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Abstract

Capturing the essential characteristics of visual ob-
jects by considering how their features are inter-related
is a recent philosophy of object classification. In this pa-
per, we embed this principle in a novel image descriptor,
dubbed Heterogeneous Auto-Similarities of Characteristics
(HASC). HASC is applied to heterogeneous dense features
maps, encoding linear relations by covariances and non-
linear associations through information-theoretic measures
such as mutual information and entropy. In this way, highly
complex structural information can be expressed in a com-
pact, scale invariant and robust manner. The effectiveness
of HASC is tested on many diverse detection and classifi-
cation scenarios, considering objects, textures and pedes-
trians, on widely known benchmarks (Caltech-101, Bro-
datz, Daimler Multi-Cue). In all the cases, the results ob-
tained with standard classifiers demonstrate the superiority
of HASC with respect to the most adopted local feature de-
scriptors nowadays, such as SIFT, HOG, LBP and feature
covariances. In addition, HASC sets the state-of-the-art
on the Brodatz texture dataset and the Daimler Multi-Cue
pedestrian dataset, without exploiting ad-hoc sophisticated
classifiers.

1. Introduction
Visual object classification and recognition remains one

of the most studied problems in Computer Vision and Pat-
tern Recognition. In this domain, the design of novel fea-
ture descriptors play a crucial role, with many and hetero-
geneous types proposed so far. In addition to the classical
”feature-based” descriptors (SIFT [13], HOG [2], LBP his-
tograms [20] to quote some), in the recent years a novel
trend has emerged, which consists of discarding the intrin-
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Figure 1. Example of non-linear relation between two features,
depth values and x- coordinates.

sic value of the cues, encoding instead their inter-relations.
We call this class of methods relation-based. The most
known descriptor following this line is the covariance of
features (COV) [17], in which linear correlations between
features are exploited as elementary patterns. In the litera-
ture, relation-based descriptors exhibit a consistent invari-
ance to many aspects (scale, illumination), making them
ideal for object classes with high intra-class variability (as
in the case of pedestrians [17]).

In this paper, we pursue the relation-based approaches,
designing a new descriptor which captures all the diverse
relations that may hold between the characteristics of an ob-
ject. More specifically, we claim that linear relations, in the
form of covariances, are not enough to explain the complex
structure of many objects. As an example, consider Fig.1,
where the horizontal image coordinates x and the depth val-
ues of an image representing a pedestrian (taken from the
recent Daimler Multi-Cue Occluded Pedestrian Classifica-
tion Benchmark Dataset [4]) are scattered in the same plane:
one can see that the depth values which model the human
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body remain approximately constant in the central part of
the image, increasing rapidly while moving toward the ex-
ternal image portions, that correspond to the background
scene. This demonstrates a clear example of non-linear re-
lation between features.

To overcome this limitation, we propose a new local de-
scriptor named Heterogeneous Auto-Similarities of Charac-
teristics (HASC), which is able to encode at the same time
linear and non-linear relations. The former are encoded by
the covariance matrix of features (COV), and the latter are
extracted by using information-theoretic measures, namely
Entropy and Mutual Information, encoded into the here de-
fined EMI matrix.

The entropy of a random variable measures the amount
of uncertainty associated with the value of the variable it-
self. The mutual information (MI) of two random variables,
instead, captures generic dependencies including the non-
linear ones. In practice, EMI is a d × d matrix where the
main diagonal contains the entropy values of the distribu-
tion of d features that characterize an object, while in the
off-diagonal entries, the element i, j contains the mutual in-
formation between the i−th and j−th features.

It is worth noting that MI (and other information-
theoretic measures) has been previously adopted in differ-
ent computer vision tasks, i.e., to optimally align an image
to a given template [19] or to detect saliency regions in an
image [9], [10]. In all these approaches, these operators are
employed as an objective function to be maximized in order
to detect the highest similarity or saliency. We do not ex-
ploit MI for these purposes, but to encode the relational in-
formation from the data. To the best of our knowledge, EMI
represents the first attempt to exploit information-theoretic
measures to build a descriptor.

The modeling of linear and non-linear feature dependen-
cies makes HASC a versatile descriptor for a large range
of applications, employing heterogeneous basic features.
Furthermore, we demonstrate that HASC is superior to its
components (COV, EMI) considered separately, since they
model complementary aspects of the same entity, and this
fact will emerge many times in the paper. Through theoret-
ical studies and synthetic experiments, we show that HASC
is not a mere arbitrary juxtaposition of diverse elements,
since joining together two descriptors does not guarantee an
automatic improvement. In particular, if the two descriptors
bring very similar information the overall performance may
also decrease due to the well known curse of dimensionality
phenomenon [3].

In the experiments, HASC was applied as a feature de-
scriptor to different tasks: object recognition (Caltech-101
[6]), texture classification (Brodatz dataset [1]) and pedes-
trian detection (Daimler Multi-Cue [4]). In all the cases,
employing simple discriminative classifiers, HASC obtains
definitely higher performances than all the other considered

descriptors (SIFT [13], COV [17], LBP [20], HOG [2]). In
general, fed into advanced classifiers, or accompanied with
other descriptors, HASC is highly competitive, especially
on dealing with classes with high intra-class variance. In
addition, we set the best performance on the texture classi-
fication and the multi-cue pedestrian classification tasks.

Finally, the fact that HASC has few parameters to be set,
and that there is a large plateau of parameter values that
ensure in general optimal performances, promotes the idea
of exploiting relation-based principles for standard tasks in
computer vision.

The rest of the paper is organized as follows. In Sec. 2
our approach is introduced, with a short recap on the COV
descriptor (Sec. 2.1), and the definition of the EMI descrip-
tor (Sec. 2.2): HASC is then presented in Sec. 2.3, with
some toy examples aimed at highlighting the complemen-
tarity of EMI and COV. Experiments in Sec. 3 report the
comparative performances of HASC, and, finally, Sec. 4
concludes the paper, with some observations and future per-
spectives.

2. The Proposed Approach
2.1. Covariance descriptor

Let I(x, y) be a color image, possibly equipped with ad-
ditional channels like depth, motion flow or thermal imag-
ing. Let F(x, y) be a d-dimensional feature image extracted
from I(x, y) :

F(x, y) = φ (I(x, y)) (1)

where the d-dimensional vector function φ can include
any mapping such as gradient orientation and magnitude,
filter responses, etc. For a given rectangular patch P in
F(x, y), containing K pixels, let {zk}k=1..K be the set of
d-dimensional feature points inside P . The covariance de-
scriptor of the patch P can be defined as follows:

COVP =
1

K − 1

K∑
k=1

(zk − z̄)(zk − z̄)T , (2)

where z̄ is the average of the point set. The d diagonal
entries of the d×d matrix COVP are the variances of each
feature, whereas the off-diagonal entries are the covariances
between pairs of features.

Since covariances belong to the Riemannian manifold
Sym+

d , calculating distances among them amounts to
project them into adequate tangent spaces, as pointed out
in [15]; this brings to the (d2 + d)/2 vectorized version:

covP = vec(Proj(COVP )) = [COVP11 (3)
COVP21 COVP22 COVP31 . . . COVPdd].

where COVPij are the elements of the projected matrix
Proj(COVP ).
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As pointed out in [17], there are several advantages of
using covariance matrices as region descriptors: they have
been shown to be robust to noise, to pose change and
low-dimensional; nevertheless, covariance descriptors have
some limitations. In particular, a single pixel outlier may
drastically change the values in eq.(2), making the descrip-
tor non-robust against impulsive noise. More significantly,
the covariance among two features is able to optimally en-
capsulate the features of the joint PDF only if they are
linked by a linear relation. As soon as their relation be-
comes non-linear, or their joint PDF distribution becomes
multi-modal, the covariance loses its expressiveness since
drastically different joint PDF may have very similar co-
variances. In such cases, the implicit discriminative power
contained in the joint PDF is not captured by covariances.

To overcome these drawbacks, we propose a new de-
scriptor, based on entropy and mutual information among
features, described in the next section.

2.2. Entropy and mutual information descriptor

The Mutual Information (MI) of a pair of random vari-
ables A,B is defined as

MI(A,B) =

∫
A

∫
B

p(a, b) log

(
p(a, b)

p(a)p(b)

)
dbda (4)

where p(a), p(b) and p(a, b) are the PDF of A, the PDF
B and their joint PDF respectively. If A = B MI becomes
the entropy of A

E(A) = MI(A,A) = −
∫
A

p(a) log(p(a))da (5)

If a finite set K of realizations pairs {A : ak, B :
bk}k=1..K are available, MI can be estimated as a sample
mean of the quantity inside the logarithm 1:

MI(A,B) ≈ 1

K

K∑
k=1

log

(
p(ak, bk)

p(ak)p(bk)

)
, (6)

Probabilities inside the logarithm can be estimated from
the K realizations by Kernel Density Estimation (KDE)
method, however such procedure is computationally de-
manding. In this work, a definitely faster alternative proce-
dure to estimate probabilities has been adopted by building
a joint 2D normalized histogram of values of A and B. In
detail, each p(ak, bk) is estimated by taking the value of the
2D histogram bin in which the pair (ak, bk) falls; p(ak) and
p(bk) are then estimated by summing up all the bins cor-
responding to ak or bk, respectively. Thus, the ij-th entry
of the EMI matrix related to a patch P can be defined as
follows:

1MI can be seen as the expectation of the quantity inside the logarithm.

EMIP{ij} =
1

K

K∑
k=1

log

(
p̃(zki, zkj)

p̃(zki)p̃(zkj)

)
(7)

where p̃(., .) and p̃(.) are the probabilities estimated with
the histogram procedure and zki is the value of the i-th fea-
ture at pixel k. The EMI matrix depends only on two pa-
rameters: the number of bins on which the 2D histogram is
calculated and the support given by the patch size, i.e. the
number of pixels K.

Each diagonal entry of the EMI matrix captures the
amount of uncertainty or unpredictability related to a given
feature, whereas off-diagonal entries capture the mutual de-
pendency between two different features. It is worth noting
that mutual information accounts for the strength of mu-
tual dependency, irrespective of the particular kind of de-
pendency, be it linear or non-linear.

Therefore we choose to build the EMI descriptor by sim-
ply vectorizing the (d2+d)/2 different values of the matrix
as follows:

emiP = vec(EMIP ) = [EMIP11 EMIP21 (8)
EMIP22 EMIP31 ... EMIPdd].

2.3. Combining COV and EMI: the HASC descrip-
tor

Based on their properties, COV and EMI descriptors are
largely complementary, capturing different features of the
joint underlying PDFs. In particular, COV provides infor-
mation about the kind of dependency. Assuming the joint
PDF of two features to be bivariate Gaussian, covariance
encodes the slope of the principal axes of the Gaussian,
but is largely limited to linear dependencies, and its ex-
pressiveness decreases as soon as the joint distribution be-
comes multi-modal and/or the functional dependency be-
comes non-linear. On the contrary, EMI is able to encap-
sulate the degree of dependency among features but could
not express the functional form that such dependency takes.
Putting together the two descriptors in a larger feature space
may boost the overall discriminative power.

This idea leads to the definition of Heterogeneous Auto-
Similarities of Characteristics (HASC) descriptor, defined
as the concatenation of vectorized EMI and COV:

hascP =
[
covP emiP

]
. (9)

Since HASC is defined here by components that can be
related to entities in an Euclidean space, as pointed out in
(9), it is also lies in an Euclidean space: therefore, its usage
for machine learning algorithms is straightforward.

Concerning the computational cost of HASC, let us con-
sider an N pixels image subdivided in R regions, possi-
bly overlapped. The computation of R COVs (one per re-
gion) of size d × d can be efficiently addressed with in-
tegral images [16], yielding a total computational cost of
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O ((N +R) d (d− 1) /2). On the other hand, the compu-
tation of EMI implies, for each couple of features, the esti-
mation of 1D and 2D histograms, the logarithm and the final
sum, according to Eq. 7. Calculation of 2D histograms can
be efficiently addressed with the integral histograms ([14]),
yielding a computational cost of O (N +BR), where B de-
notes the number of histogram bins. The logarithm of 2D
histogram can be efficiently calculated by pre-allocating a
look-up table of size N + 1 and accessing the current value
(O(B)); for 1D histograms the cost is by far inferior as they
are calculated for each feature (not for each couple). Fi-
nally the sum over the pixels of the three logarithms amount
to O(N) operations. In total the number of operations re-
quired for a set of EMI matrices of size d × d, calculated
over R regions is given by: O ((N +BR) (d(d− 1)/2)).
To make a numeric example, B = 64, N = 150 · 150,
R = 64, d = 11 give a computation ratio EMI/COV equal
to roughly 4. Furthermore, considering that bin values equal
to zero are dropped from the logarithm calculation, compu-
tational load is even decreased.

We carried out some synthetic illustrative examples of
binary classification, in order to highlight the differences in
the expressive power of the COV and the EMI descriptors,
as well as their complementarity which accounts for the su-
periority of the HASC descriptor.

In particular, we consider a dense single-pixel feature ex-
traction operator, as would be in the case of images, that
process all the pixels considered as independent entities.
Given an image of K pixels, we extract K values from each
of the d = 2 kinds of features. As a result, from the features
of the image, a d × d COV and a d × d EMI descriptors
are created. This was done for all the images of a class,
obtaining different instances of COV/EMI, that were been
subsequently fed into a linear SVM classifier, with 3000 ex-
amples for training and 1500 for testing.

In the first example, the two features x, y extracted from
the examples are generated as y = 20x+ noise for class 1
and y = −20x+noise for class 2, where noise is Gaussian
i.i.d. (see Fig. 2 (a) and (b): each point in the figure repre-
sents the values of the pair of features (x, y) calculated on a
pixel of a given image). In this case, COV is able to differ-
entiate the sign of the covariance, reaching an accuracy of
100%, while the EMI reaches an accuracy of about 50%.

In the second case, the relation between the two features
is based on the circle equation (non-linear relation), with
two different noise intensities added to differentiate the two
classes (see Fig. 2 (c) and (d)). Due to the non-linear rela-
tionship between the features and different noise intensity
on the two classes, classification results are opposite with
respect to the previous experiments. EMI reaches an accu-
racy of 100% while COV is almost equivalent to a random
guess.

In the third case, we create two different classes in which

the relation between the two features is non-linear but can
be fairly approximated with a linear one, and each class
brings a Gaussian noise of different intensity. In prac-
tice, the feature relation is governed by an ellipse equation,
whose inclination is related to the class the element belongs
to (see Fig. 2 (e) and (f)).

In this case, the performance for COV and EMI descrip-
tors are similar, as shown in Fig. 2 (g): COV is able to catch
the different slopes of the two ellipses, while EMI captures
the different degree of non-linearity, modeled by the dif-
ferent noises. HASC, incorporating both the models, gives
100% of accuracy.

Figure 2. (a-f) Joint distribution of the two features for the syn-
thetic examples; (g) Detection rate curves for COV and EMI.

3. Experiments
In this section, we want to show how HASC behaves in

a diverse number of applications. First of all, we compare
HASC against the most popular feature descriptors (HOG,
SIFT, LBP, COV, SSD)2 and the new EMI, in the object
classification task, addressing the well known Caltech-101
dataset [6]. We demonstrate that employing a linear Sup-
port Vector Machine as a baseline classifier, HASC outper-
forms all the other descriptors. Furthermore, we carry out
a detailed analysis of the impact of implementation details
on the overall performances, drawing some conclusion on
the descriptor robustness. Our code is publicy available at
http://www.iit.it/en/datasets-and-code/code/hasc.html

This preliminary analysis served us also to discover the
scenario where HASC may perform the best. In practice,
this is realized in the case of discriminative non-linearities
between features, where EMI can add more information
with respect to COV. For this reason, we focused on the Bro-
datz dataset, where texture patterns offer a rich compound
of relations among basis features (intensity, gradients) and
on multimodal pedestrian detection, considering the Daim-
ler Multi-Cue Occluded Pedestrian Classification Bench-
mark Dataset [4]. In such a case, diverse sensor modalities
introduce complex links between low-level cues, consider-
ing intensity, motion and depth: EMI is able in this case to

2Textons have been shown to be inferior to COV in the paper [16], so
this should convince us about their inferiority w.r.t. HASC, that outper-
forms COV.
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capture them, allowing HASC to definitely outperform its
two main ingredients.

On both datasets, we set the new state-of-the-art. In de-
tail, we beat the previous best performance of [4] on Daim-
ler Multi-Cue, by joining HASC with HOG+LBP, and the
previous best performance of [12] on Brodatz. The overall
underlying message is clear: HASC is able to finely encode
relational class-specific information, surprisingly beating
feature-based descriptions. Since relational and features-
based descriptions are two sides of the same coin, joining
them together appears to be a promising strategy, worth to
be investigated in the future works.

3.1. Object Classification

The Caltech-101 dataset [6] represents a key benchmark
for the object recognition community. It consists of 102
classes (101 object categories plus background). The signif-
icant variations in color, pose and illumination inside each
of th 101 classes make this dataset very challenging. The
number of images per class ranges from 31 to 800 and most
of them are at medium resolution, roughly 250×280 pixels.
The 15-dimensional vector of feature maps extracted from
each image is defined as follows:

F(x, y) =
[
RGB Lab Fmed LBP x y FV

]
(10)

where R, G, B and L, a, b are respectively the three RGB
and three CIELab image components, Fmed denotes the me-
dian filter, LBP is the Local Binary Pattern [23]3, x and y
are the horizontal and vertical pixel coordinates. These last
two features are particularly interesting, since they allow to
distill relations that hold between particular cues and their
spatial position. Finally FV is defined as follows:

FV =
[
|Vx| |Vy|

√
V 2
x + V 2

y |Vxx| |Vyy|
]

(11)

where Vx, Vy , Vxx and Vyy , are the first- and second-order
derivatives of the image intensity. To test our descriptor,
we adopted the protocol of [21]: 30 per-class images are
randomly chosen and subsequently split into 15 for training
and 15 for testing; twenty different random partitions are
considered and the average results with standard deviations
are reported. Each image is re-scaled to 150 × 150 pixels,
subdivided into different patches (4×4, 8×8 and 16×16 ) of
different pixel sizes (60×60, 32×32 and 16×16), overlap-
ping for half of their size. The aim here is to highlight the
net superior expressiveness of HASC in comparison with
COV and EMI taken alone, as well as other descriptors. To
investigate this aspect, a baseline object model and a basic

3Note that, differently from its standard use [23], here LBP is employed
as a low level feature which provides just a single value, from 0 to 255,
for each image pixel. Experimentally, we noted that adding this version
of LBP increments systematically the performance of COV (and EMI) de-
scriptors

classifier are employed, in order to discard any classifica-
tion strategy favoring a specific descriptor, in the same way
as done in the HOG paper [2]; in other words, we are not
interested in reaching top scores (actually, the performances
reached are inferior w.r.t. the state-of-the-art), but to high-
light the genuine differences among features. Moreover, to
achieve the state-of-the-art on Caltech-101, it is nowadays
mandatory to employ kernelized fusion of multiple descrip-
tors [7], which would obscure the specific contribution of
HASC.

In this setting, the final feature vector for an image was
the simple concatenation of the feature vectors for each
patch and a linear SVM was used as classifier (we also ap-
plied another classifier, i.e. Random Forest, but it did not
provide consistent improvements probably due to the rela-
tively high dimension of the image descriptors involved).

In Table 1, the best accuracies of each descriptor, with
the related patch size, are reported. Results show that
the HASC descriptor significantly outperforms all the other
competitors. In particular, in all the twenty splits, HASC
exceeds the performance of COV and EMI taken separately.

Table 1. Classification results for the Caltech-101 dataset

Descriptors Results Patch Size
HASC 54.45 ±1.6 32× 32 pixels
COV 51.32 ±1.3 32× 32 pixels
EMI 47.57 ±1.1 32× 32 pixels
LBP 41.25 ±0.5 32× 32 pixels
HOG 38.91 ±0.6 16× 16 pixels
SIFT 37.91 ±0.2 32× 32 pixels
SSD 36.81 ±0.7 32× 32 pixels

On this dataset, we investigate how the size and the num-
ber of the patches employed, and the number of bins used
for the EMI computation affect the overall performances. In
particular, the number of patches was constrained on their
size, in a way that the whole image has to be covered by
patches, that overlap for half of their sizes. The results are
reported in Fig. 3 for HASC and EMI. Some observations
can be drawn: first, employing HASC (or EMI) as a global
descriptor, i.e. only one patch per image, is not very infor-
mative, no matter the number of bins adopted. The lower
bound on the size of the patches is 8 × 8 pixels, since with
lower sizes the performances degrade dramatically, as the
statistics employed is too scarce. For EMI the best result is
achieved with 12 bins and patch size of 16 − 32; note that
with increasing the patch size the best performance is ob-
tained by increasing the number of bins as well. For HASC,
the overall performance obviously increases and the depen-
dence on the number of bins is dampened due to the contri-
bution of COV (whose calculation does not imply bin quan-
tization). In conclusion, HASC demonstrates notable scale
invariance and robustness to bin quantization.
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Figure 3. The accuracy of the HASC and EMI descriptor versus the
number of bins and patch size. The stride (block overlap) is fixed
at half of the patch size. The configuration with 8 × 8 patches
and 28 bins performs best, with 53.72% accuracy on HASC and
45.10% on EMI.

3.2. Texture Classification

As classic application where COV achieves one of its
best performances, we consider here the texture classifi-
cation task on the Brodatz [1] database: covariances were
originally used to encode repeated structural information,
and textural imagery is one of the best benchmarks [16].

As experimental protocol, we follow [16]: we subdivide
each image of the 112 classes into four sectors, obtaining 2
images per class in training and 2 images per class in test-
ing, all of size 320× 320. We extract the same features, i.e.
intensity and magnitudes of first and second order deriva-
tives:

F(x, y) =
[
V |Vx| |Vy| |Vxx| |Vyy|

]
. (12)

For each image, s = 100 random square patches of ran-
dom sizes between 16×16 and 128×128 are extracted and
the HASC descriptor is calculated on each patch. In the test-
ing phase, the same number of patches is extracted on each
image. For each patch, the distance between the extracted
HASC descriptor and all the training HASCs is measured
and the label is predicted according to the majority voting
among the k = 5 nearest ones (kNN algorithm).

This classifier acts as a weak classifier, and the class
of the image is determined according to the maximum
votes among the s weak classifiers [16]. In Table 2 clas-
sification accuracy obtained with HASC, averaging on 10
different trials, is displayed and compared with the fol-
lowing methods: Lazebnik’s method [11], VZ-joint [18],
Hayman’s method [8], Tuzel’s method [16], Harris de-
tector+Laplacian detector+SIFT descriptor+SPIN descrip-
tor((HS+LS)(SIFT+SPIN)) [22] and L2ECM [12] . With
HASC, we reach 98.66%, which amounts to fail on 3 im-
ages, beating the best classification score of [12] (97.9) and
setting state of the art performance.

Table 2. Classification accuracy for the Brodatz dataset

Descriptors Accuracy(std)
HASC 98.66(0.2)
L2ECM [12] 97.9(0.4)
Lazebnik [11] 89.8(1)
VZ-joint [18] 92.9(0.8)
Hayman [8] 95(0.8)
Tuzel [16] 97.77
HLSS [22] 95.4

A further study was conducted to assess the role played
by nonlinear relations in the overall performance. To this
end HASC was compared with COV and EMI taken alone,
and the results portrayed in the first row of Table 3. As the
performance is near to the saturation point, the improve-
ment in respect COV is significant but limited to 2 images.
Therefore, in order to investigate the expressivity of HASC,
we start decreasing the number of low-level features. In par-
ticular, as done in [16], we take the intensity and magnitude
of gradient and Laplacian as defined below:

F(x, y) =
[
V

√
V 2
x + V 2

y

√
V 2
xx + V 2

yy

]
. (13)

With only 3 features we reach the best result obtained in
[16] with 5 features, as shown in the second row of Table
3. Moreover, the improvement brought by EMI in respect
to COV is 8 images, demonstrating the complementary in-
formation held by COV and EMI.

3.3. Pedestrian Detection

For the pedestrian classification task, we consider
the Daimler Multi-Cue Occluded Pedestrian Classifica-
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HASC (Linear SVM)
HOG + LBP (MoE − MLP) [Gavrila 2011]
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(a) (b)
Figure 4. Pedestrian detection scenario; (a) Detection rate curves for Daimler dataset for HOG, LBP, EMI, COV and HASC; (b) Detection
rate curves for Daimler dataset for HASC (linear SVM), HASC + HOG + LBP (linear SVM), HOG+LBP (linear SVM) and HOG +LBP
(Multi Level Mixture of Experts and Multi Layer Perceptron).

Table 3. COV, EMI and HASC accuracy for Brodatz dataset with
different numbers of features (in brackets number of images cor-
rectly classified)

COV EMI HASC
5 features 97.77 (219) [16] 96.87 (217) 98.66 (221)
3 features 94.20 (211) [16] 92.41 (207) 97.77 (219)

tion Benchmark Dataset [4], taking into account the un-
occluded part. The training part contains 52112 and 32465
positive and negative samples, respectively; the testing part
has 25608 and 16235 positive and negative samples. Each
image, of size 96×48, is composed of three imaging modal-
ities: standard visible gray scale image V (x, y), depth
D(x, y), and motion flow M(x, y). As alternative descrip-
tors, we focus on COV and EMI descriptors as well as HOG
[2] and LBP [23], already applied on this dataset [5].

For each image, we have the following dense feature map
F(x, y):

F(x, y) =
[
FV (x, y) FD(x, y) FM (x, y) x y

]
,

(14)
where each 96 × 48 map FV (x, y), FD(x, y) and

FM (x, y) denote low-level features extracted from the vis-
ible, depth, and motion flow modalities, respectively. In
particular, for each modality, we extract the following low-
level features (omitting the subscript for clarity):

F(x,y) =
[
I |Ix| |Iy| |Ixx| |Iyy|

√
I2x + I2y LBP (I)

]

(15)
where I , Ix, Iy , Ixx and Iyy , are the intensity, first- and

second-order derivatives of the three image modalities.
For the depth and motion flow modalities, the depth

value and the module of the motion flow are considered as
image intensities. For each image, EMI and COV matri-
ces are extracted on a set of patches of different size, fusing

together the different modalities in a natural way, resulting
in 23 × 23 matrices. In particular, for each modality the
following patches are extracted: 1 patch of size equal to
the whole image; 3 overlapping patches corresponding to
the head torso and legs regions of a pedestrian, as defined
in [4]; 6, 9 and 15 overlapping patches obtained equally
by subdividing the three previously defined regions into 2,
3 and 5 respectively. The global feature vector, fed to a
linear SVM classifier, is given by d + d2 elements of the
vectorized HASC (d = 23) multiplied by the total number
of patches (34), yielding a total of 17204 features. Results
are compared with COV and EMI separately considered and
extracted on the same set of patches; moreover a compari-
son is carried out with HOG and LBP descriptors. The ob-
ject model for HOG and LBP (number, size and overlap of
patches)is the same as adopted in [5].

In Fig. 4 (a) the detection rate curves for all the de-
scriptors are reported, showing that HASC definitely out-
performs COV, EMI, HOG and LBP.

A further test was conducted in order to compare HASC,
alone or in combination with HOG and LBP, by the state-
of-the-art results. The latter are obtained in [5] adopting
HOG + LBP with two strategies. The simpler one consists
in joining together all LBP and HOG descriptors and feed
the final feature vector to a linear SVM. The more com-
plex one, which set the top performance, adopt a Mixture
of Experts (MoE) structure in which the scores of several
nonlinear classifiers are used as features for an SVM on top.
Each classifier, defined by a Multi Layer Perceptron (MLP),
is related to a single feature (HOG or LBP), single visual
modality, and single pedestrian pose. The results displayed
in Fig. 4 (b) show that HASC definitely outperforms the
combination of HOG and LBP using a linear SVM. More-
over, joining together HASC, HOG and LBP and using a
linear SVM outperform the best result in [5] despite the
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latter is obtained with a much more complex classification
scheme. This is significant, since it demonstrates how well
HASC encodes exclusive aspects that the other two descrip-
tors fail to capture. Finally, even HASC alone with a simple
linear SVM outperform HOG + LBP with MLP and MoE
whenever the False Positive Rate (FPR) exceeds the value
of 0.02. To furtherly quantify the performance, Table 4 re-
ports the FPR obtained fixing the Detection Rate (DR) at
90% as a common reference point. Once again the value ob-
tained by joining together HASC + HOG + LBP improves
the state-of-the-art by a factor of 1.4.

Table 4. Pedestrian detection: False positives rates on Daimler
dataset for a detection rate of 90%:

FPR
HASC + HOG + LBP (Linear SVM) 1.85e-4
HOG + LBP ( MoE - MLP) [5] 2.6e-4
HASC (Linear SVM) 6.77e-4

4. Conclusions
In this paper, we presented a novel relation-based feature

descriptor, HASC, which is capable to subsume all possible
dependencies between low-level dense features of visual en-
tities. Our proposal represents a step ahead with respect to
the state-of-the-art of the relation-based strategies for ob-
ject description, represented by the covariance of features
(COV). While COV is limited to the modeling of linear de-
pendencies between features, HASC can also deal with non-
linear ones. The comparative highest detection and classi-
fication scores achieved by HASC on heterogeneous tasks
(object detection and classification, scene recognition, tex-
ture classification), demonstrate that non-linearities are con-
sistently present among basic features of many visual enti-
ties, and capturing these bonds allows us to improve model-
ing capabilities. Future perspectives are essentially focused
on embedding HASC into more challenging classifiers, in
order to raise their best performances in diverse scenarios.
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