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1

Introduction

Video analysis and understanding is undoubtedly an important research area,
whose interest has grown in the last decade, promoting a set of interesting ap-
plications, each one characterized by different goals.
In general, when describing a signal, ideally the model should mimic the under-
lying process that is thought to generate it. The advantage is that the inferences
over such model can easily be interpretable, applicable and generalizable to other
signals.
This is mainly true when the signal is a video or an audio sequence representing
human activities: in this case, the aim of a good model is to encode as parame-
ters meaningful gestures, words, actions and the like, performing classification and
recognition tasks in an intuitive way.
Recently, video processing systems have become expressive benchmarks of how
automatic systems could model general complex dynamic visual events. An opti-
mal system should perform analysis at the same level of complexity and semantics
that a human would employ while analyzing the content. Moreover, the currently
available hardware resources may allow an ideal video processing system to easily
outperform human abilities, providing superior grade analysis. Anyway, such com-
mercially successful systems do not exist yet, because humans assimilate visual
information at semantic level using a mapping that is highly subjective, and is not
formally completely known, kinds of features which are difficult to take properly
into account in an automatic digital system.
In this context, two main research fields can be revealed in the scientific commu-
nity, which specify different approaches to video processing.
The first field is the one that minimizes any automatic semantic analysis, by mainly
operating matching between some models and the video entities of interest, de-
manding all the possible interpretation tasks to the human beings. In this fashion,
the outperforming capabilities of the automatic machinery can be easily exploited.
This area, commonly referred to as video analysis, is more involved with pure alge-
braic modelling, where the contextual knowledge is present as an a-priori element,
and the uncertainty minimized.
In the last years, such kind of research is rapidly increased, due to the availability of
more and more powerful hardware, and to the development of effective algorithmic
techniques [6]. This promoted a set of interesting applications, each one charac-
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terized by different specific goals, such as video segmentation [30, 47, 47, 52, 110],
video super resolution [20,133], video impainting [152], and tracking [33,79,155].

The second significant research area holds when the visual data inherently be-
come more complex, depicting activities whose semantics is not predetermined
a priori as contextual knowledge. An immediate example would be whatever se-
quence in which humans are captured, in which the meaning of their actions and
eventual interactions turns into our central interest. As written above, such task
is nearer to the human ability of content management, far away from being a bi-
jective function.
The sub-areas that try to manage such kind of video sequences are grouped to-
gether under the name of video or scene understanding techniques [5, 27,132].

In the field of the video understanding, a hierarchical structure appears advan-
tageous [159]: at the bottom level, useless information is disregarded and raw data
are processed in order to extract low-level information, while in the upper level
abstract reasoning is performed.
We call this structure hierarchy of understanding.
The proposed hierarchy of understanding is not a novel idea of course. Since the
very beginning of the Computer Vision, scientists proposed hierarchical systems
to deal with recognition and understanding problems [26, 121]. The main feature
here regards the fact that the proposed hierarchy focuses on the visual aspect
of information. Actually, each level of the hierarchy is designed to allow a visual
interpretation of the produced output, so that possible errors or misunderstand-
ing could immediately be evidenced before provoking errors at higher processing
levels. In other words, each processing layer in the hierarchy, starting from the
lower ones, is drawn trying to exploit as much as possible the low level data (e.g.,
numerical data in input) to gain high level information, without resorting to com-
plex reasoning modules too early in the hierarchy. In fact, it is opinion of the
author that numerical data embeds many types of high level information which
can be extracted without applying complex reasoning methods; further, reasoning
methods are more efficient and effective when the related input data are less noisy,
discriminant and representative of the target to be achieved.

Video understanding has increased its importance only in the last years and
is still growing. The visual activities to be investigated may vary from small-scale
actions such as facial expressions, hand gestures, and human poses, [55, 108, 153]
to large-scale activities that may involve physical interactions among locomotory
objects moving around in the scene for a long period of time [67,76].

Automatic video surveillance is one of the current video understanding sub-
fields more studied and developed, that perfectly fits as benchmark for the novel
techniques drawn [32,67,71,76,142]. For this area, the hierarchy of understanding
is usually exploited as workhorse. In addition, video surveillance presents some
facilitative starting conditions: the range of the available situations is constrained,
semantic details are usually neglected, the typical ideal goal is to perform matching
between visual data and a set of semantic primitives, and the final target is to
label the activities as normal or abnormal, whose last ones should be detected and
reported as soon as possible [142]. The matching between visual data and semantic
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primitives takes the name of event recognition, and represents a promising, still
open, and fertile research field [67,76].

In the field of the automatic video surveillance, statistical reasoning represents
a convenient way to deal with situations that include a high degree of uncertainty,
as shown by the growing group of proposed statistical-based video surveillance
frameworks [32,65,71,102].
The key concept under all these video surveillance approaches is the “learning”,
i.e., the capability of gaining knowledge by training a particular model on the basis
of the information extracted from a video sequence. In this way, the trained model
can be subsequently used to generalize to other situations.

Graphical generative models [61, 72, 84] are discovered to be optimal frame-
works in this sense: they offer an elegant mathematical framework to combine the
observations of the activities to be modeled (bottom-up) with complex behavioral
priors (top-down), in order to provide expectations about the processes and deal-
ing properly with the uncertainty.
More specifically, the generative graphical modelling aims at formally developing
models that can explain visual input as generated from a combination of hidden
and observed variables, that are eventually coupled by conditional interdependen-
cies. The possibility to make such interdependencies arbitrarily complex in depen-
dence on the nature of the problem, gives to such framework the power, flexibility,
and capability to manage, properly and efficiently, situations of various kinds.

1.1 Motivations and contributions

In this thesis, the study has been focused on various aspects of the video under-
standing field.

A video-analysis hierarchical framework is proposed, that exploits the most
relevant characteristic of a video sequence, i.e. its representative visual informa-
tion (Sec. 1.1.1). Roughly speaking, each module of such a hierarchy deals with
a basic visual entity of a video sequence (the pixel, regions of pixels), producing
descriptions at different levels of detail.
These descriptions can be taken as outcomes of individual analysis processes, giv-
ing insight of the sequence under a particular point of view, or used as input for
higher level processing modules.
In this thesis, we propose two examples of such a hierarchy, each one providing
individual contributions to the related state of the art, in both theoretical and
applicative senses.

The second aspect of the video understanding field investigated in this thesis
regards the possibility of adding audio analysis, as a way to improve the robustness
of the overall process of understanding . This add-on can be embedded in the visual
hierarchy of understanding as higher level module in a natural way.

1.1.1 A visual hierarchy of understanding

The typical video surveillance setting is a clear example of hierarchy of under-
standing aimed to extract knowledge from a sequence. This hierarchy is composed
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by several modules, each one analyzing the input and providing as output the
input for a higher level processing unit, or the result of the whole analysis.

Naturally, using a hierarchy as a logical framework causes the typical problems
of bottom-up (BU) approaches, for instance, the BU propagation of errors in the
hierarchy that often makes the upper levels less robust than the lower ones.
This problem can be related to the fact that, in a hierarchy of understanding, the
final output is usually given after the top layer processing, while in the interme-
diate stages of the hierarchy the correspondent results are often not intuitively
understandable, and therefore merged eventually with “invisible” and not recov-
erable errors. We call this problem the “masked output” issue.
An example of such “black box” characterization can be proposed by a classical
face recognizer. Here, the hierarchy of understanding is usually formed by a bot-
tom layer that extracts features, and a top layer that performs classification, using
the processed data coming from the feature extraction module. Just as an exam-
ple, a feature extraction module may be a Principal Component Analyzer [99],
that captures the picture of a face as a multidimensional feature. The output of
such a module is a set a novel features with lower dimensionality. Looking at such
features (also known as eigenfaces) , we usually lose the capability of recognize a
“good” processing, and only the top processing module (the classifier) can define
whether the bottom processing unit did a good job or not.

Another problem related with the structure of the hierarchy relates its fragmen-
tation in different modules. An over-fragmented hierarchy produces a succession
of modules, prone to the “masked output” problem described above. Conversely, a
too tight structure creates macro modules where the quality of the results is likely
managed with difficulty.
An example of the latter type of problem comes from a video surveillance context,
that we call the Track + Cluster system, where the aim is to track moving objects
producing trajectories that can be grouped together by clustering processes. Such
tracking task can be exploited by using a model-based tracking module [79], where
the aim is to fit a parametric model with a moving object, disregarding the static
scene. In this case, different factors should be considered, like the robustness of
the model with respect to the noise (background misunderstood as foreground and
viceversa, sensor noise, etc.), the capability of the model to follow the dynamics
of the object to track, and others. The interdependencies among these factors are
often hidden and merged in a complex structure, so that it’s often difficult to figure
out where and why a particular objective is failed.

These problems indicate the need of an ideal hierarchy of understanding, with
a right number of modules, each one performing basic operations: each intermedi-
ate output has to be easily analyzed and used as feedback to improve the module
which produced it.

A simple observation can ease the task of improving the quality of the hierarchy
of understanding. In a video understanding framework, the object to process is a
visual object: it means that the produced reasoning is dependent on the visual en-
tities identified in the video sequence, and on their spatio-temporal inter-relations.

In this thesis, a hierarchical framework of understanding is proposed, in which
each module outputs a type of visual information related with the kind of the basic
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visual descriptor considered.
At the bottom level, we have a low-level video understanding module, that takes
as basic entity the pixel signal, considered as an independent process (for each
pixel); at the higher level, we have a high-level video understanding module, that
considers group of pixel signals sharing the same properties as atomic entity .

Unlike other hierarchical structures, each module of the hierarchy produces a
local result that can be considered as an independent top-end analysis. In other
words, at each layer we gain a description of the video sequence at a different
level of detail, hence, needing a different level of semantic interpretation from a
human (see Fig. 1.1). Actually, at pixel level, the analysis performed is obviously

Low-level 

processing

Middle-level 

processing

High-level 

processing

Video
sequence

...

Low-level 

processing

Middle-level 

processing

High-level 

processing

Video
sequence

Final description /

understanding

...

Low-level 

description /

understanding

Middle-level 

description /

understanding

Final description /

understanding

Fig. 1.1. Proposed hierarchy: on the left, a classical bottom-up hierarchy, where the
output is gained after the last high-level processing; on the right, the proposed framework,
in which the outputs of each layer are considered as descriptions of the sequence, at
different level of detail

quite general, subject to several valid interpretations that the user may give; con-
sequently, the user can decide how to design possible higher-level modules.
At the higher level, the possible interpretations diminish, due to the computation
performed at the lower levels that pruned away useless data, and guided the user
to the choice of the strategy of interpretation.
In this way, we gather a structure where the quality of the data outcoming from
each processing module can be directly evaluated, and possible improvements can
be required by only inspecting the local output of the module, without referring
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exclusively to the final output.

Such idea of visual hierarchy of understanding is exploited in some parts by
several video surveillance systems, in an implicit way.
In fact, the above-mentioned Track + Cluster video surveillance system can be
reformulated in a visual hierarchy framework, by fragmenting the tracking issue
in two separate, hierarchically related, modules. The bottom module performs the
so-called background modelling [138, 144]. By analyzing each frame considering
the pixels signals as independent processes, it aims at discriminating the expected
information, namely, the background (BG), from that describing the moving en-
tities, i.e., the foreground (FG). This kind of analysis can be considered in our
visual hierarchy as a low-level on-line analysis, because it processes numerical in-
formation (each pixel signal is considered as an independent process) at each time
the frame arrives.
The top module consists in a tracking method, that takes into account for the
analysis produced by the bottom layer.

In this case, we have a structure of modules that produces local outputs, func-
tional to gather a better sensibility to the quality of the obtained results. For
instance, if we see that the background module is not able to perform FG detec-
tion of moving foliage, we can adopt a BG subtraction method that better focuses
on this problem.

The first contribution of the thesis is to define and realize such logical orga-
nization, by developing several computational modules aimed at extracting visual
knowledge from the video data, putting them together, and showing the effective-
ness of the consequent results.
In particular, we developed different local modules aimed to describe video se-
quences at various levels of detail, namely low-level and high-level, where in the
former the atomic visual entity considered is the pixel signal, and, in the latter, is
the region of pixels.

In the low-level context, the aim is to extract interesting properties of each pixel
signal, such as the more stable gray level values, the sequentiality with which such
levels do evolve, etc.. Each pixel signal is modeled using two generative statistical
models, the Time Adaptive Mixture of Gaussians (TAMG), and the (Gaussian)
Hidden Markov Model (HMM). In the latter case, the contribution given to the
state of the art is twofold, both theoretical and applicative.
More specifically, we devise a novel measure of activity, that gives an idea of how
much of the signal observed represents dynamic objects.

This quantity has been used to describe the concept of per pixel activity oc-
curred in a pixel location.

In the region-level context, the basic entity is the patch of pixels showing a
similar behavior. The main contribution here is given by a novel similarity measure
among Hidden Markov Models that permits to group models which exhibit similar
“stable” temporal evolution.

As an additional contribute, a probabilistic region description coupled with a
statistical module that deals with audio data is also proposed. The coupling of the
audio and video analysis gives a novel hybrid region-level description, useful to
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performs classification and clustering tasks of video sequences (see in the following
for further details).

1.1.2 Multimodal modelling

In general, almost all of human activity recognition systems work mainly at visual
level only, but other information modalities can easily be available (e.g., audio),
and can be used as complementary information to discover and explain interesting
“activity patterns” in a scene. Computer Vision researchers devoted their efforts
towards audio-video (AV) data fusion only in the last few years, and the AV data
fusion with aim of surveillance can be thought as novel sub-field of research, that
increased its importance due to the presence of cheap audio and visual sensors.

In this thesis, the AV research trend has been explored; our intent was initially
to import in the auditory field the low-level operation of background subtraction,
which in this case is translated into an operation aimed to detect unexpected au-
dio signal values, in an on-line fashion. The analysis was performed considering
environmental sounds, without aiming at speech processing purposes.
We performed such investigation by taking into account for the poorer hardware
setting in an automated surveillance system, i.e. using only one camera, equipped
with a monaural microphone. This choice was due in order to detect what ex-
pressivity were reachable in such a configuration, without using microphone array,
thus avoiding spatialization.

The final aim was to bring the resulting analysis module back into the visual
hierarchy of understanding, in order to perform a sort of audio-video background
subtraction.

The results of the research are appealing, producing the following contributes:

• A formal definition of the concept of audio foreground, together with a tech-
nique able to individuate audio foreground patterns, based on generative mod-
elling.

• A formal definition of audio-video foreground, together with an algorithm able
to couple audio foreground patterns with video data, based on the intuitive
concept of synchrony.

• The introduction of a multi-modal feature, based on the concept of audio-video
foreground, useful to perform tasks of classification and clustering of human
activities in a surveillance setting.

1.2 Organization of the thesis

The thesis is organized as follows. In Part I, the needed mathematical notions will
be reviewed, regarding the probabilistic generative modelling. In particular, the
Hidden Markov Models will be presented as a well-known example of generative
graphical model.

In Part II, the contributes given in terms of low-level description of a video
sequence will be given in terms of methodological issues and practical relapses.
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Part III will be focused on the region-level description of a video sequence, ex-
plaining the novel similarity measure that operates on Hidden Markov Models,
and the novel formal description that considers a video sequence as an ensemble
of regions of pixels related by visual and audio properties.
In the last Part IV, conclusive remarks will be reported and future perspectives
envisaged, and lastly the publications derived from the thesis will be presented.



Part I

Mathemathical foundations
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Overview of the part

In this part, we propose a personal overview of the theoretical framework analyzed
in the thesis, i.e. the (graphical) statistical generative modelling.
This part is so organized: in chap. 3 we will give an introductory short overview of
the statistical pattern recognition: this includes the formal definition of statistical
model and the parameter estimation issue. This last point is analyzed considering
the principal statistical parameter estimation paradigms: the Maximum Likelihood
and the Maximum a Posteriori, and the Bayesian paradigms (Chap. 4). After that,
an important ML estimation technique is introduced, the Expectation Maximiza-
tion algorithm, together with an applicative example of such technique (Chap. 5).
This algorithm introduces the concept of hidden information, that leads to the
main idea of generative (graphical) modelling, explored in Chap. 6. Finally, a
widespread generative graphical model is introduced, the Hidden Markov Model,
that will be widely used and developed in the thesis (Chap. 7). Further theoretical
issues, that are tightly coupled with the innovative contributes given in the thesis,
will be given in the next parts.
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Statistical pattern recognition: brief technical
overview

3.1 Preliminaries

The pattern recognition research area is highly pervasive in several scientific sub-
fields: fundamental tasks of this discipline are the classification and the automatic
recognition of heterogeneous data. Different pattern recognition frameworks help
in performing such tasks, as the structural and the neural paradigms [131], but
the statistical paradigm appears to be the most used and investigated; actually,
the statistical pattern recognition has grown hugely, forming per se an independent
research field.

The statistical approach is founded on the systematic probabilistic modelling
of any problem, in which the information on the present data, the dependencies
among the different factors involved and the nature itself of the problem are merged
in an substrate of uncertainty.

The advantages that derive from the statistical modelling approach are:

• the capability to use the statistical properties of the problem, as well as its
purely mathematical and physical aspects. This leads to model events with
random variables, adopting the concept of conditional independency, together
with the fundamental Bayes law, and others, formally including the involved
uncertainty;

• the creation of models able to generalize to other data

The main aim of the statistical pattern recognition is to analyze processes or
sets of data using statistical models, that assign the data or the processes to classes
of membership ωj with j = 1, 2, ..., J .
Statistical models are built by using training observations, i.e. a set of delegates
that represent the data or the process being modelled.

3.2 General form of a statistical model

A statistical model of a random process can be represented by a random variable
Xi defined in a probability space, which characteristics are1: the cumulative dis-
1 we consider continue random variables
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tribution function (CDF) F (Xi), that defines the “structure” of the model, and
the parameters θi, that codify its density function pXi(xi), where xi is a possible
value assumed by the random variable. These parameters are useful to adapt the
structure to the data modelled.

We define the generic form of a statistical model as

M = < structure , parameters > = < F (Xi),θi > (3.1)

In general, the observed quantities x1, ..., xn are modelled as values assumed by a
family X = (X1, ..., Xn) of random variables defined over a probability space SP

SP = (Ω , A , (P θ)θ∈S) (3.2)

where:

• Ω is the set of possible events;
• A is a Borel σ-algebra of Ω, that codifies the operators that manipulate sta-

tistical quantities;
• P θ is a probability distribution which related random vector X = (X1, ..., Xn)

has continue density pX(x|θ) with x ∈ <n, i.e.:
P θ(X ∈ A) =

∫
A

pX(x|θ)dx, with A ∈ Ω
• S is the parameter space.

Using the notations above, we can rewrite a statistical model as

M =< F (X),θ > (3.3)

In the generative models, other than the observed quantities, we model the
generative process that produced the observations, which is not directly visible
from the data, it is hidden, eventually encoded in an a-priori knowledge.

3.3 Learning step as parameter estimation

The step with which a statistical model is built is called learning.
The learning step is defined supervised when the membership class label of each
sample is known a priori. Such a priori knowledge can be less informative: when
all the following hypotheses do hold, i.e.

• the training set is a collection of data “not labelled”, i.e. when we do not know
the membership classes of the samples;

• we have no information about the classes (their number is unknow, as well as
their possible parametric form)

then we call the learning step as completely unsupervised. In this case, the learning
step permits also to discover automatically the natural clusters of the observations.
If the membership classes can be described by parameters, we call the learning step
as parameter estimation step.

In the following sections, after a formal introduction of the statistical learning
issue, we present the fundamental approaches of learning: the Maximum Likelihood
(ML), the Maximum A Posteriori (MAP) and the Bayesian approaches.
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Statistical parameter estimation: line guides

In this section, the line guides underlying the Maximum Likelihood, the Maximum
A Posteriori and the Bayesian parameters estimation approaches are introduced.

Initial Hypotheses

For simplicity, we restrict to a supervised problem. Suppose that we have J classes,
w1, ..., wJ ; our task is to separate a collection of samples, depending on their class
membership, in order to obtain J data sets X1, ...,XJ , where the samples in Xj =
{x(j)

1 ,x(j)
2 , ...,x(j)

N } are i.i.d following p(x(j)|ωj ,θj), that is a density with known
parametric form, where: θj is the unknown parameter vector. The value of θj is
unknown. In order to ease the notation, we assume that the samples in Xi do
not provide any information on θj if i 6= j: therefore, the parameters vectors
belonging to different classes are independent. As consequence, we work on each
class separately, avoiding to refer to all the individual categories and highlighting
the dependency on the parameters, i.e.:

p(x(j)|ωj , θj) = p(x(j)|θj) (4.1)

At this point, we introduce the function

p(Xj |θj) = p(x(j)
1 , ...,x(j)

N |θj) (4.2)

that is the likelihood of θj with respect to Xj , that, for independency hypotheses
becomes

p(Xj |θj) =
N∏

i=1

p(x(j)
i |θj) (4.3)

4.1 Maximum-Likelihood and Maximum a Posteriori
estimation

Starting from the definitions of Sec.4, as in [53], we suppose to have a set of i.i.d
observations, X = {x1, ...,xN}, whose parametric structure is known, i.e. they are
generated by p(x|θ), that is known only in parametric form and dependent on the
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unknown parameter vector θ. The task is to use the data in X in order to estimate
θ. We can write:

p(X|θ) =
N∏

i=1

p(xi|θ) = L(θ|X ) (4.4)

L(θ|X ) is the likelihood function of θ with respect to the data X . The ML estima-
tion of θ is the value θ̂ which maximizes L(θ|X ), i.e. the one that better models
the data. In formulae

θ̂ = argmaxL(θ|X )
θ

(4.5)

To ease the computation, it is simpler to work with the logarithm, obtaining
the log-likelihood, rather than the likelihood itself: being the logarithm a growing
monotonic function, maximizing the log-likelihood with respect to θ is equivalent
to maximize L(θ|X ). If the likelihood is differentiable with respect to θ, then the
value of θ̂ can be estimated using standard differential calculus.

Whenever novel training observations appear, the whole process of estimation
has to be repeated, because the classification is performed on the actual value of
the parameters. This is the main difference with respect to the Bayesian approach,
as we see in the following.

The ML estimation spans the entire domain S related to θ. The drawback
is that each point of S is equally valid, with respect to the data likelihood. A
standard way to weight the points of S in dependence with an a priori knowledge
on θ holds by using the Maximum A Posteriori (MAP) paradigm: basically, we
look for the maximum of l(θ)p(θ), where p(θ) represents the a priori probability
density on the values of θ.

If the likelihood is not directly differentiable, we can apply other forms of
optimization. In the section 5 we see the Expectation-Maximization algorithm,
that operates on a simplified version of the likelihood.

4.2 Bayesian estimation

The fundamental aspect of this approach is that the parameter θ is considered as
a random variable governed by a certain distribution, i.e. an a priori density p(θ).
During the classification of a novel sample x̂, this density is translated in an a
posteriori density, by observing the training set and applying the Bayes formula.

Let X = {x1, ...,xN} be a set of i.i.d. observations, generated by p(x|θ), and
p(θ) the a priori density. Let x̂ be a novel sample, and let us define the density for
x̂ as the integral over the whole parameter space, i.e.

p (x̂|X ) =
∫

θ

p (x̂ , θ |X ) dθ (4.6)

By using the definition of conditional probability, we obtain the following expres-
sion for the joint density:

p (x̂ , θ |X ) = p (x̂|θ , X ) p ( θ |X ) (4.7)
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The first factor of the right term is independent on X because, for hypothesis, such
a function is known in parametric form, and once known the value of θ it becomes
completely specified. Therefore, we can rewrite Eq. 4.6, considering Eq. 4.7, as

p (x̂|X ) =
∫

θ

p (x̂|θ)p (θ |X ) dθ (4.8)

Now, rather than searching for a point estimation of θ, the Bayesian approach
computes p (θ |X ), i.e. the posterior density of θ, by using the Bayes law

p (θ |X ) =
p (X|θ)p (θ)

p (X )
(4.9)

that expresses a goodness degree over the value of θ given the observations X . The
function p (X|θ) is the likelihood and p (X ) the evidence, i.e. the normalization
factor that assures that

∫
p (θ |X ) dθ = 1.

Assuming that the data are i.i.d., we can write the likelihood as

p (X|θ) =
N∏

i=1

p (xi|θ) (4.10)

and the evidence as

p (X ) =
∫

θ′
p (θ′)

N∏

i=1

p (xi|θ′) dθ′ (4.11)

The posterior for θ becomes

p (θ |X ) =
p ( θ )

∏N
i=1 p (xi|θ)∫

θ′ p (θ′)
∏N

i=1 p (xi|θ′) dθ′
(4.12)

that works as “weight” of the value of θ used in the conditional density over the
new data, as expressed in Eq. 4.8. Being present the integral, the probability to
have the new sample given X does not takes into account for a particular value of
θ, but for a “mean” of values instead, weighted by p ( θ |X ).
Often the calculus of the integrals in Eqs. 4.8,4.11 is complex, and, in general, it
is easy to compute when the likelihood (4.10) and p(θ) are function of the same
nature; in this case, we talk about conjugate a priori density over p(θ).

4.3 Remarks

In the following table, we compare the three basis techniques of parameter estima-
tion, comparing the predictive density resulting from each one of them. Further
details can be readed in [101] and [14].



method estimated quantity prediction

Maximum-Likelihood p (X | θ ) p ( x̂ | θML )

Maximum A Posteriori p ( θ | X ) p ( x̂ | θMAP )

Bayesian Learning p ( θ | X ) p ( x̂ | X )

Table 4.1. Different estimation techniques
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Expectation-Maximization algorithm

Different limitations can be present in the real observation (or measure) processes:
for instance, loss of data or scarce observations amount. Moreover, in the esti-
mations problems, often the likelihood function is difficult to differentiate in an
analytic form, especially when we are dealing with mixture models.

The EM algorithm, introduced in [50, 157], further proposed in [19, 106, 107],
and in general heavily used in the Computer Vision community, is a method to
obtain ML parameter estimates that deals with the above situations. Actually:

• it permits to calculate ML estimations starting from an incomplete set of sam-
ples;

• it considers the presence of hidden variables strongly connected with the ob-
servations, that make the estimation problem tractable. The existence of these
hidden variables (not the values assumed by) derives from an a priori knowledge
of the data observed.

5.1 Standard EM

We assume to have a set of i.i.d. data X = {x1,x2, ...,xN}, modelled by the
likelihood

p(X|θ) =
N∏

i=1

p(xi|θ) = L(θ|X )

where θ is the unknown parameter vector.
The ingredients of the EM algorithm are:

• an incomplete (and observable) data set X = {x1,x2, ...,xN};
• a set of hidden variables Y, whose values can be estimated by X and θ.

The incomplete data set and the hidden variables form the complete data set
Z = (X , Y ), that leads to define the complete joint density

p (z |θ ) = p (x , y |θ ) = p (y |x , θ )p (x |θ ) (5.1)

in a way that quantifies the relations among observable data (X ), hidden data (Y)
and unknown parameters (θ) in probabilistic terms.
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With this novel density, we can define a new likelihood function

L( θ | Z ) = L(θ | X , Y) = p (X , Y |θ ) (5.2)

which name is complete data likelihood. The quantity L( θ | X ) becomes the in-
complete data likelihood.

The set Y represents a hidden information, consequently unknown; therefore,
it is modelled as a random quantity, that can be estimated from X and θ, and
described by the density p (y |x , θ ) in (5.1).

If we choose a particular value for θ, the likelihood (5.2) becomes a function
dependent only on Y, i.e.

L(θ | X , Y) = FX ,θ(Y) (5.3)

being X a known set.
At this point, the EM algorithm proceeds iteratively with two steps: expecta-

tion (E) step and maximization (M) step.

5.1.1 E-step

The likelihood L( θ | X , Y) = p (X , Y |θ ) tell us that the information needed to
know θ is enclosed in X and Y. The E step is useful to eliminate the dependency
of θ on Y and therefore to use only X (that we know) in order to estimate θ.

In this fashion, the uncertainty over Y does not transmit over θ, and, at the
same time, Y can be used to simplify the estimation computation.

Formally, the elimination of the dependency on Y is performed by computing
the expected value of the log-likelihood ln p (X , Y |θ ) with respect to Y, given
X and θ(i−1), where this last quantity is the actual parameter estimate (i is the
current iteration index).

The result is the marginalization over Y. The expected value defines the func-
tion Q(θ , θ(i−1) ), i.e.

Q( θ , θ(i−1) ) = E [ ln p (X , Y |θ )| X , θ(i−1) ] (5.4)

where θ(i−1) is a constant (being the current estimation of the parameter), while
θ represent the new parameter to estimate in order to increase Q.
Starting from the definition of conditional expected value

E[f(Y )|X = x] =
∫

y

f(y)pY |X(y|x)dy (5.5)

the right term of Eq. 5.4 becomes

E [ ln p (X , Y |θ )| X , θ(i−1) ] =
∫

y∈Υ

ln p (X , y |θ )p (y | X , θ(i−1)) dy (5.6)

where the density p (y | X , θ(i−1)) is the distribution of Y, which is dependent on
the observed data X and on the current estimation of the parameters; Υ is the
space where Y lives.
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The function to maximize becomes then

Q(θ , θ(i−1) ) =
∫

y∈Υ

ln p (X , y |θ )p (y | X , θ(i−1)) dy (5.7)

this is a deterministic function with respect to θ. Using the density of Eq. 5.1, the
function Q(θ,θ(i−1)) can be factorized in a summation, simpler to deal with, i.e.

Q(θ,θ(i−1)) =
∫

y∈Υ

ln [p (y | X , θ )p (X |θ )] p (y | X , θ(i−1)) dy

=
∫

y∈Υ

ln p (y | X , θ )p (y | X , θ(i−1))dy

+
∫

y∈Υ

ln p (X |θ )p (y | X , θ(i−1))dy. (5.8)

5.1.2 M-step

The M step produces a ML estimation of θ, obtained through maximization of the
function Q(θ , θ(i−1) ), i.e.

θ(i) = argmax Q ( θ , θ(i−1) )
θ

(5.9)

At each iteration, the increasing of the complete data log-likelihood is guaranteed
as well as the convergency of the algorithm to a local maxima of the likelihood
function [50], [156], [106].

A modified M-step occurs when, instead to maximize directly Q( θ , θ(i−1) ),
we are looking for the value of θ(i) such that

Q( θ(i) , θ(i−1) ) > Q(θ , θ(i−1) )

In this case the algorithm is called Generalized EM (GEM), which convergence is
also guaranteed [19].

In the following we show a mixture of Gaussians example.

5.2 Example: mixture of Gaussians

Given a set of i.i.d. samples X = {x1,x2, ...,xN}, with xi ∈ <d, we assume the
following hypotheses:

• the samples belong exactly to C classes ωj , j = 1, 2, ..., C;
• the a priori p(ωj), where

∑C
j=1 p(ωj) = 1, are not given;

• the parametric form of the densities p(x|ωj ,θj) (with parameters θj) is known,
that is, a multivariate d-dimensional Gaussian with mean µj and covariance
matrix Σj , leading to: p(x|ωj , θj) ∼ N (x; µj , Σj);

• the parameter vector is θj = (µj , Σj) for j = 1, 2, ..., C, and its values are
unknown;
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• each sample x is obtained by selecting a class ωj with probability density p(ωj),
considering then the density p(x|ωj , θj). Therefore, the likelihood p(x|Θ) is
modelled by a mixture of Gaussians

p(x|Θ) =
C∑

j=1

p(ωj)p(x|ωj , θj) (5.10)

where Θ = (p(ω1), p(ω2), ..., p(ωC), θ1, θ2, ..., θC) is the vector of the parame-
ters that needs to be estimated.

To ease the notation:

• p(ωj) = αj per j = 1, 2, ..., C;
• Θ = (α1, α2, ..., αC , θ1, θ2, ..., θC).
• p(x|ωj ,θj) = p(x|θj)
• the mixture of Gaussians becomes

p(x|Θ) =
C∑

j=1

αjpj(x|θj) (5.11)

The incomplete log-likelihood is

L(Θ | X ) = ln
N∏

i=1

p(xi|Θ) =
N∑

i=1

ln




C∑

j=1

αjpj(xi|θj)


 (5.12)

that is difficult to optimize with respect to Θ because we have a logarithm of a
summation.

At this point, we assume that X is an incomplete set of samples, and Y a set
of hidden data

Y = {yi}N
i=1 where ∀i yi ∈ {1, 2, ..., C} (5.13)

such that
yi = k =⇒ xi is generated by ωk (5.14)

The value of yi tells us which component of the mixture of Gaussians generated
the sample xi. The knowledge of such values permit us to simplify the likelihood
expression.

If we knew the values of Y, the complete data likelihood becomes

L(Θ | X , Y) = ln p(X , Y |Θ ) =
N∑

i=1

ln(p(xi|yi)p(yi)) (5.15)

By indexing the components of the mixture with the yi and setting

p(yi) = αyi (5.16)

we obtain
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L(Θ | X , Y) =
N∑

i=1

ln(αyipyi(xi|θyi)) (5.17)

that can be optimized with respect to Θ by using simple techniques [53].
The problem is that we do not know the values of Y: the solution is to assume

that Y is a random vector, described by a density function.

E-step: computation of the conditional expectation Q

As first step, we derive an expression for the distribution of Y: to do this, we fix
an initial value of Θ, i.e.

Θ(0) = (α0
1 , α0

2 , ... , α0
C , θ0

1 , θ0
2 , ... , θ0

C ) (5.18)

We can calculate the value of the density pj(xi|θ0
j ) ∀i, j. Due to the Eq. 5.16 and

applying the Bayes law, we obtain

p(yi|xi, Θ
(0)) =

α0
yi

pyi
(xi|θ0

yi
)

p(xi|Θ(0))
=

α0
yi

pyi
(xi|θ0

yi
)

∑C
k=1 α0

kpk(xi|θ0
k)

(5.19)

The density function of Y results to be

p(y|X , Θ(0)) =
N∏

i=1

p(yi|xi,Θ
(0)) (5.20)

where y = (y1, y2, ..., yN ) is an instance of the hidden variable.
Now we are able to compute the conditional expectation Q(Θ, Θ(0)):

Q(Θ,Θ(0)) =
∑

y∈Υ

ln(L(Θ|X ,y))p(y|X , Θ(0))

=
∑

y∈Υ

N∑

i=1

ln(αyipyi(xi|θyi))
N∏

j=1

p(yj |xj , Θ
(0))

=
C∑

y1=1

C∑
y2=1

· · ·
C∑

yN=1

N∑

i=1

ln(αyipyi(xi|θyi))
N∏

j=1

p(yj |xj ,Θ
(0))

=
C∑

y1=1

C∑
y2=1

· · ·
C∑

yN=1

N∑

i=1

C∑

`=1

δ`,yi ln(α`p`(xi|θ`))
N∏

j=1

p(yj |xj , Θ
(0))

=
C∑

`=1

N∑

i=1

ln(α`p`(xi|θ`))
C∑

y1=1

C∑
y2=1

· · ·
C∑

yN=1

δ`,yi

N∏

j=1

p(yj |xj , Θ
(0))

=
C∑

`=1

N∑

i=1

ln(α`)p(`|xi, Θ
(0)) +

C∑

`=1

N∑

i=1

ln(p`(xi|θ`))p(`|xi, Θ
(0)) (5.21)

where δ`,yi is Dirac delta function, i.e. δ`,yi = 1 if ` = yi, 0 otherwise. As we
can note, Eq. 5.21 is formed by two elements: the former is dependent from the
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α`s’, the latter from all the θ`s’. The using of the index ` instead of j is due to
some algebraic passages explained in [19].
We therefore obtain a function that is easy to optimize with respect to Θ: actually
we can optimize, in independent fashion, with respect to α`, by considering only
the first term, and then with respect to θ`.

M-step: α` estimation

In order to find the estimation of α` we introduce the Lagrange factor [64] λ with∑
` α` = 1 and we solve the equation

∂

∂α`

[
C∑

`=1

N∑

i=1

ln(α`)p(`|xi,Θ
(0)) + λ

(∑

`

α` − 1

)]
= 0 (5.22)

which becomes, by partially differentiating

N∑

i=1

1
α`

p(`|xi, Θ
(0)) + λ = 0 (5.23)

Considering all the feasible α` we obtain the value of λ, λ = −N , with which we
can obtain the expression for ` = 1, 2, ..., C

α` =
1
N

N∑

i=1

p(`|xi, Θ
(0)) (5.24)

M-step: θ` estimation

We have
θ` = (µ`, Σ`)

and
p(x|θ`) ∼ N (x;µ`,Σ`)

that in explicit form is

p(x|µ`,Σ`) =
1

(2π)d/2|Σ|1/2
exp

[
−1

2
(x− µ`)

T Σ−1
` (x− µ`)

]
(5.25)

The estimations of µ` and Σ` are found by starting from the second factor of
the Eq. 5.21, differentiating with respect to µ` and Σ`. After some algebraic
manipulations [19] we obtain, for ` = 1, 2, ..., C

µ` =
∑N

i=1 xip(`|xi, Θ
(0))∑N

i=1 p(`|xi, Θ
(0))

(5.26)

and

Σ` =
∑N

i=1 p(`|xi,Θ
(0))(xi − µ`)(xi − µ`)T

∑N
i=1 p(`|xi,Θ

(0))
(5.27)

The estimations for the parameters α`, µ` e Σ` can be used in the next iteration
of the EM, forming a vector Θ(1) which will substitute Θ(0), and so on until a
convergence criteria is met; for the convergence issue, see [157].
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Generative models

In the EM estimation performed in the mixture of Gaussians example, we discover
the main aim of the generative modelling, that is the explanation of an observation
set as result of an invisible process that generated it. The nature of such process,
or cause, usually is expressed using hidden variables, which represent different
factors concurring in the generation process; the relationship among these factors
is mostly described as a set of conditional dependencies, described by conditional
densities.
In the previous section the hidden variables explained the process of generation of
the observations, or the generative process of the observations, describing a hidden
process that selects one of the mixture’s component, which generates the particular
observed data.

Under this point of view, the mixture of Gaussians can be considered as an
example of generative statistical model, or simply a generative model.
The chapter is organized as follows: in Sec. 6.1 we indicate a pseudo-algorithm to
build a generative model; Sec. 6.2 analyzes the most significant step involved in
the building of a generative model, i.e. the learning step and, finally, in Sec. 6.3
the graphical methodology to express a generative model is detailed.

6.1 Building a generative model

Given a set of observations considered as a set of instances of i.i.d. random variables
V , the steps that lead to the related generative model are:

1. Intuitive definition: definition of the intuitive hidden causes that generated the
observed variables. The hidden causes, eventually, can be related by conditional
dependency.

2. Statistical definition: this step is needed to manage the uncertainty, both in
the definition of the “right” hidden variables and in the observations them-
selves, eventually corrupted by noise. It consists in coding each hidden cause
as hidden random variable and describing the whole generation process with a
joint distribution. This distribution should be factorized, taking into account
for the relations among the causes defined in the previous step. Conditional de-
pendencies lead to conditional densities, independencies bring to independent
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densities and so on. In this step, the definition of conditional independency
needs to be included, in order to simplify the factorization of the joint distri-
bution, by canceling some useless conditioning (see later)

3. Parametrization: this step consists in the parametrization of all the densi-
ties involved in the factorization. Even the parameters should be thought as
hidden quantities and, together with the values assumed by the hidden vari-
ables, forming the set H. Therefore, the joint distribution can be indicated as
P (H,V ).

4. Learning: at this point, the most important step consists in the learning of the
hidden quantities using the observations, i.e. choosing a possible instance of
values for H that maximize the posteriori distribution P (H|V ).

The step 1) of the building process of a generative model needs to be highlighted:
in facts, the a priori knowledge that tell us the causes that generated the observa-
tions, as long as their parametric form and dependency, is not always present in
a modelling process. This problem leads to a difficult and open research field, the
model selection, aimed at selecting the best model given a set of observations.

The step 4) is the core of the generative statistical models, deeply investigated
in the literature. An exhaustive analysis of all the existent learning strategies goes
beyond the scope of this thesis; for details, see [100].
Instead, in the following we explain the learning step as a problem of minimizing
distances among functions, recently presented in [61].

6.2 The learning step

The intuitive way to estimate P (H|V ) starts supposing the joint distribution of
the generative process as known, i.e. P (H,V ), from which we can estimate

p(H|V ) =
p(V, H)∫
H

p(V, H)
(6.1)

where
∫

H
p(V,H) = p(V ) is a normalization form.

When p(H|V ) is a tractable and computable (in a efficient way) function, then
an immediate differentiation can be applied. In such case the inference is said
exact.

Anyway, in most of the cases, it is impossible to find the analytical maximiza-
tion, as we saw for the mixture of Gaussians example. This occurs often when the
number of hidden variables is high, and each one of them can assumes a wide range
of values [61]. In such cases, it is needed to assume an approximation of p(H|V )
in the process of estimation.

6.2.1 Approximation p(H|V )

Assuming p(H|V ) as intractable, the idea is to search for a simpler but similar
function Q(H), subjected to ∫

H

Q(H) = 1 (6.2)
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The similarity is expressed as a distance in the space of the functions to mini-
mize. Instead of a distance, in literature is mostly used the divergence of Kullback-
Leibler D(Q,P ) [35]

D(Q,P ) =
∫

H

Q(H) ln
Q(H)

p(H|V )
(6.3)

where the following properties are satisfied:

D(Q, P ) ≥ 0 (6.4)
D(Q, P ) = 0 ⇐⇒ Q(H) = p(H|V ) (6.5)

Evidently, the function D(Q, P ) can not be minimized, being present p(H|V ).
Instead of D(Q,P ) the solution consists in evaluating another divergence, known
as Helmholtz Free Energy F (Q,P ), without constraining the search space of Q.

The divergence F (Q,P ) is a functional that can be derived from D(Q,P ) by
subtracting it the term

log p(V ) =
∫

H

Q(H) ln p(V ) (6.6)

that is independent from H, thus leaving unchanged the search space of Q(H).
Explicitly, F (Q, P ) is

F (Q,P ) = D(Q,P )− ln p(V ) (6.7)

=
∫

H

Q(H) ln
Q(H)

p(H|V )
−

∫

H

Q(H) ln p(V )

=
∫

H

Q(H) ln
Q(H)

p(H|V )p(V )

=
∫

H

Q(H) ln
Q(H)

p(V, H)
(6.8)

that can be intended as the KL divergence between Q(H) and p(V, H), that re-
places the untractable p(H|V ). The add-on of this form is that the joint p(H, V )
is known, therefore F (Q,P ) is computable.

Another way to derive F (Q,P ) consists in using the Jensen’s inequality;
Jensen’s inequality states that a concave function of a convex combination of
points in a vector space is greater than or equal to the convex combination of the
concave function applied to the points. To bound the log-probability of the visible
variables ln P (V ) = ln(

∫
H

P (H, V )), we use the arbitrary distribution Q(H) (a set
of convex weights, summing them to 1) to obtain a convex combination inside the
concave logarithm function:

ln P (V ) = ln
(∫

H

P (H, V )
)

= ln
(∫

H

Q(H)
P (H, V )
Q(H)

)

≥
∫

H

Q(H) ln
(

P (H, V )
Q(H)

)
= −F (Q,P ) (6.9)

At this point, the trick of all the learning algorithms stand on how to define
Q(H) in order to make the inference plausible. The loosest constraint for Q(H),
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(
∫

H
Q(H) = 1), means to apply simple functional differentiating rules in the func-

tional of Eq. 6.8, obtaining Q(H) = P (H|V ).
The task is to find simplificative constraints for Q(H).

6.2.2 An alternative way to consider the EM algorithm

The EM algorithm can be explained in this framework by defining

Q(H) = δ(H(θ) − Ĥ(θ)) Qh(H(1),H(2), ...,H(T )) (6.10)

where T is the number of the visible variables V (1), ..., V (T ), with {H(t)}, t =
1, . . . , T the hidden variables, one for each visible variable, and H(θ) the parame-
ters, that we assume shared by all the variables.

By assuming the visible variables {H(t)} as i.i.d., and that H(t) is conditionally
related to the respective V (t), we can rewrite the right term of Eq. 6.10 as

Q(H) = δ(H(θ) − Ĥ(θ))
T∏

t=1

Qh(H(t)) (6.11)

with Ĥ(θ) the set of “best” parameters, in a likelihood sense. Substituting in Eq. 6.8
the following joint distribution

p(V, H) = p(H(θ))
T∏

t=1

p(H(t), V (t)|H(θ))

and considering Q(H) as defined in Eq. 6.11, the Helmholtz free energy becomes

F (Q,P ) = − log p(Ĥ(θ)) +
T∑

t=1

∫

H(t)
Qh(H(t)) log

Qh(H(t))
p(H(t), V (t)|Ĥ(θ))

(6.12)

By interpreting this function as complete data log-likelihood, the EM algorithm
can be rewritten as:

• Initialization: we assume

Q(H) = δ(H(θ) − Ĥ(θ))
T∏

t=1

Qh(H(t))

and we guess an initial “best” parametrization, Ĥ(θ), assuming further the
parameters as independent from each other.

• E-step: minimize F (Q,P ) with respect to Qh(H(t)), with only constraints
that

∫
H(t) Qh(H(t)) = 1, using the guessed Ĥ(θ). The minimum is achievable

(by functional derivative calculus) for

Qh(H(t)) = p(H(t)|V (t), Ĥ(θ)) (6.13)

for t = 1, 2, ..., T .
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• M-step : minimize F (Q,P ) with respect to Ĥ(θ), by using the form of Q(H(t))
found in the E-step, and computing, for each ĥ(θ) ∈ Ĥ(θ), a Maximum-
Likelihood estimation, by analytically solving ∂F (Q,P )/∂ĥ(θ) = 0, i.e.

− ∂

∂ĥ(θ)
log p(ĥ(θ))−

T∑
t=1

(∫

H(t)
Qh(H(t))

∂

∂ĥ(θ)
log p(H(t), V (t)|Ĥ(θ))

)
= 0

(6.14)
(Qh(H(t)) does not depend from any hidden parameters).

• repeat E-step and M-step until convergence, using the maximization found at
the n-th step as guess in the n + 1-th step.

6.3 Generative graphical model

Usually, the generative models are better explained and managed using graphs,
where the nodes represent the variables and the edges the conditional dependen-
cies.

Graphical models [36,63,84,100,107,113,114,127] use graphs to represent and
manipulate joint probability distributions, and are useful instruments aimed at
the construction of efficient generative models.

A graphical model has both a structural component, encoded by the pat-
tern of edges in the graph, and a parametric component, encoded by a numer-
ical “potential” associated with sets of edges in the graph. The relationship be-
tween these components underlies the computational machinery associated with
graphical models. In particular, general inference methods allow statistical quan-
tities (such as likelihoods or conditional probabilities) and information theoretic
quantities (such as mutual information and conditional entropies) to be computed
efficiently.
Learning algorithms are derived from these inference algorithms and allow para-
meters and structures to be estimated from data.

In the following, we provide the definition of Bayes Network, or simply Bayes
Net.

Definition 1 A Bayes Network for the set of random variables S = {s1, ..., sT } is
an acyclic directed graph 1, where each node is associated with a random variable
and the presence of edges between nodes represents conditional relationship (“a
causes b”). At each node si, whose parent nodes are Pi = {sk, ..., sl}, is associated
a conditional density p(si|Pi). The joint distribution over all the variables, p(S),
is equal to the product of all the conditional densities [61]

p(S) =
T∏

i=1

p(si|Pi) (6.15)

1 An acyclic directed graph G = (N, E) consists in a set of nodes N connected by a set
of edges E = {(a, b)|a, b ∈ N}. If an edge (a, b) ∈ E exists in the graph, then a is a
parent node for b, and b is a child nod for a; [89].
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A well known example of Bayes Netwok is given in Fig.6.1, called “The sprinkler
network”. In this toy problem, the task is to analyze the process that leads the
grass to being wet.

Fig. 6.1. Bayes Net structure

As we see in the figure, the generative model that describes the causes related
with the wet grass is fully specified: the pseudo algorithm described in Sec.6.1 has
been completely exploited.

In facts:

• all the hidden causes supposed to be related with the visible event “the grass
is wet”, i.e., the sprinkler, the rain, the presence of clouds, are present in the
graph and related with edges; this corresponds to step 1 (“Intuitive definition”);

• the uncertainty in the process is added in the analysis, by defining the joint
probability of all the nodes in the graph, i.e. P (C, S,R, W ) (step 2 of the build-
ing process, “Statistical Definition”). The graphical framework, that intuitively
codifies our prior knowledge over the hidden process, permits to factorize the
joint distribution in a compact way. A “blind” factorization would bring to
P (C, S,R, W ) = P (C) · P (S|C) · P (R|C,S) · P (W |C,S,R).
By including the graphical definition of conditional independency, this factor-
ization can be simplified. The simplest conditional independence relationship
encoded in a Bayesian network can be stated as follows: a node is independent
of its ancestors given its parents, where the ancestor/parent relationship is with
respect to some fixed topological ordering of the nodes. By using conditional
independence relationships, we can rewrite this as
P (C, S,R, W ) = P (C) · P (S|C) · P (R|C) · P (W |S, R)
where we were allowed to simplify the third term because R is independent of
S given its parent C, and the last term because W is independent of C given its
parents S and R. We can see that the conditional independence relationships
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allow us to represent the joint more compactly. Here the savings are minimal,
but in general, if we had n binary nodes, the full joint would require O(2n)
space to represent, but the factored form would require O(n2k) space to repre-
sent, where k is the maximum fan-in of a node. And fewer parameters makes
learning easier;

• the step 3 (“Parametrization”) in this case is encoded supposing each variable
as discrete variable, thus requiring for each node a Conditional Probability
Distribution (CPD). In this case, all nodes are binary, i.e., have two possible
values, denoted by T (true) and F.

• the step 4 (“learning step”) has been also performed, being all the CPD fully
specified.

6.3.1 Graphical representation of the mixture of Gaussians

The graphical representation of the mixture of Gaussians is reported in Fig. 6.2.

V

H

Fig. 6.2. Graphical representation of a mixture of Gaussians generative model: usually
in the graphical representation only the variables are depicted, not the parameters.

The gray-shaded circle represent the visible variable O, which parametrization
is given by two parameters (mean and variance). This variable is dependent on
the hidden variable H, depicted as the white box, that indicates which of the
components has been chosen to generate that data. As usual in literature, circles
mean continue variables, squared boxes point out discrete variables, white nodes
are hidden variables, gray shaded nodes indicates visible variables.

6.3.2 Conditional independence in Bayes Nets

The relation of conditional independence is fundamental to syntactically encode
a graphical “intuition” of the process; in general, the conditional independence
relationships encoded by a Bayes Net are best explained by means of the ”Bayes
Ball” algorithm (due to Ross Shachter [149]), which is as follows: two (sets of)
nodes A and B (Fig. 6.3) are conditionally independent (d-separated) given a set
C if and only if there is no way for a ball to get from A to B in the graph, where
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the allowable movements of the ball are shown below. The dotted arcs indicate
direction of flow of the ball.

Fig. 6.3. Bayes Ball: two sets C of nodes, that separate the sets A and B, not visible in
the scheme

In the first column, we have two arrows converging on a node C (so C is a ”leaf”
with two parents). If C is hidden, its parents are marginally independent, and hence
the ball does not pass through (the ball being ”turned around” is indicated by the
curved arrows); but if C is observed, the parents become dependent, and the ball
does pass through.

In the second column in which we have two diverging arrows from C (so C
is a ”root”). If C is hidden, the children are dependent, because they have a
hidden common cause, so the ball passes through. If C is observed, its children
are rendered conditionally independent, so the ball does not pass through. Finally,
consider the case in which we have one incoming and outgoing arrow to C. It is
intuitive that the nodes upstream and downstream of C are dependent iff C is
hidden, because conditioning on a node breaks the graph at that point.
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Hidden Markov Models

This chapter introduces the Hidden Markov Model methodology: the literature
is briefly reviewed, applications are described and some technical details are pre-
sented.

The literature concerning Hidden Markov Models is very vast. At the risk of
unintentional unfairness, the first cited paper is nevertheless the survey that most
strongly influenced the author: the Rabiner paper [123], which clearly introduces
Hidden Markov Models and their application to speech recognition. Other useful
review papers were proposed by Bengio [13], where recent learning algorithms
and extensions of the basic model are reviewed, and by Ghahramani [62], in which
HMMs are introduced in the context of recent literature on Bayesian Networks [74].
Finally, a very comprehensive list of references on Hidden Markov Models can be
found on [29], updated to March 2001.

The chapter is organized as follows: in Section 7.1, a non comprehensive list of
applications where HMM were successfully employed is presented. Subsequently,
in Section 7.2, HMMs are formally introduced, and the related three common
problems are described.

7.1 Applications of Hidden Markov Models

Speech recognition is surely, in order of time, the first and most important applica-
tion of HMMs. Hundreds of papers appeared on this argument, but, for not unfairly
leaving out important works, only few historical papers are reported: [95], [123],
and [122], which not only contains information about HMM, but also a very com-
prehensive review of the speech recognition problem.

In the last decade HMMs were successfully applied to a impressively large
number of problems: in the following, a list of applications using HMMs is reported,
with some references as example:

• handwriting character recognition: on-line [77,94,145] and off-line [112] recog-
nition;

• computer vision: image classification [98], gesture recognition [55, 153], action
classification [81], face classification [56, 90, 130], 2D shape classification [73],
texture classification [120] and 3D range object recognition [68];
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• signal processing [44];
• finance [126,129];
• meteorology [126];
• geomagnetism [126];
• neurons signal analysis [28,124];
• acoustics [125];
• bioinformatics: DNA sequence and protein analysis [54] and identification of

ion channel currents [146–148];
• EEG modelling [116,117];
• robotics [69];
• communications [91];

This is far from being an exhaustive list, but its aim is simply giving an idea of
the several possible applications of this methodology: for a wider list of references,
see the very comprehensive [29]. Other examples of applications will be presented
in the following chapters of this thesis.

7.2 Fundamentals

A discrete-time first-order HMM [123] is a probabilistic generative model that
describes a stochastic sequence O = O1, O2, ..., OT as being an indirect observation
of an underlying (hidden) random sequence Q = Q1, Q2, ..., QT , where this hidden
process is Markovian, even the observed process may not be so. Let us briefly recall
the concept of Markovian process: a process is said to be Markovian of order p if

P (Qt|Qt−1, Qt−2, ..., Q1) = P (Qt|Qt−1, Qt−2, ..., Qt−p) (7.1)

The process associated with the HMM is Markovian of order one, i.e.

P (Qt|Qt−1, Qt−2, ..., Q1) = P (Qt|Qt−1) (7.2)

A discrete first-order HMM is formally defined by the following elements:

• A set S = {S1, S2, · · · , Sk} of (hidden) states. Although these states are hidden,
there are some practical applications (especially in speech and handwriting
recognition tasks) where some physical significances could be attached to the
said states. We denote the state at time t as Qt.

• A transition matrix A = {aij}, of dimension k × k, where element aij ≥ 0
represents the probability of going from state Si to state Sj :

aij = A(Si → Sj) = P [Qt+1 = Sj |Qt = Si] 1 ≤ i, j ≤ k (7.3)

Of course

aij ≥ 0 and
k∑

j=1

aij = 1

Such a matrix is called a stochastic matrix;
• A set V = {v1, v2, · · · , vm} of observation symbols: this is the alphabet, and it

corresponds to the physical outputs of the process being modelled.
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• A (k×m) emission matrix B = {b(j|Si)}, indicating the probability of emission
of symbol vj from state Si:

b(j|Si) = P [Ot = vj |Qt = Si] 1 ≤ i ≤ k, 1 ≤ j ≤ m (7.4)

with

b(j|Si) ≥ 0 and
m∑

j=1

b(j|Si) = 1

• An initial state probability distribution π = {πi},

πi = π(Si) = P [q1 = Si] 1 ≤ i ≤ k, (7.5)

with,

πi ≥ 0 and
k∑

i=1

πi = 1

An HMM is completely specified by a 5-tuple λ = (S, V,A,B,π), and defines a
joint probability distribution on the space of hidden and observed sequences, i.e.,
P (O = o,Q = q|λ).

The HMM could also be used as generator model, in order to give an obser-
vation sequence O = O1, O2, ..., OT . This is carried out by following the algo-
rithm [123]:

1. choose an initial state Q1 = Si according to the initial state distribution π;
2. set t = 1;
3. chose Ot = vj according to the symbol probability distribution in state Si,

that is b(j|Si);
4. transit to a new state Qt+1 = Sj according to the state transition probability

distribution for state Si, i.e. aij ;
5. set t = t+1; if t < T return to step 3, otherwise terminate the procedure.

7.2.1 Types of HMM

The previous definition specifies discrete, ergodic and stationary Hidden Markov
Models. These three characteristics are related to two parameters: the emission
matrix (discrete) and the transition matrix (ergodic and stationary). There are
different alternatives to them, implying different types of Hidden Markov Models.

With regards to the transition matrix, the ergodic model is the most common
type: the HMM has a full state transition matrix, and every state could be reached
from every other state of the model (see Fig. 7.1(a)). For some applications, as
speech recognition, other topologies have been found to account for the specific
problem better than the standard ergodic topology. One example of such a model
is the left-right HMM [4], presented in Fig. 7.1(b). In this case, the HMM has only
a partial state transition matrix: as time increases, the state index increases (or
remains the same), i.e. the states proceed from left to right. Formally, this implies

aij = 0, ∀j < i
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21 3
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Fig. 7.1. Different topologies: (a) three state ergodic HMM; (b) three state left-right
HMM.

Another aspect concerning the transition matrix is its stationarity: if

P [Qt+1 = Sj |Qt = Si] = P [Qt+r+1 = Sj |Qt+r = Si] = aij ∀r
then the Hidden Markov Model is called stationary ( aij does not vary over time).
Otherwise, HMM is called non-stationary.

With regards to the emission probability, it is worth noting that in many inter-
esting applications V is a continuous set, e.g. V = IR, and that it is advantageous
to use HMMs with continuous observation densities. In this case, instead of a ma-
trix of symbol probabilities B, for each state Si we have an emission probability
density function (pdf) b(o|Si), for o ∈ V , and of course with

∫
V

b(o|Si) do = 1. The
most general representation of the pdf is a finite mixture of the form

b(o|Si) =
Mi∑

m=1

cimF(o,µim,Uim) 1 ≤ i ≤ k (7.6)

where o is the vector being modelled, cim is the mixture coefficient for the mth
mixture in state Si and F is any log-concave or elliptically symmetric density, with
mean vector µim and covariance matrix Uim. For real (scalar or vectorial) obser-
vations, a very common approach is to model b(o|Si) as a mixture of Gaussians,

b(o|Si) =
Mi∑

j=1

cijN
(
o|µij , Σij

)
. (7.7)

In the equation above, N (o|µ, Σ) denotes a Gaussian density of mean µ and
covariance Σ, evaluated at o. The observations from state Si are therefore modelled
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as samples from a Gaussian mixture with Mi components. In this mixture-based
case, for which the adaptation of the Baum-Welch procedure is straightforward
[86], B contains all the mixtures parameters (all the Mi’s, all the µij ’s, etc.); the
HMM, in this case, is completely defined by λ = (S,A, π,B).

Although the general formulation of continuous density HMMs could be applied
to a wide range of problems, there is another very interesting class of HMMs that
seems to be particularly suitable in certain cases, as for example speech recognition
or EEG modelling: the autoregressive HMMs [87]. In this case, the observation
vectors are drawn from an autoregressive process, and the emission probability
b(Ot|Si) is defined as

P (Ot|Si) = N (Ot − Ftr̂i, σ
2
i ) (7.8)

where Ft = −[Ot−1, Ot−2, · · · , Ot−p], r̂i is the (column) vector of AR coefficients
for the ith state and σ2

i is the estimated observation noise for the i-th state. The
prediction for the ith state is

Ôi
t = Ftr̂i

The order of the AR model is p.

7.3 The three basic problems of HMM

There are three main problems related to the HMM use:

1. Given the HMM λ = (S, V,A,B, π), and the observation sequence O =
O1, O2, · · · , OT (with Ot ∈ V , for t = 1, 2, ..., T ), compute the marginal prob-
ability P (O|λ), i.e. the likelihood function, representing the probability that
O was generated by the model λ. This is usually defined as the evaluation
problem.

2. Given λ = (S, V,A,B, π), and an observed sequence O = O1, O2, ..., OT , de-
termine the state sequence Q̂ = Q̂1, Q̂2, · · · , Q̂T (with Q̂t ∈ {S1...Sk}) that
best “explain” the observations, i.e. that most probably generated the obser-
vation. This is usually called the decoding problem.

3. Given a set of L observed strings O = {O(l)}, where 1 ≤ l ≤ L, and O(l) =
O1, O2, ..., OTl

, adjust the parameters of a HMM λ = (S, V,A,B, π) in order
to maximize P (O|λ). This is usually referred to as the training problem.

7.3.1 Solution to Problem 1

Given the HMM λ = (S, V,A,B, π), and an observations sequence O = O1, O2, · · · , OT ,
the goal is the computation of the marginal probability P (O|λ). By using mar-
ginalization and the Bayes theorem, P (O|λ) could be computed as

P (O|λ) =
∑

all Q
P (O,Q|λ)

=
∑

all Q
P (O|Q, λ)P (Q|λ)
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Now, assuming statistical independence for observations, we have that

P (O|Q, λ) =
T∏

t=1

P (Ot|Qt, λ)

= b(O1|Q1)b(O2|Q2)...b(OT |QT )
(7.9)

The other factor P (Q|λ)) could be computed as

P (Q|λ)) = πQ1aQ1Q2aQ2Q3 ...aQT−1QT

Putting all together, we obtain

P (O|λ) =
∑

all Q
P (O|Q, λ)P (Q|λ))

=
∑

all Q1,Q2,...,QT

πQ1b(O1|Q1)aQ1Q2b(O2|Q2)...aQT−1QT
b(OT |QT )

(7.10)

A little thought should convince the reader that the calculation of P (O|λ) with
(7.10) involves the order of 2T ·kT calculation: this computation is unfeasible, and
a more efficient procedure is required. Such a method exists, the so-called forward-
backward procedure [8, 11]. This technique is based on two variables, the forward
variable αt(i) and the backward variable βt(i). The former (αt(i)), is defined as

αt(i) = P (O1...Ot, Qt = Si|λ) (7.11)

and represents the probability to have observed the sequence O1...Ot up to time
t, and being in state Si. It is recursively computed by the following formulas

α1(i) = πib(O1|Si) 1 ≤ i ≤ k

αt+1(i) =




k∑

j=1

αt(j)aji


 b(Ot+1|Si) 1 ≤ t ≤ T − 1, 1 ≤ i ≤ k

The backward variable is defined as

βt(i) = P (Ot+1...OT |Qt = Si,λ) (7.12)

and represents the probability to observe the symbols Ot+1...OT , being in the state
Si at time t. This variable is recursively computed:

βT (i) = 1 1 ≤ i ≤ k

βt(i) =
k∑

j=1

aijb(Ot+1|Sj)βt+1(j) t = T − 1, ..., 1, 1 ≤ i ≤ k

P (O|λ) is then computed as,
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P (O|λ) =
k∑

i=1

αt(i)βt(i) ∀t (7.13)

By fixing t = T we obtain

P (O|λ) =
k∑

i=1

αT (i) (7.14)

7.3.2 Solution to Problem 2

Given λ = (S, V,A,B, π), and an observed sequence O = O1, O2, ..., OT , the aim
is to determine the “optimal” state sequence that generated O. Several criteria
could be adopted to define the concept of “optimality”. Finding the single best
path that maximizes the probability to generate the sequence is the usual one.
The goal is therefore to find the state sequence Q̂ = Q̂1, Q̂2, · · · , Q̂T , such that

Q̂ = arg max
Q

P (O,Q|λ).

This problem is solved by the Viterbi algorithm [59,150]. This procedure starts by
defining the quantity

δt(i) = max
Q1...Qt−1

P (Q1, Q2, ..., Qt = Si, O1, O2, ..., Ot|λ) (7.15)

representing the best score (i.e. the highest probability) along a single path, at
time t, which accounts for the first t observations and ends at state Si. To retrieve
the state sequence, the argument of the δi has to be stored for each t and each i:
this is obtained using the vector ψt(i).

The Viterbi algorithm is then defined by the following recursive steps:

1. Initialization:
δ1(i) = πib(O1|Si) 1 ≤ i ≤ k
ψ1(i) = ∅ 1 ≤ i ≤ k

2. Recursion:
δt(i) = max

1≤i≤k
[δt−1(i)aij ]b(Ot|Sj) 1 ≤ j ≤ k

2 ≤ t ≤ T

ψt(i) = arg max
1≤i≤k

[δt−1(i)aij ] 1 ≤ j ≤ k

2 ≤ t ≤ T

3. Termination:
P̂ = max

1≤i≤k
[δT (i)]

Q̂T = arg max
1≤i≤k

[δT (i)]

4. State sequence backtracking:

Q̂t = ψt+1(Q̂t+1) t = T − 1, T − 2, ..., 1
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7.3.3 Solution to Problem 3

Given a set of L observed strings O = {O(l)}, where 1 ≤ l ≤ L, and O(l) =
O1, O2, ..., OTl

, assumed to be independent samples taken from a common HMM
λ = (S, V,A,B,π), the aim is to determine λ. This is the most difficult problem,
which is usually solved by adopting the Maximum Likelihood criterion, that is,

λ̂ = arg max
λ

P (O|λ) = arg max
λ

L∏

l=1

P (O(l)|λ);

The best-known algorithm to implement this ML criterion is the so-called Baum-
Welch re-estimation technique [7–11]. This is a particularization of the Expectation-
Maximization algorithm (see Chap.5; here the missing data is the hidden sequence
Q).

In order to describe the procedure for the re-estimation of the HMM parame-
ters, two (hidden) variables have to be introduced:

• ξt(i, j): it represents the probability of passing from state Si at time t to state
Sj at time t + 1, given the observations and the model, i.e.

ξt(i, j) = P (Qt = Si, Qt+1 = Sj |O, λ) (7.16)

This variable is computed using forward and backward variables as

ξt(i, j) = P (Qt = Si, Qt+1 = Sj |O,λ)

=
P (Qt = Si, Qt+1 = Sj ,O|λ)

P (O|λ)

=
αt(i)aijb(Ot+1|Sj)βt+1(j)

P (O|λ)

=
αt(i)aijb(Ot+1|Sj)βt+1(j)∑

i

∑
j αt(i)aijb(Ot+1|Sj)βt+1(j)

(7.17)

Note that the sum of ξt(i, j) over time t could be interpreted as the expected
number of transitions from state Si to state Sj .

• γt(i): it represents the probability of being in state Si at time t, given the
observation and the model, i.e.

γi = P (Qt = Si|O,λ) (7.18)

This variable is computed as

γt(i) = P (Qt = Si|O,λ)

=
P (Qt = Si,O|λ)

P (O|λ)

=
αt(i)βt(i)∑
i αt(i)βt(i)

(7.19)



7.3 The three basic problems of HMM 41

The variable γi(t) could be also expressed in terms of the variable ξt(i, j), giving

γt(i) =
k∑

j=1

ξt(i, j) (7.20)

In this case too, the sum of γt(i) over the time t can be interpreted as the
expected number of transitions from Si.

Given those two variables, the re-estimation procedure determines the values of
the parameters A,B, π with the following procedure:

π̄i = expected frequency in state Si at time t = 1
= γ1(i) (7.21)

āij =
expected number of transitions from state Si to state Sj

expected number of transitions from state Si

=

T−1∑
t=1

ξt(i, j)

T−1∑
t=1

γt(i)

(7.22)

b̄(vj |Si) =
expected number of times in state Si and observing symbol vj

expected number of times in state Si

=

T−1∑

t = 1
s.t. Ot = vj

γt(i)

T−1∑
t=1

γt(i)

(7.23)

If we define the current model as λ = (S, V,A,B, π), and use it to compute the
right hand side of (7.21), (7.22) and (7.23), we define the re-estimated model as
λ̄ = (S, V, Ā, B̄, π̄). It has been shown by Baum and his colleagues that

P (O|λ̄) > P (O|λ)

which means that, at each iteration, the likelihood has increased, until a maxi-
mum is reached. The final result of this procedure is the trained HMM, called the
Maximum Likelihood estimate of the HMM, because, as we see in Sec. 4.1, the
parameters of the HMM are considered as unknown but fixed quantities.

Moreover, it has been proved [123] that this formulation could be perfectly
casted into the Expectation-Maximization framework.

Finally, as this problem is an optimization problem, some gradient descent
techniques have been employed [95], yielding nevertheless solutions comparable to
those of standard re-estimation procedure above presented.
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This technique is quite effective and really fast: typically the algorithm con-
verges after about ten iterations. The main drawback is its local behavior, implying
the convergence to the nearest local maximum. Since the likelihood is highly mul-
timodal, the initial conditions could crucially affect the effectiveness of the learn-
ing. Another severe limitation is the fact that re-estimation formulas are based
on computation of frequencies, or expected times, of events. This implies that a
big training set is indispensable in order to obtain reliable estimate of the HMM
parameters.



Part II

Low level description of a video sequence
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Overview of the part

This part presents a new approach to video understanding, which aims at ex-
tracting structured information from a video surveillance sequence using directly
pixel-level data. The method models the sequence using a forest of Hidden Markov
Models, which are able to extract a sort of dynamic information, that helps to de-
tect those areas more affected by foreground activity.

This information is estimated using an entropy-like measure defined on the
stationary probability of the Markov chain associated to the HMMs, producing
a visual per-pixel analysis. This approach constitutes an example of per-pixel de-
scription of a video sequence, that is unsupervised in nature.





9

Introduction to a pixel-level description

In a pixel level description the video sequence is intended as a bunch of independent
signals, one for each pixel location. In this chapter we present a novel approach,
where generative modelling is applied on each pixel signal, in order to discover
hidden per pixel properties. The exhibition of such properties after the analysis
will give a per pixel insight over the sequence.

Actually, many approaches in the literature [1, 71, 151] base their analysis on
typical and well known per-region descriptions, i.e., segmentation and tracking.
Typically, these procedures are adequate when a priori knowledge is available (for
example, the shape of an object to be identified, the number of objects to be
tracked, the location of appearing/disappearing objects), but they are weak when
this information is not provided. This problem occurs, for instance, when a camera
is monitoring a crowded scene, in which multiple occlusions and clutter are present.

A per-pixel description of a video sequence circumvents this problem by per-
forming an analysis at the lowest level, i.e., by considering directly and only the
temporal pixel-level behavior.

A somewhat similar idea is at the basis of the methods proposed in [66,67,108,
134, 158], in which the extraction of semantic information is carried out without
segmentation or trajectory extraction, but performing low- (pixel) and mid-level
(blob) analysis, after a background analysis modelling. Nevertheless, our approach
is only similar in spirit to the above quoted work since, unlike those approaches,
only low-level analysis at pixel level is performed and a different probabilistic
method is used.

Another important characteristic of the description regards the modelling tool
used to analyze the video sequence. The sequence is modelled using a forest of
Hidden Markov Models (HMMs), each one modelling the temporal evolution of a
pixel.

The HMMs appear a suitable choice for our tasks: they represent a good com-
bination between expressivity power and low computational complexity.

The rest of the chapter is organized as follows. In Section 9.1, some basic princi-
ples related to the Hidden Markov Models, not previously explained, are presented.
The proposed strategy is then detailed in Section 9.2, and extensive experimental
results and a comparative analysis are presented in Section 9.3. Finally, in Section
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9.3.1, conclusions are drawn and remarks about the per pixel modeling of video
sequences are presented.

9.1 Methodological issues

In this section, the theoretical concept of stationary probability of a HMM is
presented, representing a key entity in the video description proposed.

9.1.1 The stationary probability distribution

Given a HMM λ = (A,B, π), consider the Markov chain Q = Q1, Q2, Q3... with
state set S = {S1, ..., Sk}, stochastic transition matrix A, and initial state proba-
bility π. We can define the vector of state probabilities at time t as

pt = [pt(1), ...,pt(j), ...,pt(k)] = [P (Qt = S1), ..., P (Qt = Sj), ..., P (Qt = Sk)].

where pt(i) represents the probability of being in state Si at time t. Obviously, pt

can be computed recursively from p1 = πA, p2 = p1A = πAA, and so on. In
short, pt = πAt.

We are interested in the stationary probability distribution p∞, which charac-
terizes the equilibrium behavior of the Markov chain, i.e. when we let it evolve
indefinitely. This vector represents the probability that the system is in a particu-
lar state after an infinite number of iterations. Since it is a stationary distribution,
p∞ has to be a solution of

p∞ = p∞A

or, in other words, it has to be a left eigenvector of A associated with the unit
eigenvalue. Under some conditions (see [24] for details), the Perron-Frobenius the-
orem states that matrix A has a unit (left) eigenvalue and the corresponding left
eigenvector is p∞. All other eigenvalues of A are strictly less than 1, in absolute
value. Finding p∞ for a given A then amounts to solving the corresponding eigen-
value/eigenvector problem.

9.2 The proposed approach

In this section the proposed approach is presented. In 9.2.1 the probabilistic mod-
elling of the sequence is introduced, while the following two sections describe how
this representation is used to infer information (Sect. 9.2.2) about the scene.

9.2.1 The probabilistic modelling of video sequences

The proposed approach models the whole sequence as a set of independent per
pixel processes (x,y,t), each one describing the temporal gray-level evolution of the
location (x,y) of a scene (since the camera is fixed). Given this set of sequences, we
want to model them in order to capture their most important characteristics. In
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particular, we need a model able to determine: 1) the most stable gray-level compo-
nents measured in the whole sequence; 2) the temporal chromatic variation of these
components; 3) the sequentiality in which the components vary. An adequate com-
putational framework showing these features is constituted by the Hidden Markov
Model, presented in Chapter 7. Using this model, all the above requirements can be
accomplished. In particular, using HMMs with continuous Gaussian emission prob-
ability, the most important gray level components are modelled by the means µi

of the Gaussian functions associated to the states, the variability of those compo-
nents are encoded in the covariance matrices Σi, and the sequentiality is encoded
in the transition matrix A. The HMM methodology has been preferred to other
similar modelling techniques, such as mixture of Gaussians models (GMM), due to
its important characteristic of being able to deal with the temporal sequentiality
of the data, which is crucial when analyzing video sequences. GMMs are indeed
not able to capture the temporal variability, i.e., the model does not change if the
frames of the video-sequence are randomly shuffled, as temporal information is not
considered.

Summarizing, the sequence is modelled using a forest of HMMs, one for each
pixel.

For what concerns the model selection, the different approaches for determining
the number of states of a HMM directly from data (e.g., [16,17,22,141]) are typi-
cally computationally demanding. Since the proposed approach trains one HMM
per pixel, we have chosen to fix a priori the number of states in order to maintain
the computational effort at a reasonable level. This choice is not critical and can
be guided from opportune considerations about the complexity of the scene, espe-
cially in relation to the complexity of the background. Actually, three states are
considered a reasonable choice, taking into account the possibility of a bimodal
BG, and one component for the foreground activity [138].

Once fixed the number of states, the HMM training has been carried out using
the standard Baum-Welch procedure, paying particular attention to the initializa-
tion. Since the Baum-Welch procedure, starting from some initial estimates, con-
verges to the nearest local maximum of the likelihood function, which is typically
highly multi-modal, the initialization issue is particularly crucial for the effective-
ness of the training. In our approach, a GMM clustering is used to initialize the
emission matrix of the HMM before training. In particular, the initialization phase
first considers the sequence of pixel gray levels as a set of scalar values (no matter
in which order the coefficients appear); second, these values are grouped into three
clusters by following a GMM clustering approach, i.e., fitting the data by using
three Gaussian distributions, in which the Gaussian parameters are estimated by
an EM-like [51, 157] method. Finally, the mean and variance of each cluster are
used to initialize the Gaussian of each state, with a direct correspondence between
clusters and states.

The computational complexity of the training phase is O(nImaxN2T ), where
n is the number of the pixels, ImaxN2T is due to the standard complexity of
the Baum-Welch training phase for each pixel; Imax is the maximum number of
iterations permitted during the learning step, N2T is due to the forward and
backward variables calculation, where N is the number of the states and T is the
length of the sequence.
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9.2.2 Dynamic information: the activity maps

The proposed method is able to infer the degree of foreground activity in the
scene; we characterize such information as dynamic, highlighting the main aspect
of the foreground, i.e. of being (spatially) dynamic in the scene. Strictly speaking,
we define a measure which is able to quantify for each pixel the related level of
activity. By visualizing all these measures, we estimate the “activity map” of the
scene, in which the areas more affected by foreground motion are recognizable.

A similar goal was achieved in [49], where the activity zones were found by
clustering the object trajectories derived from the tracking. Nevertheless, in our
case the analysis is performed without resorting to trajectories, but by the direct
use of the pixel signals. Other approaches similar in spirit to our objectives are
presented in [21], in which a Motion Energy Image (MEI) is used to represent
and index human gestures, in [48], where an enhancement of the MEI is proposed,
namely the Motion History Image (MHI), and in [82], where Spatio-Temporal
Entropy Image (STEI) were used to detect foreground activity. Some of these
approaches are summarized in the experimental section, where they have been
experimentally compared with our approach.

In our framework, we define a measure which is able to quantify for each pixel
the level of activity related to that pixel, and this is carried out by analyzing the
parameters of the associated HMM. The key idea is that the temporal evolution
of the pixel grey-level could be considered as composed by different components,
each one assigned to a particular state during the HMM training. Each component
is then characterized by a degree of importance: some are more important, i.e.,
“explain” more data, others are less important since they result from disturbing
sources (e.g., noise). Therefore, if we are able to measure the “importance” of
a state, we could infer the importance of the components of the signal which
represents the information that we will use to determine the activity zones. As
explained later, the “state importance” can be measured using the stationary
probability distribution of the Markov Chain associated with the HMM.

Given a HMM λxy with N states, trained on the sequence of the gray-level val-
ues assumed by the pixel (x,y), all the information we need is in the vector pxy

∞ . The
activity measure AL(x, y) should show some precise characteristics, i.e., it should
discard the components relative to the background (unimodal or multimodal), and
should clearly detect those relative to the foreground, giving a response propor-
tional to the amount of foreground passed over the pixel. These requirements are
accomplished by the following measure:

AL(x, y) =
N∑

i=1

ωxy
i pxy

∞ (i) log2

1
pxy
∞ (i)

(9.1)

with
wxy

i = log(1 + σxy
i ) (9.2)

where σxy
i is the variance of the Gaussian associated to the state Si of the HMM

λxy. The term 1 added to the variance ensures that the weights are all positive.
We use the logarithm in order to ensure a smoother increasing behavior of the

weights. This formula is a sort of “weighted entropy”, and is the result of two
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ideas: the use of the entropy, and the weighting of the components in the entropy
computation. The measure of entropy has been chosen since it is able to quantify
the uncertainty linked to the model of the pixel gray level evolution. The idea of
weighting has been introduced in order to deal with multi-modal background (for
example in the case of moving foliage), which produces an erroneous high entropy:
the idea is to assign lower weight to the terms of the computation that are most
related to the background. In this case, we are in fact more interested in the
entropy of the states that most probably do not correspond to background, since
they represent the activity. The weight is linked to the variance of the Gaussian of
the state, so that the lower the variance, the higher the probability that the state
corresponds to a background component. By computing this quantity for all the
frame pixels, we could finally obtain an activity map of the observed scene. The
computational effort required to calculate the activity map is O(Nn).

An immediate consideration that could arise is why we do not directly use the
entropy of the gray level evolution of the pixel, rather that the pseudo entropy of
the model of the gray level evolution. The reasons are essentially two: first, the
use of a HMM permits to recover from noise that is present in the video sequence,
which cannot be accomplished by the raw entropy computation. Second, and more
important, the use of HMMs permits to deal also with multimodal background: the
entropy of the raw signal results large in case of multimodal background, whereas
with our approach this does not occur since the background states are in some way
disregarded from the measure computation. This behavior is confirmed by results
presented in the experimental section.

9.3 Experimental trials and comparative analysis

In this section, some comparative experimental evaluations of the proposed ap-
proaches are presented, where the strength and the limitations of the proposed
description are discussed. Finally, Section 9.3.1 contains some suggestions about
the possible use of the information extracted from the video sequence.

As comparative techniques, we considered methods present in the literature
(see [21], [82]) and simple modified versions of them.

Summarizing, all the approaches employed in this section are named as follows:

• Motion Energy Image (MEI) [21]: the MEI is the sum of the squared differences
between each frame and one chosen as reference (the first of the sequence); in
particular, to each difference image is applied a threshold TMEI in order to
disregard little values due to noise. The best results of this approach have been
obtained using TMEI = 4.

• Modified Motion Energy Image (MMEI): the same approach as above, but the
differences are calculated between consecutive frames. This measure will weight
much more sudden foreground activities;

• Median over reference squared difference (MedReF): the median operator is
applied over the volume of the squared differences with respect to the first
frame.

• Median over consecutive squared difference (MedCDif): the median operator
is applied over the volume of the consecutive squared differences.
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• Simple entropy: for each pixel, we calculate the associated signal entropy in a
range of 255 gray-level values. This measure is quite similar to that proposed
in [82]: in such approach the entropy is calculated over a time interval of 5
frames, and over a square spatial window of 3× 3 pixels.

• The proposed approach.

The first test sequence is composed of 390 frames, acquired at a rate of 15
frames per second. The sequence regards an indoor scene, where a man is entering
from the left, walking to a desk, and making a phone call. After the phone call, he
leaves the scene going out to the right. Some frames of the sequence are shown in
Fig. 9.1.
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Fig. 9.1. Some frames of the original sequence.

The activity zones resulting from the application of the proposed approach and
the comparative methods are displayed in Fig. 9.2, in which higher gray-level values
correspond to larger activity. All the output values of the different methods are
scaled in the pictures in the interval [0,255]. The results show that the methods
based on the differences with respect to an initial frame (Fig. 9.2a and c) are
“complementary” with respect to the ones based on consecutive differences (Fig.
9.2b and d). In the former case, the person near the phone represents the biggest
amount of activity, while in the latter the slow motion of the person makes the
vibrating phone wire as the strongest activity. The simple entropy method (Fig.
9.2e) includes both the person and the wire as energetic objects in the scene, and it
is also visible in the center of the scene a mild energy zone, due to the approaching
phase of the person to the phone. Another drawback of this method is that also
the background signals (due to reflecting effects in the scene and in the decoding of
the movie) are taken into account in the calculus of the activity map. Therefore,
high energy patterns are detected in correspondence of the bookshelf, over the
chair and under the phone; moreover, a general energy amount is detected over all
the scene, due to the compression coding of the sequence. Our method (Fig. 9.2f)
avoids all the noise due to the background, highlighting a more precise description
of the activity present in the scene. The resulting image is very informative: one
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(a) (b)

(c) (d)

(e) (f)

Fig. 9.2. Activity zones resulting from: (a) MEI over reference frame; (b) MEI over
consecutive difference (MMEI); (c) Median over reference squared difference (MedReF);
(d) Median over consecutive squared difference (MedCDif); (e) Simple entropy; (f) The
proposed approach. The whiter the pixels the higher the activity.
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could see that the walking zone (i.e., the zone to the left of the desk) is quite
active, while the zone near the phone is very active. The zone in the top of the
image, where no foreground objects pass, is darker, i.e. no activity is present, and
only some noisy behavior is visible.

Another interesting example is proposed in Fig. 9.3, where some frames of the
video sequence are shown. The camera is monitoring an outdoor scene, where there
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Fig. 9.3. Some frames of the sequence of the fire.

is a starting fire (please note the smoke in the middle). This is a clear example
in which object-centered trajectories cannot be extracted, since the moving object
has neither a clear shape nor a well-defined contour. The sequence is 450 frames
long, which represents 30 seconds of observation. The activity zones, extracted
from this video sequence using all the methods, are shown in Fig. 9.4.

In this case, all the methods based on consecutive differences (Fig. 9.4b and
d) fail due to the slow motion of the smoke. The methods based on the difference
with respect to a reference frame (Fig. 9.4a and c) perform better, even if a clear
pattern is not identifiable. In general, all these methods are able to absorb the
background noise. The entropy of the sequence, shown in Fig. 9.4e, highlights also
the background noise, resulting in a overall high energy scene. Using our approach,
depicted in Fig. 9.4f, it is possible to clearly identify the smoke zone, indicating
that there is a certain activity. Further, it is important to note that the fire has
been detected analyzing only 30 seconds of the scene. The holes present in the
image can derive from the lamp-posts which are located ahead of the smoke, as
can be noticed by looking at Fig. 9.3. Comparing the two last images we can also
notice that they carry similar information: in both cases the smoke area is clearly
identified. This is obvious, since the same guiding principle is used: in our case, it
is the entropy of the model of the signal, whereas in the second it is the entropy of
the signal itself. However, the image resulting from our approach clearly separates
activity from inactivity (all the remaining part of the scene is dark), while using
the “simple entropy” approach the activity in the mountains zone is larger than
that of the sky, and this represents an erroneous interpretation.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9.4. Activity zones resulting from: (a) MEI over reference frame; (b) MEI over con-
secutive difference; (c) Median over reference squared difference (MedReF); (d) Median
over consecutive squared difference (MedCDif); (e) Simple entropy; (f) The proposed
approach. The whiter the pixels the higher the activity.
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Another interesting aspect has to be pointed out. In the MEI and MedReF
approaches, the reference frame has to be carefully chosen: essentially, being the
reference frame fixed over time, the evolution of the light and the weather (the
background) is not modelled. Our method, as shown in the following example, is
able to deal with such kinds of situations.

In another experiment, we have a sequence that shows a person walking in an
indoor environment, in which a sudden change of illumination occurs (Fig .9.5).
The sequence is formed by 135 frames, (320×240 pixels) acquired at 20 frame/sec..
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Fig. 9.5. Frames of the second indoor sequence.

After applying the different approaches, we obtain the following results, shown
in Fig. 9.6. The change of illumination in the sequence produces erroneous activity
maps in the methods based on differences over a reference frame (Fig. 9.6a and
c). As stated before, all these methods work well in the situations in which the
background is highly static, as in the case of well constrained indoor environments,
or environments considered over short periods of time. In situations in which the
chromatic aspect of the background is changing over time, all these methods are
not applicable. In the methods based on consecutive differences (Fig. 9.6b and
d), the change of illumination is better absorbed: it is 5 frames long, therefore,
each consecutive difference image has smaller pixel (absolute) values than the
one built between the current frame and the reference one. Nevertheless, that
quantity is bigger with respect to the values of the consecutive differences due to
the moving person in the scene: the overall result is that the change of illumination
visually predominates on the moving object. Looking at the Fig. 9.6e, we can
notice that the “simple entropy” method completely fails in that the illumination
change occurring in the middle of the sequence makes not possible to recover any
meaningful information. Actually, one can notice that the resulting image does not
provide any expressive interpretation being quite uniform. On the other side, our
method is able to recover useful information about the movement of the person in
the hallway. In particular, looking at the Fig. 9.8(f), we could infer three correct
information: 1) the top part of the scene is not active, which is correct; 2) there



9.3 Experimental trials and comparative analysis 57

(a) (b)

(c) (d)

(e) (f)

Fig. 9.6. Activity zones resulting from: (a) MEI over reference frame; (b) MEI over
consecutive difference (MMEI); (c) Median over reference squared difference (MedReF);
(d) Median over consecutive squared difference (MedCDif); (e) Simple entropy; (f) The
proposed approach. The whiter the pixels the higher the activity.
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is something moving in the bottom, going through all the scene, and this is also
correct; 3) the right part of the scene is more active than the left part: this is still
correct, since the man starts walking (Fig. 9.5) in the middle part of the scene and
come back in from the right.

Another testing sequence regards an outdoor environment where two persons
are closing and come back. A few frames of the sequence are presented in Fig. 9.7.
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Fig. 9.7. Some frames from the outdoor sequence.

The comparative results express the same considerations made for the previous
examples, highlighting a general robustness of the proposed method (see Fig. 9.8).
In general, all the noisy background situations have great impact over the final
energy image: the more noisy the background, the less important the role of the
foreground on the final map. In general, the entropy-based method over relatively
short sequences (100 - 500 frames) is highly prone to over estimated energy errors.
Moreover, when the foreground appears briefly in the scene, the median-based
methods (Fig. 9.8c and d) tend to prune away the correspondent activity, and the
simple entropy method (Fig. 9.8e) strongly highlights the light noise activity, in
this case due to the video compression. Looking at the proposed approach (Fig.
9.8f), one could notice that the image is quite informative: the part of the scene
where people are walking is clearly expressed, as well as the non active part.
Moreover it is interesting to notice that it is possible to precisely infer also some
further details, as the positions where the legs of the people are standing more
time, which represents a larger level of detail. This detail is also represented by
the MEI and MMEI approaches (Fig. 9.8a and b, respectively), although with less
strength.

The second and the third sequence of this section should be considered the
most hard onesThese limits will draw the directions of our research. The former
sequence represents an outdoor environment1, in which a traffic situation over a

1 downloaded from ftp://ftp.ira.uka.de/pub/vid-text/image sequences/kwbB/sequence.mpg.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9.8. Activity zones resulting from: (a) MEI over reference frame; (b) MEI over
consecutive difference (MMEI); (c) Median over reference squared difference (MedReF);
(d) Median over consecutive squared difference (MedCDif); (e) Simple entropy; (f) The
proposed approach. The whiter the pixels the higher the activity.
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square is monitored via a fixed camera (Fig. 9.9). The sequence is 1710 frames

frame 100 frame 200 frame 300 frame 400

frame 500 frame 600 frame 700 frame 800

Fig. 9.9. Some frames from the traffic sequence.

long, acquired at 30 fps.
The results are shown below (Fig. 9.10).
As one can notice, the only useful results are the ones relatives to the entropy-

based approaches (e) and (f) (MMEI is also good, but not so informative; actually,
the activity due to the people in the upper right part of the scene and in the middle
of the crossing street is not shown). It is interesting to note the cylindric high
energy zone detected in the middle-right part of the scene. That part represents a
rotating billboard, detected as high energetic foreground pattern. This represents
a wrong estimation, due to the low number of states with which the HMMs have
been trained. Actually, the behavior of the area is 5-modal, with the modes fixed
over time. Intuitively, this area should be interpreted as background, with low
energy in the activity map, and this situation could be recovered using HMM with
5 number of states (Fig.9.11).

The last sequence, 8 minutes long acquired at 25 fps, represents an indoor
environment of a mall2 (some frames are depicted in Fig. 9.12). One of the purpose
of this experiment is to assess the performance of our description over different
sequence lengths. The test is divided in two stages: the first in which an initial
short part of the sequence is evaluated (48 seconds long, 1/10 of the original one);
in the second stage the whole sequence is analyzed.

This is the most difficult indoor sequence analyzed, due to strong noisy ef-
fects degrading the data quality, like reflections over the floor and over the lateral
windows.

2 Downloaded from http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
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(a) (b)

(c) (d)

(e) (f)

Fig. 9.10. Activity zones resulting from: (a) MEI over reference frame; (b) MEI over
consecutive difference (MMEI); (c) Median over reference squared difference (MedReF);
(d) Median over consecutive squared difference (MedCDif); (e) Simple entropy; (f) The
proposed approach. The whiter the pixels the higher the activity.
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(a) (b)

Fig. 9.11. Traffic sequence: the detail of the billboard in Fig. 9.10, whose pixels are
trained with HMMs having 3 (a) or 5 states (b). It is possible to evaluate the decreas-
ing of activity detected in (b) due to the correct estimation of the 5 modalities which
characterize the billboard behavior.

frame 100 frame 200 frame 300 frame 400

frame 500 frame 600 frame 700 frame 800

Fig. 9.12. Some frames from the traffic sequence.

In this case, the techniques based on differences between frames give poor
results in both tests, hence only the method based on the entropy and the proposed
approach are presented.

As shown in the previous results, the proposed approach works better com-
pared to the entropy method, individuating the zones in which the foreground
activity is located, disregarding the noise. In particular, in the Fig.9.13f1 is pos-
sible to clearly detect the left drift of energy, that model the fact that the people
enters frequently in the mall. In Fig.9.13e1 this aspect is not so clearly highlighted.
Moreover, augmenting the sequence length, the effect of the entropy takes strongly
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(e1) (f1)

(e2) (f2)

Fig. 9.13. Activity zones resulting from: (e1) Simple entropy and (f1) the proposed ap-
proach calculated over the 48 seconds sequence; (e2) simple entropy and (f2) the proposed
approach calculated over the entire 8 minutes sequence; the whiter the pixels the higher
the activity.

into account the noise due to the reflection on the floor: this results in an activ-
ity map that ”forgets” the amount of activity present in the bottom part of the
hallway. Conversely, our approach is able to represent all the foreground activity
as shown in Fig.9.13f2.

Summarizing, the per/pixel descritpion outperforms in general all the tested
comparative methods, showing a certain degree of robustness over all the input
(long/short sequences with low/high noise levels).

9.3.1 Remarks and possible applications

In this part, we propose a novel inference on the Hidden Markov Model that
permits to investigate the behavior of the underlying Markov chain. In details, this
analysis gives insight on the presumed long-term behavior of the signal observed
by the HMM. We use this analysis in order to differentiate those components of
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the signal more related with a stable level of gray, characterizing the background of
the sequence, from those related to unstable components, witnesses of foreground
activity.

This analysis is performed per-pixel, and the output is visual, providing a com-
putational module of video processing that can be embedded as the bottom layer
of the proposed hierarchy of understanding or used as per se framework of low
level video understanding.
In the following part, we will see as the present module can be used to perform
region level analysis, providing an example of structured hierarchy of understand-
ing.

The fact that the output is visual means that the quality of the results can
be directly assessed by the user. Therefore, the user can use the visual feedback
to interpret easily the relationship among computational machinery and results
obtained. This helps to improve in an intuitive way further analysis;

There are two other ways of employing the information extracted from the
proposed approach, which are currently in progress. The first is to use the activity
map in order to decide the level of detail of a variable resolution background
modelling scheme: the idea is that in those zones where no activities typically
occur, a very accurate background analysis is not necessary, and a coarse analysis
could be sufficient. The second application can be to use the activity maps to infer
the zones of appearance of the foreground with high probability, the so-called
source detection problem [137]. The idea is that it is not useful to accurately
monitor the zones of the scene where typically no foreground objects are likely to
occur.

One constraint of the described approach regards the requirement of a fixed
camera. In principle, this condition can be relaxed by performing a pre-registration
of the image pixels using an estimate of dominant motion of the scene so that
temporal gray-level profiles can be reliably evaluated. Further, such registration
could not be critical if small local areas are considered instead of single pixels like
in one of the experiments above.



Part III

High level description of an audio video sequence
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Overview of the part

In this part, the idea of visual high level description of a video sequence is given by
providing two different methodologies of modelling. These methodologies use the
generative paradigm in order to explain automatically a sequence as an ensemble
of regions. The region entity is identified as a set of pixels which share some
properties. This kind of representation is highly exploited in the video processing
community: most of the tracking algorithms work on compact regions of pixels,
using model or aspect based algorithms. In the following, we present two region
based descriptions of video sequences based on two different generative model, the
HMM and the Time adaptive mixture of Gaussian.
The part is so organized: the first approach (Chap.11) is directly related to the
per-pixel framework presented in the previous part. This is an example of how the
high level module description is built on top of a per-pixel description, exploiting
the hierarchy of understanding discussed in the introduction. Basically, the method
is able to provide a visual description of the background of the video sequence,
considered as a static object with a chromatic evolution.

The second region description (Chap.12) brings two contributes in the state of
the art of the video analysis, because

• is able to detect in an on/line fashion regions of moving pixels that share same
visual properties and particular audio properties.

• it exploits the use of the synchrony in order to couple audio and video together,
translating psychological theories in a computational framework.
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Region level description of the background

This chapter presents a video modelling technique that produces region represen-
tations starting from per-pixel descriptors. In specific, this approach takes as input
the output of the low level description module presented in the previous chapter,
i.e. a battery of Hidden Markov Models, one for each pixel.

Even in this case, the method is principally aimed to model video sequences
coming from a typical video surveillance setting, in which the camera is in a fixed
location.

Basically, the method drafts a description about how the background evolves
(e.g., periodic chromatic fluctuations possibly due to local/global illumination
changes): this is accomplished via a segmented image in which each region corre-
sponds to a compact patch of background pixels with similar gray level and with
similar time-chromatic behavior1;

The chromo-spatio-temporal segmentation is obtained by clustering the pixel-
wise HMMs. To this end, a new similarity measure between HMMs is proposed,
able to remove non-stationary components of the sequence. Using this measure
and a simple region-growing procedure, a segmentation of the scene is obtained in
which the regions show a homogeneous gray-level and a similar temporal evolu-
tion. In this case, the resulting segmentation is a spatial segmentation of the scene,
obtained by using all available information: chromatic (different regions have dif-
ferent gray level values), spatial (each region is connected in the image space),
and temporal (each region varies its color homogeneously along time). It may be
argued that a similar result could be obtained by a standard spatial segmentation
on the first frame or on the average frame, but this method results too limited.

Considering this method jointly with the per pixel description proposed in the
previous chapter, it is possible to devise an instance of visual hierarchy of under-
standing, which scheme is proposed in Fig.11.1 Actually, our approach has two
main advantages: first, the spatial knowledge, typically used to obtain standard
segmentation, is augmented with temporal information. This is useful to discover,
in a region with homogeneous color, additional subregions subjected to periodic

1 In this chapter, the use of the words chromo or chromatic concerns the aspects related
to the gray level values of the image pixels as all the processed sequences are converted
in gray-level values. Nevertheless, the extension to the RGB scale is straightforward,
and does not raise particular issues to the proposed method.
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Fig. 11.1. Input and output of the video understanding system, resulting by putting
together the method proposed in this section and the one, pixel based, proposed in Part
II: starting from the rough pixel data (top), the analysis performed can be represented
using two images (bottom). On the left, the pixel level reasoning, represented by the
activity map, that indicates the total amount of foreground activity in the scene (dynamic
information). On the right, the region level understanding, exploited through a chromo-
spatio temporal segmentation, that describes how the chromatic aspect of the background
evolve (static information). In the bottom of both the boxes, the related applications to
which our analysis can be devoted, described at the end of the previous Part, in Sec. 9.3.1,
for what concerns the per-pixel part and in Sec. 11.3.2 for the per-region part.

chromatic fluctuations (caused for example by changes of illumination). Therefore,
this segmentation could generally appear as over-segmented, but each region is
however meaningful for the addressed task. The second advantage is that moving
objects have not to be removed from the sequence (as in the single image seg-
mentation), since this operation is automatically accomplished by the envisioned
similarity measure.

The rest of the chapter is organized as follows. In Section 11.1, basic notions
regarding the clustering with the Hidden Markov Models are presented. The pro-
posed strategy is then detailed in Section 11.2, and extensive experimental results
and a comparative analysis are presented in Section 11.3. Finally, in Section 11.3.2,
conclusions are drawn and remarks about the possible applications of the proposed
description are presented.
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11.1 Methodological issues

In this section, the description of the HMM-based clustering approach is pre-
sented. HMMs have not been extensively employed for clustering sequences, lit-
erature. Even if some alternative approaches to HMM-based clustering have been
proposed (e.g., [18,93]), the typically employed method is the so-called proximity-
based approach [85], which uses the HMM modelling to compute distances between
sequences; another standard approach is based on pairwise distance matrices (as
hierarchical agglomerative) to obtain clustering [96,97,111,136]. The distance be-
tween sequences is typically based on the likelihood of the HMM, and could be
obtained using several methods (for example, see [1, 3, 111]).

In more detail, given a set of R sequences {O1...OR}, the standard approach
to clustering trains one HMM λi for each sequence Oi. Subsequently, a pairwise
distance between sequences is defined using these models, in which the key entity
is the likelihood Lij , defined as Lij = P (Oj |λi). This probability is used to devise
a distance (or a similarity) measure between sequences. The simplest example has
been proposed in [85], and is defined as

D(i, j) =
1
2
(Lij + Lji) (11.1)

A more complex one, inspired from the Kullback-Leibler measure [92] and proposed
in [111], is defined as

D(i, j) =
1
2

{
Lij − Ljj

Ljj
+

Lji − Lii

Lii

}
(11.2)

Once given these distances, any standard pairwise distance-based clustering al-
gorithm could be used, such as those belonging to the hierarchical agglomerative
family.

In Section 11.2, we will see how this standard method could be extended in
order to deal with spatial segmentation, which represents a particular kind of
clustering.

11.2 The proposed approach

Given a battery of previously learned HMM as described in Part II, the kind of
information extracted with the proposed approach is a static information, that pro-
vides knowledge about the structure of the scene. The probabilistic representation
of the video sequence is used to obtain a “chromo-spatio-temporal segmentation”
of the background. In other words, we want to segment the background of the video
sequence in regions showing a homogeneous color and a similar temporal evolution,
considering pixel-wise information. In this case, the result is a spatial segmenta-
tion, obtained by using all available information: chromatic (different regions have
different gray level values), spatial (each region is connected in the image space),
and temporal (each region varies its color similarly along time). In this way, spatial
knowledge, typically used to obtain spatial segmentation, is augmented with tem-
poral information, allowing a more detailed and informative partitioning. In the
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literature, spatio-temporal segmentation typically assume slightly different mean-
ings, depending on the considered context. For instance, in videosurveillance it
represents the background/foreground discrimination; in video indexing and re-
trieval, it provides a compact visual representation, eliminating the redundancy
in contiguous frames (in this context it is also called video-segmentation). Never-
theless, our proposed definition of spatio-temporal segmentation is rather intuitive
in that it consists in the detection of regions that are characterized by a similar
spatio-temporal behavior.

A similar definition was proposed also in [52], where a spatial segmentation
was obtained at each time step, using spatial and temporal information, but, in
that case, a segmentation was first obtained from the initial frame, and was itera-
tively used to obtain subsequent partitioning. The proposed HMM representation
implies to define a similarity measure, to decide when a group (at least, a cou-
ple) of neighboring pixels must be labelled as belonging to the same region. The
basic idea is to define a distance between locations on the basis of the distance
between the trained Hidden Markov Models: in this way the segmentation process
is obtained using a spatial clustering of the HMMs. The similarity measure should
exhibit some precise characteristics: two sequences have to be considered similar
if they share a comparable main chromatic and temporal behavior, independently
from the values assumed by the less important components. By using the mea-
sure proposed in eqs. (11.1) or (11.2), we have that the Gaussian of each state
contributes in the same way at the computation of the probability, because of the
forward-backward procedure. For our goal, however, we need that the Gaussian
of each state contributes differently to the probability computation, depending on
the “importance” of the corresponding state.

To this end, we have regularized the HMMs’ states Si, for every HMMs, with
respect to the related stationary probability p∞(i), which is a quantitative index
of the state importance, introduced in Sec. 9.1.1. Actually, p∞ indicates the “aver-
age” occupation of each state, after the Markov chain has achieved the stationary
state [17], hence, it represents the degree of saliency associated to the states. This
operation allows to normalize the behavior of the several HMMs so as to allow an
effective and reliable comparison between them.

The normalization operation is carried out by operating on the Gaussian pa-
rameters of each state, in particular, each original model λ is transformed into
a new model λ′, where all components remain unchanged, except variances σi of
state Si, for each state i = 1, .., N , for all HMMs, i.e.:

σ′i =
σi

p∞(i)
(11.3)

The new distance, called DES(k, j) (Enhanced Stationary), is then computed using
equation (11.2) on the modified HMMs λ′k. The normalization of the state vari-
ances σi with respect to the related p∞(i), corresponds to associate the correct
significance to the Gaussian N (µi, σ

2
i ), and has two beneficial effects: 1) Gaussians

of unimportant states are under-graded, reducing their contribution to the prob-
ability computation, which results in eliminating moving objects from the video
sequence, as they are considered as non-stationary components of the background
model; 2) the possibility of match between Gaussians of important states of dif-
ferent models is increased. These concepts are exemplified in Fig. 11.2. Assuming
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Fig. 11.2. Normalized variances: in (a) the original representation of the pdf of each
HMM state is shown, for 2 HMM models, λ1 (in red, dashed) and λ2 (in blue solid). The
variances of each state are σ1 = 2.2500 σ2 = 3.5865 σ3 = 27.4072 for λ1 and σ1 = 1.8804
σ2 = 2.3042 σ3 = 24.6667 for λ2. The associated p∞ is < 0.0228, 0.7752, 0.2020 > for
S1, S2, S3 of λ1 and < 0.0001, 0.9998, 0.0001 > for S1, S2, S3 of λ2, respectively. The result
of the variance normalization is shown in (b): one could notice the high importance of
states S2 for both λ1 and λ2, and the low importance of the other state variances: in the
similarity measure computation their contribution results therefore low.

this kind of similarity measure between sequences, the segmentation process can
be developed as an ordinary segmentation process of static images. We adopt a
simple region growing algorithm: starting the process from some seed-points, we
use a threshold θ to estimate when two adjacent sequences are similar using the
distance DES(k, j).

In our case, the threshold has been heuristically fixed after few experimental
trials, and is not a particular critical parameter to set up. The complexity of the
segmentation process is O(nN2T ), where N2T is due to the calculation of the
distance among models, and n is the total number of the pixels.

We will see in the experimental section that the modification of the metric
in eq. (11.2), with the integration of the chromatic-temporal information of the
video-sequence, allows us to obtain a meaningful segmentation.

11.3 Experimental trials and comparative analysis

In this section, some comparative experimental evaluations of the proposed ap-
proaches are presented where the strength and the limitations of the proposed
description are discussed. Finally, Section 11.3.2 contains some suggestions about
the possible use of the information extracted from the video sequence.
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11.3.1 Spatio-temporal segmentation

The approach proposed in section 11.2 is tested using two real sequences: the first
one regards a person walking in a corridor in which several doors are present.
Some frames of the sequence are presented in Fig. 11.3. Looking at the figure
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Fig. 11.3. Frames of the first indoor sequence.

(video sequence), you can notice that some doors are opened and closed several
times, each one with a random different frequency. The action of opening/closing a
door determines a local variation of the illumination, i.e., there are two particular
regions of the corridor in which the illumination changes with different frequencies,
that it would be reasonable to separate. These different spatial chromatic zones are
highlighted in Fig. 11.4: one is on the left part of the corridor, and the other on the
right part. This example shows all the potentialities of the proposed approach: the
sequential information employed by our approach is essential in order to recover
all the different semantic regions of the scene. As an example, let us consider only
the median (or the mean) of the sequence, i.e., the image formed by the median
(mean) values of each pixel signal, displayed in Fig. 11.5. From these images it is not
possible to detect the two semantically different zones of the background. Actually,
any spatial segmentation technique applied to these images would segment the
zone between the two doors as belonging to the same region. In Fig. 11.6, the
segmentation resulting from our approach is displayed. One can easily notice that
our approach clearly separates the two zones, labelled as different regions of the
scene. In order to assess the gain obtained with the Enhanced Stationary similarity
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Fig. 11.4. Different spatial chromatic zones.

��� ���

Fig. 11.5. (a) Average frame (b) Median frame.

Fig. 11.6. Static information: Spatio-temporal segmentation of the first indoor sequence.
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measure DES, the segmentation of the corridor sequence based on the measure of
the equation (11.2) is depicted in Fig. 11.7. It is evident that the noise affecting

Fig. 11.7. Segmentation of the first indoor sequence using the similarity measure without
the HMM states’ normalization.

the video sequence and the presence of foreground produce a very noisy and heavy
over-segmentation, whereas our approach is able to manage foreground objects
and noise.

The second sequence used for testing is obtained from [140] and regards the
monitoring of an indoor environment with one moving object. Some of the frames
of the sequence are presented in Part II, Sec. 9.3, in Fig. 9.5, showing a sudden
not uniformly distributed change of the illumination. Such non uniform luminos-
ity change could drastically affect the comprehension of the sequence, and only a
method that uses spatio-temporal information can be able to correctly identify the
semantically separated regions. To slow down the computational effort, we parti-
tioned the field of view in a grid with circular Gaussian filters of 5× 5 pixels, and
at each time step each filter provides one single weighted value (this improvement
has drastically reduced the computation time). The result of the segmentation,
after the HMM training is reported in Fig. 11.8: the segmentation is highly in-
formative in that the foreground does not appear in the resulting segmentation,
and the change of illumination does not influence the spatial chromatic structure
of the scene. Actually, areas of different chromaticity (the floor, portions of the
wall) remain separated despite the light reduction narrows down the chromatic
difference among them.

Another testing sequence regards an outdoor environment where two persons
are closing and come back. A few frames of the sequence are presented in Part II,
Sec. 9.3, Fig. 9.7.

Looking at the result (Fig. 11.9), one could notice that the segmentation is
clear, expressive, and quite accurate: zones with similar gray level and similar
chromatic behavior (the road, the sky, and the motorbikes) are represented as
single regions. Other zones characterized by a different chromatic behavior (the two
buildings and part of the pyramid) are over-segmented. It is worthwhile to notice
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Fig. 11.8. Static information: spatio-temporal segmentation of the second indoor se-
quence.

Fig. 11.9. Information extracted from the outdoor sequence using the proposed ap-
proach: Static information (Spatio-temporal segmentation).

that this segmentation is obtained by processing the whole sequence, without any
need to remove the moving objects, in that they are naturally removed by the
procedure used to compute the Enhanced Stationary distance DES.

The second and the third sequence of this section are the most complex one,
the same considered in the previous part (Part II, Sec. 9.3, Fig. 9.9 and Fig. 9.12),
in which our current region description shows its limits. These limits will draw the
directions of our research. In the first sequence, a traffic situation over a square
is monitored via a fixed camera. The chromo-spatio-temporal segmentation, in
this case, is highly over-segmented. This is due to the intrinsic irregularity with
which the static zone evolve, and to the difficulty to clearly distinguish what is
the background and what the foreground (some blocked cars could be detected as
background). One of the possible solutions is to restrict the static analysis to the
zones where the activity map gives low values.
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The last sequence, 8 minutes long acquired at 25 fps, represents an indoor
environment of a mall.

Even in this case, as performed in the previous part, the test is divided in two
stages: the first in which an initial short part of the sequence is evaluated (48
seconds long, 1/10 of the original one); in the second stage the whole sequence is
analyzed.
In both processing cases, the outcome of the static analysis results over-segmented,
as expected. Since the results on the short sequence are not significative, only the
results related to the longer sequence are shown in Fig. 11.10.

Fig. 11.10. Information extracted from the whole outdoor sequence using the proposed
approach: static information.

Looking at this figure, it is possible to reason about what are the biggest areas
whose chromatic behavior is similar in time, so as to detect the most “stable”
scene areas. In particular, it is possible to detect stable zones in proximity of the
lateral columns, and in some parts of the floor, while the area corresponding to
the left wall, with several glass windows, is in general over-segmented.

11.3.2 Remarks and possible applications

The region level description of the sequence through the chromo-spatio-temporal
segmentation is useful to detect zones in which the chromo-temporal trend is sim-
ilar; this means that in high variable environments the segmentations are over-
fragmented. Considering the feasible applications of the chromo spatio temporal
segmentation, this cannot be stated as a drawback, as shown in [38,39].
In [39], this segmentation has been used in order to initialize an integrated pixel-
and region-based approach to background modelling, further used in a tracking
application [38]. In such case, indoor tracking is performed, where the background
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appearance is subjected to abrupt change in the illumination level . This back-
ground model uses information derived from a spatial segmentation of the scene
in order to modulate the response of a standard pixel-level background modelling
scheme [138], increasing the robustness against local non uniform illumination
changes.

As future perspectives, the segmentation scheme could be highly improved,
introducing the concept of “main” HMM able to model the overall chromatic be-
havior of the region considered. In that sense, better result are expected; actually,
the incremental scheme of segmentation, or the one centroid-driven, appear rough
even if effective.

The computational complexity of the approach could also be improved, by
applying approximate inferences strategy and on-line learning techniques.
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Region level description of audio-video data

In general, almost all of human activity recognition systems work mainly at visual
level only, but other information modalities can easily be available (e.g., audio),
and used as complementary information to discover and explain interesting “activ-
ity patterns” in a scene. Computer Vision researchers devoted their efforts towards
AV data fusion only in the last few years (see Sec. 12.1 for a critical review of the
related literature).

This chapter explores this research trend, providing a novel strategy for activity
analysis, able to integrate audio and video information at the feature level. By
adopting this strategy, it results possible to product region level descriptions that
characterize and distinguish human activities.

The video information is provided by a classical per pixel BG modelling module,
based on a time-adaptive per-pixel mixture of Gaussians process [138], able to
model the background of a static scene while highlighting the foreground.

This module is enhanced with a novelty detection module aimed at detecting
new objects appearing in the scene, thus allowing to discriminate different FG
entities. The monaural audio information is acquired by introducing the idea of
FG audio events, i.e. unexpected audio patterns, that are detected automatically
by modelling in an adaptive way the audio background. The adaptive video and
audio modules work on-line and in parallel, so that, at each time step, they can
detect separate audio and visual FG patterns in the scene.

On top of the unimodal processing stages, there is the core module, aimed
at establishing a binding of audio and visual modalities, so that correlated audio
and video cues can be aggregated leading to the detection of audio-visual (AV)
events. This binding process is based on the notion of synchrony between the
unimodal FG events occurring in the scene. This choice is motivated from the fact
that the simultaneity is one of the most powerful cues available for determining
whether two events define a single or multiple objects, as stated in early studies
about audio-visual synchrony coming from the cognitive science [46]. Moreover,
psychophysical studies have shown that the human attention focuses preferably
on sensory information perceived coupled in time, suppressing those cues that
are not [109]; particular importance was devoted to the study of situations in
which the inputs arrive through two different sensory modalities (such as sight
and sound) [139].
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In our approach, the binding process is realized by building and on-line updat-
ing the so-called Audio-Video Concurrence (AVC) matrix. Such matrix permits
to detect significant non-overlapped joint AV events and represents a clear and
meaningful description of them. Such representation, built on line and without
the need of training sequences, is so effective to allow to accurately discriminate
between different AV events using simple classification or clustering techniques,
like K-Nearest Neighbors (KNN) [53].

In summary, the approach introduces several concepts related to the multi-
modal scene analysis, discussing the involved problems, showing potentialities and
possible future directions of the research. The major contributions of this work can
be summarized in the following. We introduce: 1) an audio BG/FG modelling sys-
tem coupled with a related video BG/FG module, working on line in an adaptive
way and able to detect separate audio and visual foreground at each time instant;
2) a method for integrating audio and video information in order to discover multi-
sensory FG patterns, potentially increasing the capabilities of surveillance systems;
3) a multimodal and multidimensional feature (i.e., the AVC matrix), based on
the concurrency between audio and video patterns, which is proved to be expres-
sive of the events occurring in an observed scene; 4) an audio-visual fusion criteria
embedded in a probabilistic framework working on-line, without the necessity of
training sequences.

The rest of the chapter is organized as follows. Section 12.1 reviews the AV
fusion literature, clearly indicating the main differences between the proposed ap-
proach and the state of the art. In Section 12.2, the whole strategy is detailed,
and experimental results are reported in Section 12.3. Finally, in Section 12.4,
conclusions are drawn and future perspectives are envisaged.

12.1 State of the art of the audio-visual analysis

In the context of audio-visual data fusion it is possible to individuate two princi-
pal research fields: the audio-visual association, in which audio data are spatialized
using a microphone array (mainly devoted to tracking tasks), and the more gen-
eral audio-visual analysis, in which the audio signal is acquired using only one
microphone.

In the former, the typical scenario is a known environment (mostly indoor),
augmented with fixed cameras and acoustic sensors. Here, a multimodal system
locates moving sound sources (persons, robots) by utilizing the audio signal time
delays among the microphones and the spatial trajectories performed by the ob-
jects [31, 162]. In [31], the tackled situation regards a conference room equipped
with 32 omnidirectional microphones and two stereo cameras, in which a multi-
object 3D tracking is performed. With the same environmental configuration,
in [154], an audio source separation application is proposed. In another appli-
cation [164], the audio information (constituted by footstep sounds) is used to
distinguish a walking person among other moving objects by using a framework
based on dynamic Bayes nets.

Other approaches based on the learning and inference of a graphical model
can be found in [12], in which person tracking in an indoor environment is per-
formed using video and audio cues derived from a camera and two microphones,
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respectively. In [105], a 2-layer HMM framework is used to model predetermined
individual and group multimodal meeting actions.

The second class of approaches employs only one microphone. In this case,
audio spatialization is no more explicitly recoverable, so the audio-visual binding
must rely on other techniques. A well-known technique is the canonical correlation
analysis (CCA) [70], a statistical way of measuring linear relationships between
two multidimensional random variables. In the audio-visual context, the random
variables are represented by the audio and video signals, i.e., spectral bands for
the audio space and the image pixels for the video one. CCA extracts a linear
combination of a subset of pixels and a subset of bands that are maximally cor-
related. The fundamental problem of the CCA-based approaches is the need of
a large amount of data, that consequently leads to off-line applications in which
the visual regions that emit sounds are constrained to being well localized in the
scene. Therefore, this method well behaves in the case of strongly supervised ap-
plications. A CCA-based approach is represented by FaceSync [135], an algorithm
that measures the degree of synchronization between the video image of a face
and the associated audio signal. A solution to the demand of huge amount of data
is proposed in [163], in which a presumed sparsity of the audio-visual events is
exploited.

Another class of inter-modal relationship detection is based on the maximiza-
tion of the mutual information (MMI) between two sets of multivariate random
variables. Audio-visual systems based on mutual information maximization is pro-
posed in [58] and [78]. In [45], an information theoretic approach to modelling the
audio and video signals using Markov chains is proposed, in which the audio and
video joint densities are estimated using a set of training sequences. The methods
based on the MMI inherit the potentialities and the drawbacks of the CCA ap-
proaches: in [88], it has been shown the equivalence between CCA and MMI under
certain hypotheses on the underlying distributions.

The explicit detection of synchrony between audio and video represents another
way to detect cross-modality relations, even if not so deeply investigated from the
computer vision community for what concerns localization aims. For example,
in [160], audio and visual patterns are used to train an incrementally structured
Hidden Markov Model in order to detect unusual AV events. Here, the audio pat-
tern are formed by Mel-Frequency Cepstral coefficients from the raw audio signal,
and the video patterns are composed by motion and color features from moving
blocks of each frame. The joining of the audio and visual features is performed by
simply concatenating both patterns.

Another research field in which the audio-video analysis is largely exploited is
the video retrieval by content, in which the objects to be analyzed are typically
entertainment sequences (movies, commercials, news, etc.). The ultimate goal is to
enable users to retrieve the desired video clip among massive amounts of heteroge-
neous visual data in a semantically meaningful and efficient manner. In this field,
high-level concepts as video object and events (spatio-temporal relations among
objects) are exploited. The heterogeneity of the sequences considered urges the
use of general high-level approaches, further heavily relying on automatic video
annotation techniques [118,119].
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The proposed approach is different with respect to those of the state of the
art presented above from both what concerns the complexity of the considered
data, and the basic idea underlying the analysis performed. In our setting, audio-
video sequences come from a video surveillance context, in which the camera is
still, apart small movements, and the audio comes directly from the scene being
monitored, without any kind of control. Then, regarding to the nature of the pro-
posed approach, we studied an intuitive and accurate audio-visual fusion criterion
that do not require the formulation of any complex statistical model describing
the relationships between audio and video information, working on line and with-
out the need of training sequences (like in [45], for example). In particular, the
proposed method is heavily based on the concept of synchrony, a well motivated
basic principle derived from psycho-physiological research, also able to handle the
localization issue.

12.2 The proposed method

12.2.1 Overview

The system is composed by several stages, starting with two separate audio and
visual background modelling and foreground detection modules, as shown in Fig.
12.1.

For the visual channel, the model operates at two levels. The first is a typi-
cal time-adaptive per-pixel mixture of Gaussians generative model [138], able to
identify the visual FG present in a scene. The second model is a region level de-
scription that works on the FG color histogram, and is able to detect different
novel FG events. Despite the simple representation, this mixture model is able to
characterize the appearance of FG data, and to discriminate different FG objects.

Concerning the audio processing scheme, the novel concept of audio BG mod-
elling1 is introduced, capable to detect unexpected audio activities.

A multi-band frequency analysis is first carried out to characterize the monau-
ral audio signal by extracting characteristic features from a parametric estimation
of the power spectral density. The audio BG is then obtained by modelling such
features related to each frequency band using an adaptive mixture of Gaussians,
so allowing to detect, at each time step, a novel audio signal (e.g., a door that is
closed, a ringing phone bell, etc., see Fig.12.1). These modules work on-line, in
parallel, and the output are the separate audio and video FG occurring in a scene
at each time step.

Audio-visual association is subsequently developed by constructing the so-
called Audio-Video Concurrence (AVC) matrix, which encodes the degree of si-
multaneity of the audio and the video FG patterns.

As assessed by psychophysical studies (see in the opening of this chapter), we
assume that visual and audio FG that occur “simultaneously” are likely causally
correlated. In particular, the FG contributes of each modality are collected at each
time step, and then combined in the AVC matrix, whose i, j entry represents the
importance of the audio FG energy localized in the i-th audio sub-band and the FG
1 A first-stage version appeared in [40].
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Fig. 12.1. Outline of the proposed system.

novel appearance of a particular color range belonging to the j-th FG histogram
bin. This association is able to assess how much the inter-modal concurrency holds
along time, permitting to individuate the most salient and permanent audio-visual
bindings. The resulting AVC matrix is therefore a multidimensional feature that, at
each time step, summarizes and describes the audio-visual activity being occurring
in the scene (see Fig.12.1).

The high expressivity of such feature allows to effectively characterize and
discriminate between such events, outperforming clustering and classification per-
formances obtained using the individual modalities, as we will see in the following.

The reminder of the section will give all the details of the proposed approach,
starting from the basic time-adaptive mixture of Gaussians (Sect. 12.2.2), and
subsequently explaining how the video and the audio channels are modelled (Sect.
12.2.3 and 12.2.4). Then, Sect. 12.2.5 provides details about the audio-video fusion,
and Sect. 12.2.6 and 12.2.7 contain the description of how to perform audio-visual
event detection and discrimination, respectively.

12.2.2 The time-adaptive mixture of Gaussians method

The Time-Adaptive mixture of Gaussians method is a probabilistic tool able to
discover the deviance of a signal from the expected behavior in an on-line fashion.
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The signal is modelled using a dynamic mixture of Gaussians, whose weights are
updated iteratively. Looking at the weights it is possible to classify new observa-
tions as “expected” or “unexpected”. A typical video application is the well-known
BG modelling scheme proposed in [138]. Since this tool is present in different parts
of our system, it is briefly summarized in this section.

In the general method [138], the temporal signal is modelled with a time-
adaptive mixture of Gaussians with R components. The probability to observe the
value z(t), at time t, is given by:

P (z(t)) =
R∑

r=1

w(t)
r N

(
z(t)|µ(t)

r , σ(t)
r

)
(12.1)

where w
(t)
r , µ

(t)
r and σ

(t)
r are the mixing coefficients, the mean, and the standard

deviation, respectively, of the r-th Gaussian of the mixture associated to the signal
at time t. The Gaussians are ranked in descending order using the w/σ value: the
most ranked components represent the “expected” signal, or the background.

At each time instant, the Gaussians are evaluated in descending order to find
the first matching with the observation acquired (a match occurs if the value falls
within 2.5σ of the mean of the component). If no match occurs, the last ranked
component (the least important) is discarded and replaced with a new Gaussian
with mean equal to the current value, high variance, and low mixing coefficient. If
rhit is the matched Gaussian component, the value z(t) is labelled as FG if

rhit∑
r=1

w(t)
r > T (12.2)

where T is a threshold representing the minimum portion of the data that supports
the “expected behavior”. We call this test as FG test, that is positive if the value
is labelled as FG (z(t) ∈ FG), negative viceversa.

The equations that drive the evolution of the mixture parameters are the fol-
lowing :

w(t)
r = (1− α)w(t−1)

r + αM (t), 1 ≤ r ≤ R, (12.3)

where M (t) is 1 for the matched Gaussian (indexed by rhit), and 0 for the others;
the weights are re-normalized at each iteration. Typically, the adaptive rate coeffi-
cient α remains fixed along time. The µ and σ of the matched Gaussian component
are updated:

µ(t)
rhit

= (1− ρ)µ(t−1)
rhit

+ ρz(t) (12.4)

σ2 (t)
rhit

= (1− ρ)σ2 (t−1)
rhit

+ ρ
(
z(t) − µ(t)

rhit

)T (
z(t) − µ(t)

rhit

)
(12.5)

where ρ = αN
(
z(t)|µ(t)

rhit , σ
(t)
rhit

)
. The other parameters remain unchanged. It

is worth to notice that the higher the adaptive rate α, the faster the model is
“adapted” to signal changes.

This approach can be considered as an approximated version of the Expectation
Maximization algorithm, in which the learning of a mixture of Gaussians occurs
in an on-line fashion. We remind that the hidden variable in that case is the



12.2 The proposed method 87

class membership variable, indicating which Gaussian component generates the
observed data.

In this case, the approximation stands in the fact here we do not marginalize
over the hidden variable; instead, we take only into account for the most probable
component, in a likelihood sense.

In this sense, this approach can be considered more precisely as an on line
version of the k-means, where the parameters of the Gaussians are updated at
each observation.

12.2.3 Visual analysis

This section describes the visual module of the proposed system, which is able to
detect atypical visual activity patterns. The designed method is composed by two
parts: a standard per-pixel FG detection module, and a histogram-based novelty
detection module (see Fig. 12.1).

The former is a standard realization of the model explained in (Sec. 12.2.2),
where each pixel signal z

(t)
n is independently described by a TAPPMOG model: an

unexpected valued pixel represents the visual per-pixel FG, z
(t)
n ∈ FG. Note that

all mixtures’ parameters are updated with a common fixed learning coefficient α̃,
and using a fixed value T as FG detection threshold, which are the same for audio
and video channels.

The second module is a novelty detection system, able to detect when new
objects appear in the scene. This part is fundamental in the proposed method,
since the audio and visual pairing can be assessed if and only if a visual object
occurs in the scene (and remains FG) together with an audio FG signal: it is
therefore fundamental to detect new objects appearing in the scene.

To this end, the idea is to compute at each time step the gray level histogram
of the sole FG pixels, which we called Video Foreground Histogram (VFGH). Each
bin of the histogram, at time t, is denoted by v

(t)
j , where j varies from 1 to J ,

the number of bins. In practice v
(t)
j represents the quantity of pixels of the FG,

present in a scene at time t, with intensity values falling in the gray level range j.
Obviously, the accuracy of the description depends on the total number of bins J .

Then, we associate a TAPPMOG to each bin of the VFGH, looking for varia-
tions of the bins’ value. When the number of foreground pixels significantly change,
also changes obviously the related FG histogram, and an occurring novel visual
event can be inferred.

The probability to observe the value v
(t)
j , at time t, is modelled using a TAPP-

MOG:

P (v(t)
j ) =

R∑
r=1

w
(t)
(V,r,j)N

(
v
(t)
j |µ(t)

r,j , σ
(t)
r,j

)
(12.6)

Defining u the matched Gaussian component, we can label the j-th bin of the
VFGH at time step t as visual FG value, if

u∑
r=1

w
(t)
(V,r,j) > T (12.7)
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This scheme permits to detect both appearing and disappearing objects (an
object is appearing in the scene when bins suddenly increase their values, disap-
pearing when bins values decrease). Actually, we are interested only in appearing
objects, since this represents the sole case in which audio-visual synchrony is signif-
icant (a disappearing object, like a person that exits from the scene, should not be
considered as it does not belong to the scene anymore). To this end, we disregard
visual FG values deriving from negative variations of the foreground histogram
bins, considering only the positive variations.

We are aware that the characterization based on the histogram leaves some
ambiguities (e.g., two equally colored objects are not distinguishable, even if the
impact of this problem may be weakened by refining the number of bins), but this
representation has the appealing characteristic of being invariant to spatial local-
ization of the FG (as in other audio-video analysis approaches). This characteristic
is not recoverable by monitoring only the FG pixels directly2.

12.2.4 Audio analysis

The audio BG modelling module aims at extracting information from an audio sig-
nal acquired by a single microphone. In the literature, several taxonomies can be
drawn, in order to categorize the huge amount of approaches present. The “compu-
tational auditory scene analysis” methods (CASA) [23] translate psychoacoustics
theories to automatically separate and classify sounds present in a specific envi-
ronment using signal processing techniques. The “computational auditory scene
recognition” (CASR) approaches [37,115] are aimed at environment interpretation
instead of analyzing the different sound sources. More related to the statistical
pattern recognition literature, a third class of approaches tried to fuse “blind” sta-
tistical knowledge with biologically-driven representations derived from the two
previous fields, performing audio classification and segmentation tasks [161], and
blind source separation [75,128].

The approach presented in this chapter can be cast in this last category.
Roughly speaking, a multi-band spectral analysis of the audio signal at video
frame rate is performed, extracting energy features from I frequency sub-bands,
a1, a2, . . . , aI . More specifically, we subdivide the audio signal in overlapped tem-
poral windows of fixed length Wa, in which each temporal window ends at the
instant corresponding to the t-th video frame3 (see Fig.12.1).

For each window, a parametric estimation of the power spectral density with
the Yule-Walker Auto Regressive method [103] is performed: this method has been
used in several time series modelling approaches [2,25], showing good performances
whatever audio window length is used. From this process, the energy samples
(measured in decibel, dB) {X(t)(fw)}, w = 1, . . . ,W are obtained, where fw is
the frequency expressed in Hz, and the maximal frequency is fW = Fs/2, with Fs

the sampling rate.

2 Actually, this is a simple way of detecting novel FG without resorting to more sophis-
ticated tracking approaches based on histograms [104], that will be subject of future
work.

3 In the following, we use a temporal indexing leaded by the video frame rate; therefore,
the t−th time step of the analysis is relative to the t−th video frame.
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Subsequently, we introduce the Subband Energy Amount (SEA), representing
the histogram of the spectral energy, where each bin of the histogram, at time t,
is denoted with a

(t)
i , 1 ≤ i ≤ I. The SEA features have been chosen for their

capability to discriminate between different sound events [40, 115], and because
they can be easily computed at an elevate temporal rate, permitting to discover
unexpected audio behaviors for each channel at each time step.

Regarding the modelling of the time evolution of the SEA features, we assume
that the energy during time at different frequency bands can transport independent
information, as stated in [128]. Therefore, we instantiate one independent time-
adaptive mixture of Gaussians (Sec. 12.2.2) for each SEA channel. That is, the
probability to observe the value a

(t)
i , at time t, is modelled using a TAPPMOG:

P (a(t)
i ) =

R∑
r=1

w
(t)
(A,r,i)N

(
a
(t)
i |µ(t)

r,i , σ
(t)
r,i

)
(12.8)

Let q be the Gaussian component matched when new observation arrives, we can
identify the SEA band value ai as audio FG value, if

q∑
r=1

w
(t)
(A,r,i) > T, (12.9)

where the threshold T and the audio learning rate α̃ are fixed and common para-
meters, equal to those used for the video channel.

12.2.5 The Audio-Visual fusion

The audio and visual channels are now partitioned in different independent sub-
spaces, the audio sub-bands a1, a2, . . . , aI , and the video FG histogram bins
v1, v2, . . . , vJ , respectively, in which independent unimodal FG values may occur.
The leading idea is to find causal relations among each possible couple of audio and
video bins at each time step t, with the condition that both considered subspaces
bring FG information.

Without loss of generality, let’s consider the i−th audio subspace and j−th
video subspace; more specifically, let a

(t)
i be the energy of the audio signal relative

to the i−th subband at time step t and v
(t)
j the amount of FG pixels at time step

t in the scene (that correspond to the j−th FG histogram bin).

Technically, we define a general audio FG pattern A
(tA

init, tA
end)

i related to band
i as the time interval when band ai is foreground:

A
(tA

init, tA
end)

i =
[
a
(tA

init)
i , a

(tA
init+1)

i , . . . , a
(t)
i , . . . , a

(tA
end)

i

]
(12.10)

where the interval tAinit, . . . , t, . . . , t
A
end is such that a

(t)
i ∈ FG, ∀t ∈ [tAinit, t

A
end]

In a very similar way we can define the video FG event V
(tV

init, tV
end)

j , representing
the interval time when the video foreground histogram band vj is labelled as FG.

Given two FG patterns, we introduce the Potential Relation Interval as the
time interval containing the possible overlapping of the audio and video patterns
A

(tA
init, tA

end)
i and V

(tV
init, tV

end)
j . Defining
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tAV
init = max(tAinit, t

V
init) tAV

end = min(tAend, t
V
end)

then the Potential Relation Interval could be described as

PRI
(tAV

init, tAV
end)

i,j = [tAV
init, t

AV
end] (12.11)

where tAV
end > tAV

init. The PRI
(tAV

init, tAV
end)

i,j represents the time interval in which there
is a concurrence between audio and video patterns, i.e., when the audio and video
bands are synchronously FG.
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Fig. 12.2. Graphical definition of the AV coupling weight: this value is able to distinguish
different degrees of multimodal synchrony; on the left column, two cases of audio and
video foreground patterns (i) strongly synchronous (ii) loosely synchronous. On the right
column (on the left), the FG mixing coefficients of the Gaussian components that model
the FG patterns. On the right, the behavior of the AV coupling weight: maximum when
a complete overlapping of the FG patterns is present, decreasing when the synchrony
degree of the FG patterns diminishes.

Now we could define AV coupling weight w
(t)
AV (i, j) as

w
(t)
AV (i, j) =





w
(t)
(A,i,q) + w

(t)
(V,j,u)

2 if t ∈ PRI
(tAV

init, tAV
end)

i,j

0 otherwise
(12.12)

where w
(t)
(A,i,q) (w(t)

(V,j,u)) is the weight of the Gaussian matched by the audio (video)
band ai(t) (vj(t)) in the audio (video) time adaptive mixture of Gaussians model.
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If the information carried out by the audio channel i is synchronous with respect to
the information carried out by the video channel j, then the patterns are correlated,
and the AV coupling weight permits to measure the strength of the AV association.
A synthetical example is shown in Fig. 12.2: on the left column, we see two cases
of audio and video foreground patterns that (i) are strongly synchronous and (ii)
are loosely synchronous. The area placed in the dashed-line box indicates a FG
pattern, whose initial instant is indicated with a solid arrow, and the relative BG
absorption is pointed out with a dashed arrow. On the right column (on the left),
the mixing coefficients of the Gaussian components that model the FG patterns
are indicated. One can notice that these coefficients (the first of them indicated
by a dotted line) are proportional with the time spent by the related Gaussian
components to model the FG values: the FG mixing coefficients increase (if the
pattern is always modelled by the same component) until the FG test (explained in
Sec. 12.2.2) is negative, then, such value is labelled as background. The AV coupling
weights are built using the unimodal FG mixing coefficients in the related Potential
Relation Interval (indicated as black bars in the picture). As one can observe (on
the right), this value is maximum when a complete overlapping of the FG patterns
is present, while a strong decreasing appears when the synchrony degree of the FG
patterns diminishes.

Now, we are ready to introduce the main feature, namely the Audio-Video
Concurrence (AVC) matrix. This matrix, of size I×J , is able to accurately describe
the audio-visual history until time t: the i, j entry, at time t, is defined as:

AV C(t)(i, j) =
t∑

t′=0

w
(t′)
AV (i, j) (12.13)

At time t = 0, this matrix is empty. The AVC feature is computed on line, de-
scribes the audio-video synchrony from time 0 to t, and represents the core of the
proposed approach. We will see in the next sections that AV event detection is
directly derived from this feature, as well as a discriminative description of the AV
events. Moreover, this AVC matrix, used in a surveillance context, permits spatial
localization of the audio foreground [41].

12.2.6 Audio-visual event detection

The segmentation of the whole video sequence in audio-visual events can be
straightforwardly performed starting from the AVC matrix. Before describing how
to segment it, let us define an Audio Video Event (AVE): it occurs when a FG
audio and a FG video are synchronously present in the scene. This can be detected
by looking at the AVC matrix: if a there is synchrony in the scene events, for some
audio band ai and video band vj , the AV coupling weight is non zero. Therefore,
an AVE is detected in the time interval [tAV

init, tAV
end] if the following conditions hold

contemporaneously 4:

1. AV C(tAV
init−2) − AV C(tAV

init−1) = 0 (no synchrony before tAV
init)

4 Note that the following operations are computed among matrices: in particular, the
relation of 6= is valid if it holds for at least one matrix element i, j.
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Fig. 12.3. Building process of the AVC matrix and AVE detection (the time indexing
is removed for clarity): considering the audio and video subspaces i and j, we sum in
the position i, j of the AVC matrix all the AV coupling weights calculated until the time
step T . The dashed line corresponds to the final step T ′ of an AVE. After that time step,
no AV association holds among any subspaces i′ and j′, and the AVC matrix remains
unchanged.

2. ∀t ∈ [tAV
init, tAV

end], AV C(t+1) − AV C(t) 6= 0 (synchrony during the event)
3. AV C(tAV

end+1) − AV C(tAV
end) = 0 (no synchrony after tAV

end)

In other words, an audio-video event starts when the AVC matrix changes, and
terminates when the AVC matrix does not change anymore. Using this simple
rule, we can segment on line the whole sequence in different K AV events AV Ek,
k = 1 · · ·K, where each event is defined as

AV Ek = [tAV
init(k), tAV

end(k)] (12.14)

and tAV
init(k) (tAV

end(k)) indicates the initial (final) time step of the k-th audio video
event (see Fig.12.3).

12.2.7 Audio-visual event discrimination

We have seen in the previous section that the AVC matrix can be used to segment
different AV events in the sequence. Nevertheless, this matrix could produce an-
other useful information, since it contains also a rich description of the nature of
the AV event, which can be used for classifying it. In detail, we propose to extract



12.3 Experimental Results 93

from the AVC matrix a feature, named AVD (Audio Video Description), defined
as

AV D(AV Ek) = AV C(tAV
end(k)) −AV C(tAV

init(k)−1) (12.15)

In simple words, this represents the AV information accumulated only during the
event k. This matrix is then vectorized and directly used as a fingerprint vector
for characterizing the AV event.

In the experimental part, we performed classification and clustering trials on
different audio video examples. In order to focus on the expressivity of such fea-
tures, we perform clustering and classification using simple and well-known meth-
ods as K-Nearest Neighborhood for the classification, and hierarchical clustering.

12.3 Experimental Results

In this section, we will show various results obtained by applying our AV analysis
to real video sequences. The aims of this section are multiple: 1) finding if the
characterization of the AV events is meaningful (no over-segmentation or under-
segmentation respect to a segmentation performed by a human operator); 2) test-
ing if the features that describe the AV events are discriminant with respect to
classification and clustering tasks. In Sec. 12.3.1, we will present the data set used,
and we briefly discuss the role of the parameters and their selection. In Sec. 12.3.2,
we will show an example of the computation of the AVC matrix, highlighting the
key phases of the analysis. The remaining sections are devoted to show the method
performances in the (i) detection (Sect. 12.3.3), (ii) classification (Sect. 12.3.4), and
(iii) clustering (Sect. 12.3.5).

12.3.1 Data set and parameter setting

In order to test the proposed framework we concentrate on different individual
activities performed in an indoor environment, captured using a standing camera
and only a single microphone. The activities (some shots are depicted in Fig. 12.4)
are composed by basic actions like entering the office, exiting the office, answering
a phone call, talking, switching on/off the lights, and so on. Moreover, they are
not overlapped, in the sense that the person appears in the scene, performs a set
of basic actions and disappears, reappearing later (with time gap varying from
0.5 sec to 10 sec) to perform another sequence. The data gathering process was
repeated in two separate sessions with three weeks of distance between them. In
each session, a further level of variability was due to the frequent change of clothes
of the person in the video. The result was 2 long video sequences (more than 2
hours overall). The sequences have been captured using a 320× 240 CCD camera,
20 frames per second. The audio signal is captured at 22050 Hz, and the samples
are subdivided using temporal windows with length Wa = 1 s, and all the windows
are overlapped of 70%.

For what concerns the number I of audio spectral subbands over which calcu-
lating the SEA features and the number J of the FG histogram bins, we find that
using I = J = 8 we have a good compromise between accuracy and low computa-
tional requirements. Nevertheless, other experiments have been performed using
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Fig. 12.4. Some pictures of the two activities sequences.

different I and J , realizing this parameter is not crucial. We avoid to use I, J > 32
due to the curse of dimensionality problem otherwise involved.

In specific, we have considered the SEA of I = 8 equally subdivided subbands,
in the range of [0, 22050/4]Hz. A 3-components mixture of Gaussians have been
instantiated for each subband. This choice is not critical and can be guided from
opportune considerations about the complexity of the scene, especially in relation
to the complexity of the background. Actually, three components are considered
a reasonable choice, taking into account the possibility of a bimodal BG, and one
component for the foreground activity [138]. The FG threshold T has been set
to 0.8, and the learning rate is set to α = 0.001. For what concerns the video
channel, we spatially sub-sample the video sequence by a factor of 4, in order to
speed up the computation of the per-pixel FG, and we use a 3-components mixture
of Gaussians for each subsampled location. Then, we build the video FG histogram
using J = 8 bins, obtained by equally partitioning the level of FG gray interval
[0,255] in 8 intervals. Each of the corresponding FG histogram signals is modelled
using again 3-components mixture of Gaussians. Note that we use the same FG
threshold T and the same learning rate for both the per-pixel FG detection and for
the video novelty detection. The only difference among the various mixture sets
consists in the initial standard deviation σinit with which the mixture components
are initialized when a new Gaussian is added to the model (no match), due to the
different range of variability of the values of the various subspaces. We noticed that
these thresholds are important: a too low initial standard deviation means that too
different Gaussian components are introduced in the mixture, and consequently
the resulting FG patterns are too numerous. On the other side, a too large initial
standard deviation means that we model with a unique Gaussian component a
signal produced by different processes. In our experiments, we noticed that the
range of variability of the SEA signal is about [0, 150], for the pixel signal is
[0, 255] and for the VFGH signal is [0, 320∗240/γ2 = 4800]. After analyzing several
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different configurations (whose results are not shown here), we have found that
the best sensitivity parameters, for the TAPPMOGs are σA

init = 10 for the audio
subspace and σP

init = 30 σV
init = 50 for the pixel and FG histogram subspaces,

respectively.

12.3.2 An illustrative example

In order to understand the meaning of the AVC matrix, in this part we show its
computation step by step, by using a real sequence (namely, the “Phone” sequence)
manually extracted from the experimental dataset. The sequence, 834 frames long,
depicts a static scene in which a phone is located on the top of a mobile; at some
point the phone rings, and a person comes and answers the call, concluding then
the conversation and going out of the scene at the end.

A graphical representation of the computation process is shown in Fig. 12.5.
The salient points of the computation are:

• frame 180: no FG patterns occur, neither audio nor video: the AVC matrix is
empty;

• frame 303: the phone is ringing, as we see in the audio scheme depicting the
SEA values, but no video FG is present, therefore the AVC matrix remains
empty;

• frame 319: the person comes and answer the call, then, the Video Foreground
Histogram relative to the interval detects a FG video pattern that is concurrent
with the audio FG pattern. Therefore, the starting point of an AV event is
detected, and the AVC matrix shows some non null entries in the related audio-
visual coordinates;

• frame 426: the conversation continues, and consequently the AVC values grow
up;

• frame 660: the conversation ends, hence the FG patterns are over. The detection
module communicates the end of the audio-video event, the corresponding AVD
feature can be computed.

The AVD represents the feature that will be used in the following classification
and clustering tasks.

12.3.3 Detection results

The sequence has been segmented automatically in audio-video events using the
definition presented in Sec. 12.2.5. As ground truth, we asked a human operator to
perform a segmentation of the two long sequences, highlighting human activities.
Once the segmentation was performed, the 66 obtained segments were manually
classified in 6 classes (situations) as follows:

1. Make a call: a person goes to the lab phone, dials a number, and makes a call.
2. Receive a call: the lab phone is ringing, a person goes to the phone and makes

a conversation.
3. First at work: a person enters into the lab, switch on the light, and walks in

the room, without talking.
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Fig. 12.5. AVC matrix computation steps for the “Phone” sequence.

4. Not first at work: a person enters into the lab with the light already switched
on, walks in the room, and talks.

5. Last at work: a person exits from the lab switching off the light without talking.
6. Not last at work: a person exits from the lab leaving the light on, and talking.

Therefore, the original sequences were used as input to our system. The result
of the automatic segmentation was optimal in the sense that all the 66 events
were identified as different. Moreover, our method was good in the sense that no
over-segmentation or under-segmentation was obtained, primal element to be in-
vestigated. Further testing in which the AV events will occur overlapped is actually
under exploration.

12.3.4 Classification results

We tested the classification accuracy with the 66 labelled audio video events de-
rived from the previous part, in four different scenarios, listed below:

Scenario A - Situation 1 vs situation 2: making or receiving a phone call.
Scenario B - Situation 3 vs situation 4: entering in an empty or non empty lab.
Scenario C - Situation 5 vs situation 6: exiting from an empty or a non empty

lab.
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Scenario D - Total problem: discrimination between all the six situations.
The classification accuracy was computed using the Nearest Neighbor classifier

with Euclidean distance [53], which represents the simplest classifier permitting
to understand the discriminative power of the proposed features. Classification
accuracies have been estimated using the Leave One Out (LOO) scheme [53]. In
order to have a better insight into the proposed method, we compare the proposed
approach with the individual separated audio and video processing; in particular,
the 66 audio and the video FG patterns (see Sec. 12.2.4 and Sec. 12.2.3), extracted
in the same time intervals of the AVC features (i.e. during the Potential Relation
Interval - PRI), have been directly used as features to characterize the events.
The classification accuracies for the three methods are presented in Table 12.1.
Just at a first look of the table, one can notice a general benefit in integrating

Scenario Audio Video Audio-video

A 100.00% 86.35% 100.00%
B 60.87% 95.65% 95.65%
C 95.24% 85.71% 95.24%
D 62.12% 66.67% 89.39%

Table 12.1. LOO classification accuracies for the four different problems.

audio and visual information: audio-visual accuracies are the best results in all the
experiments. Looking better at such figures, one can better figure out the outcome
of the method, underlining some issues as follows.

• The scenario A is devoted to discriminate between making or receiving a phone
call: clearly, most of the information is embedded into the audio part (when
receiving a call there is a ringing phone), whereas the visual part is really similar
(going to the phone, hanging up and talk). Actually, the audio signal itself is
able to completely discriminate between these two events, whereas the video
gets worst results. It is important to notice that the audio-visual integration
does not inhibit the information brought in the audio part.

• The scenarios B and C are characterized by two similar audio-visual situations.
Regarding the audio part, there is a difference between talking in the lab or
not talking, whereas regarding the video part there is the difference between
switching on or off the lights. Actually, both single audio and video features
get good results.

• The scenario D is the most complex and interesting. In this case, which involves
6 different classes, the integrated use of audio and video information permits
to drastically improve the classification accuracy of about 25%. The tasks are
complicated, and only a proper integration of audio and visual information
could lead to a definite satisfactory classification results.

12.3.5 Clustering results

This last section reports results about clustering, in order to really discover pat-
terns and natural groups of audio-video events. Given the automatically segmented
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dataset, we perform hierarchical clustering [80] using the Ward scheme, and we
consider the Euclidean distance as distance between elements. As in the classifica-
tion task, we use a simple rule for performing clustering, in order to discover the
expressivity of the AVD feature. We only set the number of clusters to 6, and let
the algorithm to make the natural clusters. The resulting dendrogram is shown
in Fig. 12.6, where in abscissas there are the situation labels. Observing the den-

Fig. 12.6. Hierarchical clustering dendrogram.

drogram, we can see that the underlying structure of the dataset is satisfactorily
represented, but, obviously, there are some errors as the task is not easy. The most
separated and well identified clusters are the situations 2 and 3: they are charac-
terized by a clearly identifiable pattern (the ringing phone and the light on). Also
cluster 5 is quite well identified; little confusion is present between patterns in
cluster 4 and in cluster 6. This is a difficult case: the discrimination between them
lies only in the fact that in the situation 4 the AV coupling happens among the
opening door and the person entering in the scene (visual FG), together with the
impulsive noise of the closing door and the speech signal (audio FG). Instead, in
situation 6, the coupling between the closing door and the moving person is absent
because the person exited from the scene producing no visual FG.

The accuracy of clustering can be quantitatively assessed by computing the
number of errors: a clustering error occurs if a pattern is assigned to a cluster
in which the majority of the patterns belongs to another class. In this case, we
obtain a clustering accuracy of 75.76%, which is a really satisfactory result, also
compared with single modalities results: clustering of audio patterns obtained an
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accuracy of 53.03%, whereas the video obtained 60.61%. Also in this case, it is
evident the gain obtained by the fusion of audio-video information.

12.4 Conclusions

In this approach, a new method for characterizing video sequences using audio
visual events has been presented. Separate audio and video signals have been
processed using two different adaptive modules, aimed at distilling audio and video
information in a unique fashion, using only one camera and one microphone. It
is worth to note that the video module is a region level description, producing
regions that share the property of being formed by FG pixel values, belonging to
the same gray level range. Then, the audio and video patterns have been integrated,
exploiting the concept of synchrony, in order to recognize audio-video events. The
association is realized by the means of the Audio-Video Concurrence matrix, a
feature that permits to detect and segment AV events, as well as discriminating
among them. Experimental results on real sequences have shown promising results,
both in terms of classification and clustering.





Part IV

Conclusions





13

Final notes

13.1 Remarks

In this thesis, the statistical generative modelling has been explored and proposed
as a means to describe and analyze a video sequence. More specifically, a typi-
cal video surveillance environment has been considered, in which a static camera
captures a scene situation where possible moving objects are present.

The probabilistic generative modelling provides statistical tools (actually, mod-
els) that describe a set of observations, by giving particular insight on the gener-
ative process that generated them.
The generative process is described as a random quantity, characterized by a joint
distribution. The ingredients of such distribution are the visible variables, i.e. the
observations, and a set of hidden random variables, formally explaining the entities
that caused the observations. The hidden variables are possibly inter-related by
conditional dependency relations, forming a structure that mirrors the dynamic of
the generative process.
The parametrization of the random variables, and the realization of the hidden
ones, are estimated from the observations by using statistical learning strategies.
In the thesis, a particular learning strategy has been considered: the Expectation
Maximization algorithm. This estimation strategy takes into account for all the
possible realizations of the hidden variables, in order to derive analytically the
best values of the parameters.

Concerning purely theoretical issues, the thesis has brought contributions in
the inference expressivity of the Hidden Markov models. In particular, two mea-
sures able to characterize the states of the underlying Markov model have been
proposed. The first measure provided an entropy-like estimation of the degree of
instability of the signal modelled, which has been derived by using the concept of
stationary probability distribution of the Markov chain.
The second measure served as similarity measure, that explained how much two
HMMs are similar, by taking into account for their most stable components, dis-
regarding the transient signal components observed.

The generative modelling has been adopted as a versatile framework of know-
ledge extraction from a video sequence. An abstract concept of visual hierarchy
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of understanding, i.e., a hierarchical structure aimed to analyze a video sequence
under different point of views, has been developed.
The hierarchical logical framework is a well-known strategy that organizes the
understanding process in a bottom-up fashion, starting from raw data analysis
and ending with high level reasoning.
At each layer of the hierarchy, the input data is distilled, meaning that the portion
of data considered useless for the higher level is disregarded. In other words, all
the data that is not functional to be subject to further reasoning is likely to be
eliminated. Therefore, at each step of the hierarchical structure, we perform a sort
of local reasoning.

In this thesis, the concept of “visual” hierarchy has been introduced as a nec-
essary aspect characterizing the hierarchical structure.
The process of understanding a video sequence is based on the interpretation that
raises the visual appearance to an abstract level of meaning. These meanings are
highly subjective, and far for being completely captured with a bijective interpre-
tation function visual appearance ↔ meaning.
We did not propose any novel interpretation function. Instead, we tried to build
a hierarchical structure, in which the result of each reasoning module provides a
different level of understanding of the video sequence.
Each level gives a description of the sequence by using a particular visual de-
scriptor, that is simplest at the bottom level, i.e. the pixel signal, growing up in
complexity at the higher levels.

In this way, the local reasoning performed becomes immediately usable and
interpretable by the user, that can improve or eventually drift adequately the
higher-level analysis, with the design of ad-hoc modules.

More specifically, we proposed a visual hierarchy of understanding where the
video sequence is analyzed using a per-pixel analysis, which represents the bottom
layer of the hierarchy, and where each pixel evolution is modelled with a Hidden
Markov Model. After this step, the visual result of the analysis is the degree of
transient activity occurred in the scene. Finally, the high-level interpretation of
these results is demanded to the user, who can also consider them as having per
se a semantic meaning, derived from a low-level scene understanding process.
Alternatively, the output of this step can be used as input of an higher-level analy-
sis process, as described in the thesis. In this case, the region entity consisted of a
group of adjacent pixel locations whose HMMs represent similar chromatic evolu-
tion of the background.
The convincing results, together with the numerous applicative relapses (see
Sec. 13.3), showed the effectiveness of the proposed hierarchy.

The second example of visual hierarchy of understanding started with a per-
pixel standard analysis, namely the background subtraction. The higher-level on-
line reasoning module considered a region as formed by those FG pixels (the output
of the per-pixel analysis) with similar color and synchronized with a novel audio
signal.

The concept of novel audio signal, here defined as FG audio signal, represents
another main contribution of the thesis, together with the mechanisms of audio-
video coupling, based on the notion of synchrony.
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The coupling of audio-video FG patterns defines a multimodal region description
of an event in a video sequence.
In order to test the effectiveness of such an event representation, we used it as
discriminative feature, useful to perform clustering and classification tasks. As a
result, we observed that the multimodal representation is more expressive with
respect to the single modality representations, leading to better clustering and
classification performances.

13.2 Future perspectives

The statistical generative modelling appears to be a powerful way to tackle with
the uncertainty in general; for this reason, it seems a reasonable paradigm to deal
with the video understanding issue.
Actually, the incertitude is a widespread but not so formally defined aspect, that
assumes different names, like sensor noise, model uncertainty, etc.. Therefore, it
seems advantageous to perform a hierarchical partition of the video sequence analy-
sis, in order to separately deal with the various kind of uncertainties, in a bottom-
up fashion.

In this thesis, we provided a hierarchy where the structure at the various levels
is dependent on the complexity of the visual descriptor adopted to specify the
sequence. Essentially, we perform analysis on the pixel level and on the region
level; in the pixel level the research performed leaved us satisfied, being us able
to characterize a video sequence in on-line fashion (by using the standard back-
ground subtraction technique presented in Part III) and off-line fashion (by using
the proposed HMM based method). In the region level, we perform on-line analy-
sis, by providing a multimodal description of the scene (Part III). This description
has been used later as feature for clustering and classification tasks. A generative,
purely off-line description of the sequence has left out of the drafting of the thesis,
due to its embryonal development status, and is actually under study. The direc-
tion that we are following is the one proposed in [83], in which the sequence is
characterized by a set of moving flexible sprites.

The generative modelling, as pure theoretical framework, is characterized by
open questions, far for being considered as solved. At first, the model selection is-
sue, which is tightly related with the video sequence modelling, at each descriptive
level.
Especially at the region-based level, for instance, where each region could be mod-
elled separately, a model selection technique can individuate the number of entities
present in a video sequence.
Actually, the usual way to solve this issue is represented by a try & score process,
where a set of models are created and evaluated using Bayesian Estimation Crite-
ria (BIC), Minimum Description Length (MDL) tests, and a few others [57,67].
Other ways to discover the “right” topology come from the Artificial Intelligence
community, where graph-based methods are exploited, based on the automatic
discovering of statistical relations such as likelihood, conditioning, relevance, cau-
sation [113, 114]. At the best of our knowledge, this latter group of methods has
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never been used by the Computer Vision (CV) community for video sequence mod-
elling; therefore, our attention will be focused on the first group of techniques.

Concerning the multimodal modelling, we are aware that the introduction of
audio analysis in the CV community can be useful not only for tracking tasks,
but also for off-line applications such as classification and clustering. In this sense,
a good coupling of audio and video data can be considered as a useful feature
extraction step, that define audio-visual entities in an intuitive and effective way.

13.3 Publications and other contributions

Some parts of this study have been published in conference proceedings or inter-
national journals. More specifically, Part II and Chapter 11 of Part III have been
published in [15, 38, 39]. In [15] the complete hierarchy of understanding based
on the HMMs is presented. In [38] an application of the region representation to
tracking issues is proposed, and in [39] the region based representation is used as
a pixel-region background initialization algorithm.

The remaining of Part III has been published in [40, 41]. In [40] the definition
of the audio foreground is given, as well as an algorithm to identifying audio
foreground in an audio stream. A coupling algorithm between audio and video
data, based on the concept of synchrony exploited in the thesis, is presented in [41];
in this paper, the audio video region description is aimed to solve a problem typical
of the video surveillance literature, i.e. the sleeping foreground problem. Finally,
the whole system of multimodal region description has been submitted to the IEEE
Transactions on Multimedia.

The study of these three years concerned also further Computer Vision appli-
cations; actually, our intent was primarily to evaluate the effective expressivity of
the generative statistical modelling.

In this thesis, we prefer not to present all the studies carried out, for a twofold
reason: principally, in order to privilege the theoretical results covered by a deep
and adequate experimental section; secondly, because some studies are still under
development.

Anyway, in order to give a global vision of the research tackled, in the following
we cite the other studies, published or submitted.

In [43], we faced the process of super resolution in a generative way [143],
in which each frame is considered as observation of a (hidden) higher resolved
exemplar. In specific, we propose a method to extract from a video sequence a set
of higher resolved images, following the idea of video clustering proposed in [60].
In the visual hierarchy of understanding this approach can be considered as an
high level module, considering as basic visual entities the frames of the sequence.

In [34], we proposed a novel method for BG initialization and recovery, that
merges interesting ideas coming from the video inpainting and the generative mod-
elling subfields. The method takes as input a video sequence, in which several
objects move in front of a stationary BG. The method is based on the following
hypotheses: (i) a portion of the BG, called sure BG, can be identified with high
certainty by using only per-pixel reasoning and (ii) the remaining scene BG can
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be generated utilizing exemplars of the sure BG. In the visual hierarchy of under-
standing this approach can be considered as a couple of modules pixel level and
region level, that cooperate in an iterative way.

In [42], currently under review, we propose a probabilistic model aimed at
modelling interactions among human subjects. The rationale under the proposed
model lies in the possibility to deal with interactive processes whose characterizing
states exhibit different temporal durations and whose dynamics can be modeled as
Markovian. The study presents preliminary results, and is still under development.
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