic model selection scheme, showing comparative performances but with a
less computational complexity.
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5th Kurt Gödel Colloquium. LNCS1289 (1997) 172–185.

18. Milner, R.: Operational and Algebraic Semantics of Concurrent Processes. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science (1990).

19. Paige, R., Tarjan, R. E.: Three Partition refinement algorithms. SIAM Journal on
Computing 16(6) (1987) 973–989.

20. Van Benthem, J.: Modal Correspondence Theory. PhD dissertation, Univer-
siteit van Amsterdam, Instituut voor Logica en Grondslagenonderzoek van Exacte
Wetenschappen, (1978) 1-148.

21. Salzberg, S.L.: Gene discovery in DNA sequences. IEEE Intelligent Systems 14(6)
(1999) 44–48.

22. Salzberg, S.L., Searls, D., Kasif, S.: Computational methods in Molecular Biology.
Elsevier Science (1998).

23. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern
Analysis Machine Intelligence 8(6) (1986) 679–698.

24. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill (1995).
25. Roberts, S., Husmeier, D., Rezek, I., Penny, W.: Bayesian Approaches to gaussian
mixture modelling, IEEE Trans. on P.A.M.I., 20(11) (1998) 1133–1142.

26. Schwarz, G.: Estimating the dimension of a model, The Annals of Statistics, 6(2)
(1978) 461–464.


	Introduction
	Hidden Markov Models
	Bisimulation
	The Strategy
	Experimental Results
	DNA Modeling
	2D Shape Recognition
	Comparison with Other Methods

	Conclusions

