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ABSTRACT
Most of the automated video-surveillance applications are
based on the process of background modelling, aimed at
discriminating motion patterns of interest at pixel, region
or frame level in a nearly static scene. The issues character-
izing an ordinary background modelling process are typically
three: the background model representation, the initializa-
tion, and the adaptation. This paper proposes a novel ini-
tialization algorithm, able to bootstrap an integrated pixel-
and region-based background modelling algorithm. The in-
put is an uncontrolled video sequence in which moving ob-
jects are present, the output is a pixel- and region-level sta-
tistical background model describing the static information
of a scene. At the pixel level, multiple hypotheses of the
background values are generated by modelling the intensity
of each pixel with a Hidden Markov Model (HMM), also cap-
turing the sequentiality of the different color (or gray-level)
intensities. At the region level, the resulting HMMs are clus-
tered with a novel similarity measure, able to remove moving
objects from a sequence, and obtaining a segmented image
of the observed scene, in which each region is characterized
by a similar spatio-temporal evolution. Experimental trials
on synthetic and real sequences have shown the effectiveness
of the proposed approach.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—video analysis; I.5.1 [Pattern Recognition]: Mod-
els—statistical ; I.5.3 [Pattern Recognition]: Clustering—
similarity measures

General Terms
Design, Performance

Keywords
Video Surveillance, pixel-region background initialization,
Hidden Markov Model
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1. INTRODUCTION
Analysis and understanding of video sequences is an ac-

tive research field, whose importance is rapidly increased
in the last years, due to the availability of more and more
powerful hardware, to the development of effective real-time
techniques, and to the potential vastity of the involved ap-
plications [30, 6, 28]. Video surveillance is undoubtedly one
of the most interesting applications of sequence analysis:
human action recognition [31], semantic indexing of video
[21], and, more generally, on-line discovering of unusual ac-
tivities [12] are all tasks under investigations to partially or
fully automate the surveillance.
Typically, a video-surveillance system contemplates the

monitoring of a site for long periods, using a static camera
whose goal is to distinguish (and possibly classify) unusual
behaviors from typical ones. To this end, the basic oper-
ation needed is the separation of the moving objects, the
so-called foreground (FG), from the static information [7],
the background (BG). This process is usually called back-
ground modelling.
The issues characterizing a background modelling process

are usually three: model representation, model initializa-
tion, and model adaptation. The first describes the kind
of model (e.g., mixture of Gaussians) used to represent the
background; the second one regards the initialization of this
model, and the third one relies to the mechanism used for
adapting the model to the background changes (e.g., illumi-
nation changes). Recently, several techniques have been pro-
posed in order to address the representation and the adap-
tion issues, whereas the model initialization has received
poor attention. In the background model initialization prob-
lem, also called bootstrapping [29], the input is a short un-
controlled video sequence in which a number of moving ob-
jects may be present. The purpose is then to produce a
background model describing the observed scene. Actually,
most of the background models are built on a set of initial
parameters that comes out from a short sequence, in which
no foregrounds objects are present [10]. This is a too strong
assumption, because in some situations it is difficult or im-
possible to control the area being monitored (e.g., public
zones), which are characterized by a continuous presence of
moving objects, or other disturbing effects.
In the literature, the initialization problem is typically

disregarded, and only few methods are present. All of these
methods discard the solution of computing a simple mean
over all the frames, because it produces an image that ex-
hibits blending pixel values in areas of foreground presence.
A general analysis regarding the blending rate and how it



may be computed is present in [8]. In [9], the background
initial values are estimated by calculating the median value
of all the pixels in the training sequence, assuming that the
background value in every pixel location is visible more than
50% of the time during the training sequence. Even if this
method avoids the blending effects of the mean, the output
of the median will contains large error when this assump-
tion is false. Another proposed work [18], called adaptive
smoothness method, avoids the problem of blending finding
intervals of stable intensity in the sequence. Then, using
some heuristics, the longest stable value for each pixel is se-
lected and used as the value that most likely represents the
background. This method is similar to the recent Local Im-
age Flow algorithm [11], which generates background values’
hypotheses by locating intervals of relatively constant inten-
sity, and weighting these hypotheses by using local motion
information. Unlike most of the approaches, this method
does not treat each pixel value sequence as an i.i.d. (in-
dependent identically distributed) process, but it considers
also information generated by the neighboring locations.
To the best of our knowledge, all the proposed methods

are devoted to the initialization of algorithms working at
the pixel level, disregarding higher-level information. In-
deed, background analysis could be carried out at different
data-abstraction levels: pixel, region, and frame levels [29].
The pixel-level analysis processes independently each pixel,
classifying it as foreground or background, and managing
adaptation to changing background [25]. In this modality,
the analysis is performed at a very low level, and many prob-
lems of the background subtraction remain unsolved, such as
local or global sudden illumination changes [5]. The region-
level analysis considers a higher level representation, mod-
elling also inter-pixel relationships, so allowing a refinement
of the modelling obtained at the pixel level. For instance,
in [29], the spatial motion of the foreground is detected by
segmenting the foreground patterns, and intersecting suc-
cessive segmentations in order to improve the region-level
dynamics and to avoid the problem of foreground aperture.
Finally, the frame-level analysis looks for changes in large
parts of the image, and eventually swaps in more expressive
background models [27, 19].
Recently proposed background models [29, 5, 14, 13] try to

integrate these different kinds of data, producing beneficial
effects on the the effectiveness of the background modelling.
Initialization methods for this kind of integrated background
models are almost missing in the literature, only some ideas
are reported in [11] exploiting neighborhood information.
The aim of this paper is to propose some contributions in

this context. A novel bootstrapping method is developed,
able to initialize a background model that considers both
pixel and region information [5]. This method [5] integrates
the information obtained from a standard Time-Adaptive,
Per-Pixel, Mixture Of Gaussian (TAPPMOG) [25, 26, 13]
background model with region information, obtained with
a spatial segmentation of the background. This integration
permits to recover from sudden non uniform illumination
changes, which represents one of the most serious problem
in video surveillance applications. In order to initialize this
method, we need a bootstrapping procedure that operates
at two levels: at the pixel level, we need to know the most
probable components of the background in each scene loca-
tion, and, at the region level, we need a meaningful spatial
partition of the scene. The method proposed in this paper

takes in input a short arbitrary video sequence and generates
a probabilistic representation of that sequence from which
we could derive both representations.
Spatial scene segmentation of a scene may appear, at a

glance, as easily obtainable by merely segmenting the first
frame of the sequence, or the average frame. Nevertheless,
like in the background initialization case described below,
this is a too simplistic assumption for two reasons. First,
moving objects can be present in the scene, and they could
not be removed without a negative impact. Second, espe-
cially in case of illumination changes, we are interested in
a spatio-temporal segmentation, in which the spatial gray-
level data are augmented with the temporal information in
order to obtain connected regions that present a chromatic
and temporal similar meaningful behavior.
The approach proposed in this paper is based on the use

of a forest of Hidden Markov Models (HMMs) [23], which
representins the scene observed by a static camera by mod-
elling the temporal gray-level evolution of each pixel. This
representation is then used to initialize the integrated pixel-
and region-based model in a twofold manner. First, by look-
ing at the model parameters of each HMM we could infer
which values of intensity of each pixel are most stable and
most probably belonging to the background. This infor-
mation can be used to initialize the pixel-level part of the
background model.
The second information extracted is a chromatic and tem-

poral segmentation of the background, obtained by cluster-
ing the HMMs. It is important to note that HMM-based
clustering has been poorly addressed in the past, and only
few papers are present in the literature [24, 16, 3, 20]. Typ-
ically, these models are used to devise a distance between
sequences, which is subsequently used to perform standard
clustering. In this paper, a new measure is proposed, able
to remove non-stationary components of a sequence. Using
this measure and a region-growing segmentation approach,
we are able to process the set of pixel sequences in order to
segment the scene in groups of pixels showing an homoge-
neous color with a similar temporal evolution. In this case,
the resulting segmentation is a spatial partition of the scene,
obtained by using all available information: chromatic (dif-
ferent regions have an homogeneous gray level value), spatial
(each region is connected), and temporal (each region varies
its color similarly along time). In conclusion, our method
has two great advantages: first, the spatial information is
augmented with temporal data that captures also the fre-
quency of the color variation occurring in a single region,
so allowing a more detailed and informative partitioning;
second, moving objects have not to be removed from the
sequence as this operation is accomplished by the similarity
measure devised.
In the experimental session, the proposed initialization

algorithm is tested using synthetic and real sequences. We
will show that the proposed approach represents an useful
tool able to initialize the pixel- and region-level background
estimation processes.
The rest of the paper is organized as follows. In Sec-

tion 2, the basic theory of the Hidden Markov Models and
the description of the stationary probability distribution are
reported, the approaches for HMM-based clustering of se-
quences are reviewed, and the integrated pixel- and region-
based background modelling scheme [5] is shortly presented.
The proposed approach is then described in Section 3: after



describing the probabilistic modelling of the video sequence,
the methods used to initialize the pixel- and the region-levels
background modelling are detailed. Experimental results
on the proposed approach are presented in Section 4 and,
finally, Section 5 contains conclusions and future perspec-
tives.

2. BASIC THEORY AND METHODOLOGY
In this section the fundamental instruments of the pro-

posed initialization approach are described. In particular,
in Section 2.1 the definition of the Hidden Markov Model
approach is given; Section 2.2 introduces the concept of sta-
tionary probability of a HMM, representing the key entity
of the approach proposed in this paper. Section 2.3 contains
the description of the HMM-based clustering approach; fi-
nally, in Section 2.4, the integrated pixel- and region-based
methodology to background modelling presented in [5] is
briefly summarized.

2.1 Hidden Markov Models
A discrete-time Hidden Markov Model λ can be viewed

as a Markov model whose states are not directly observable:
instead, each state is characterized by a probability distri-
bution function, modelling the observations corresponding
to that state. More formally, a HMM is defined by the fol-
lowing entities [23]:

• S = {S1, S2, · · · , SN} the finite set of (hidden) states;

• the transition matrix A = {akj}, 1 ≤ k, j ≤ N rep-
resenting the probability of moving from state Sk to
state Sj ,

akj = P [Qt+1 = Sj |Qt = Sk], 1 ≤ k, j ≤ N,

with akj ≥ 0,
∑N

j=1
akj = 1, and where Qt denotes the

state occupied by the model at time t.

• the emission matrix B = {b(o|Sk)}, indicating the
probability of emission of symbol o ∈ V when sys-
tem state is Sk; V can be a discrete alphabet or a
continuous set (e.g. V = IR), in which case b(o|Sk) is
a probability density function. In this paper we used
continuous Gaussian HMM, i.e.

b(o|Sk) = N (o|µk,Σk) .

where N (o|µ,Σ) denotes a Gaussian density of mean
µ and covariance Σ, evaluated at o;

• π = {πk}, the initial state probability distribution,

πk = P [Q1 = Sk], 1 ≤ k ≤ N

with πk ≥ 0 and
∑N

k=1
πk = 1.

For convenience, we represent an HMM by a triplet λ =
(A,B,π).
Learning the HMM parameters, given a set of observed

sequences {Oi}, is usually performed using the well-known
Baum-Welch algorithm [23], which is able to determine the
parameters maximizing the likelihood P ({Oi}|λ). One of
the steps of the Baum-Welch algorithm is an evaluation step,
where it is required to compute P (O|λ), given a model λ and
a sequence O. This is computed using the forward-backward
procedure [23].

2.2 The stationary probability distribution
This section defines the stationary probability distribution

of a HMM, which represents the core of our approach.
Given an HMM λ = (A,B,π), consider the Markov chain

Q = Q1, Q2, Q3... with state set S = {S1, ..., SN}, stochastic
transition matrix A, and initial state probability π. We can
define the vector of state probabilities at time t as

pt = [pt(1), ...,pt(k), ...pt(N)]

= [P (Qt = S1), ..., P (Qt = Sk), ..., P (Qt = SN )]

where pt(k) represents the probability of being in state Sk

at time t. Of course, pt can be computed recursively from
p1 = πA, p2 = p1A = πAA, and so on. In short, pt =
πAt.
We are interested in the stationary probability distribu-

tion p∞, which characterizes the equilibrium behavior of the
Markov chain, i.e., when we let it evolve indefinitely. This
vector represents the probability that the system is in a par-
ticular state after an infinity number of iterations. Since it
is a stationary distribution, p∞ has to be a solution of

p∞ = p∞A

or, in other words, it has to be a left eigenvector of A as-
sociated with the unit eigenvalue. Under some conditions
(see [4] for details), the Perron-Frobenius theorem states
that matrix A has a unit (left) eigenvalue and the corre-
sponding left eigenvector is p∞. All other eigenvalues of A
are strictly less than 1, in absolute value. Therefore, find-
ing p∞ for a given A amounts to solve the corresponding
eigenvalue/eigenvector problem.

2.3 HMM-based clustering of sequences
HMMs have not been extensively employed for cluster-

ing sequences, only few papers exploring this direction have
been published. Even if some alternative approaches to
HMM-based clustering have been proposed (e.g., [3, 15]), the
typical employed method is the so-called proximity-based
strategy, which uses the HMM modelling to compute dis-
tances between sequences, and standard pairwise distance
matrix-based method (as hierarchical agglomerative) to ob-
tain clustering [24, 16, 17, 20].
More in detail, given a set of R sequences {O1...OR} to

be clustered, the algorithm performs the following steps:

1. Train one HMM λi for each sequence Oi.

2. Compute the distance matrixD = {D(Oi,Oj)}, where
D(Oi,Oj) represents a dissimilarity (or similarity) mea-
sure between the sequences Oi and Oj); this is typ-
ically obtained from the forward probability Lij =
P (Oj |λi), or by devising a measure of distances be-
tween models. In the past, some approaches to com-
pute these distances have been proposed (for example,
see [20, 1, 24]): early approaches were based on the
Euclidean distance of the discrete observation proba-
bility, others on entropy, or on co-emission probability
of two models, or, very recently, on the Bayes proba-
bility of error (see [1] and the references therein). The
simplest example has been proposed in [24], and is de-
fined as

D(i, j) =
1

2
(Lij + Lji) (1)



A more complex one, proposed in [20], is defined as

D(i, j) =
1

2

{

Lij − Ljj

Ljj

+
Lji − Lii

Lii

}

(2)

3. Given the distance matrix, use a pairwise distance-
matrix-based method (e.g., an agglomerative method)
to perform the clustering.

In Section 3.3, we will see how this standard method could
be extended in order to deal with spatio-temporal segmen-
tation, which represents a particular kind of clustering.

2.4 The integrated pixel- and region-based ap-
proach to background modelling

This section briefly presents the integrated pixel- and region-
based approach to background modelling proposed in [5].
All the details are in the paper.
The method starts from a standard Time-Adaptive, Per-

Pixel, Mixture Of Gaussian (TAPPMOG) technique [25,
13], a widely employed tool for background modelling with
several attractive characteristics: adaptiveness, robustness,
and real-time implementation to quote a few. This ap-
proach models the temporal evolution of each pixel as an
i.i.d. process, using a mixture of Gaussians, with an on
line training process that permits the adaption to the back-
ground changes. Nevertheless, this approach has some draw-
backs: first it considers each pixel as an independent process
without any use of spatial information or, more generically,
higher-level information; second, the choice of the learn-
ing rate, that determines the “speed” of the self adaption
of TAPPMOGS methods to variations of the background,
is critical. The method proposed in [5] introduced an in-
tegrated region- and pixel-based approach to background
modelling, able to integrate higher-level information into the
per-pixel processes. Using region information obtained from
a spatial segmentation of a scene, the learning rate of each
pixel process could vary, in order to increase the speed of
the adaption if the case. As shown in the paper, this inte-
gration permits to recover from sudden non-uniform illumi-
nation changes, one of the most severe issues in surveillance
problems.
In order to initialize this method, we have to provide two

kinds of data: an initialization of the pixel-level background,
and a spatial segmentation of the scene, so as to identify
semantically informative regions.

3. THE INITIALIZATION APPROACH
The proposed approach performs a two-step processing:

first, it builds a probabilistic model of the video sequence,
and, second, it derives from this model the initialization of
both pixel- and region-levels processes.

3.1 The probabilistic modelling of a video se-
quence

The approach models the training video sequence as a set
of independent per-pixel processes (x,y,t), each one describ-
ing the temporal gray-level evolution of the location (x,y)
of the observed scene (using a fixed camera). Starting from
this set of sequences, we need a model able to capture the
most important characteristics in order to produce a prob-
abilistic representation of a scene. In particular, we need
a model able to determine: 1) the most important gray-
level components measured in the whole sequence; 2) the

chromatic-temporal variation of those components; 3) the
sequentiality with which such components vary. Actually,
an adequate computational framework showing these fea-
tures is constituted by the Hidden Markov Model (HMM)
[23]. Using this model, all the above requirements can be
accomplished: using HMMs with continuous Gaussian emis-
sion probability, the most important gray-level components
are modelled by the means µk of the Gaussian functions as-
sociated to the states, the variability of those components
are encoded in the covariance matrices Σk, and the sequen-
tiality is encoded in the transition matrix A. The whole
scene sequence is therefore modelled using a forest of HMMs,
one for each pixel. In the experimental session, the training
has been carried out using a standard Baum-Welch proce-
dure [23], stopping the training after likelihood convergence.
The number of states of each HMM has been fixed to three,
which corresponds to the usual number of Gaussian com-
ponents in a standard pixel-level background subtraction
scheme [25, 26]. In this context, this parameter is fixed
a priori using heuristic criteria guided by the video com-
plexity, but it can be estimated in a more rigorous fashion
adopting an adequate model selection technique [2].

3.2 Pixel-level initialization
In this section, we describe how the probabilistic represen-

tation of the video sequence could be used for the pixel-level
bootstrapping process. In this case, we want to initialize the
pixel process, i.e., the mixture of Gaussians associated to
each pixel. This mixture defines the probability of observ-
ing the gray level of the current pixel as

p(xt) =
M
∑

j=1

cj N (xt|µj , σj) , (3)

where N (xt|µj , σj) denotes a Gaussian density with mean
µj and variance σj , M is the number of the components
of the mixture, and cj is the mixing coefficient (also called
weight) of the component j.
This representation puts in correspondence the Gaussians

with the main components of the gray-level evolution of a
pixel. The mixing coefficients denote the importance of the
components with respect to the aim of background mod-
elling, in the sense that the higher the mixing coefficient,
the larger the probability that the corresponding Gaussian
is associated to an important component, that is, the back-
ground. In this case, the initialization relies in the identifi-
cation of these important components of the signal, without
particular care for other components, which have a little im-
pact in the background modelling scheme. It is important to
note that there is not a straightforward method to initialize
the pixel-level background model, since the input sequence
could contain moving objects which do not permit a simple
analysis (e.g., averaging).
In our approach, we use the proposed probabilistic repre-

sentation in order to find the “most important components”
of the evolution of each pixel, i.e., to find the most probable
background. A similar goal was achieved in [11], where the
stability were found by using locally temporal filtering and
motion estimations.
The key idea consists in the assumption that the temporal

evolution of a pixel could be considered as formed by differ-
ent components. Therefore, the HMM training is intended
as a probabilistic assignment of each of these components



to one different state of the model, and the probability of
switching between the components is driven by the transi-
tion matrix. We are interested in the significance of these
components, as we could assume that the most significant
components of the signal will correspond to the background
with high probability. It is also important to note that
this choice permits to remove possible moving objects in the
scene, which are considered unstable, hence, not important
components of the signal.
Since there is a correspondence between the components

of the signal and the states of the HMM model, the signifi-
cance of a component can be measured by the weight or the
importance of the correspondent HMM state. Given a HMM
λi, the “importance” of a state Sk can be naturally associ-
ated to its stationary probability p∞(k). This assumption
is not new in the literature, and it has been already used in
the context of the HMM model selection [2].
Once identified the most stable components (and the cor-

responding states), we can initialize the mixture associated
to the pixel using the parameters of the corresponding HMM.
In particular, we initialize the mixture of each pixel by as-
sociating each state to a different Gaussian, and the param-
eters are then defined as

• the parameters (mean and variance) of the Gaussian
k of the mixture are initialized with the parameters of
the Gaussian of the state Sk;

• the mixing coefficient of the Gaussian k is the station-
ary probability p∞(k) of the state Sk;

3.3 Region-level initialization
In this section, we describe how the probabilistic repre-

sentation of the video sequence can be used to initialize
the region-level background modelling process. In this case,
we need to find a spatial segmentation of the background
which individuates the semantically different components of
the scene. At first glance, it seems that this segmentation
could be easily obtained by segmenting the first frame, or
the averaged frame. This is infeasible for two reasons: first,
there could be some moving objects in the scene, which are
not straightforwardly removable; second, especially in the
case of illumination changes, there could be regions in the
scene that are spatially homogeneous but differ temporally.
We are therefore interested in regions showing both spatial
and temporal homogeneity. The goal is to obtain a spatio-
temporal segmentation of the scene considering the temporal
evolution of the gray-level pixels, i.e., the spatial informa-
tion is augmented with temporal information, so allowing a
more detailed and informative partitioning.
In the literature, spatial-temporal segmentation assumes

a slight different meaning in dependence of the application
considered. In video-surveillance, it is typically defined as
the partition of the video sequence into spatial regions of mo-
tion homogeneity (motion segmentation), whereas, in video
indexing problems, it is linked to the subdivision of a video
in representative shots. Our definition goes beyond these
typical descriptions as our spatial-temporal segmentation al-
lows the detection of regions that homogeneously vary in
both the spatial and temporal domains.
Given the HMM representation proposed in this paper, it

is necessary to define a similarity measure to decide when
a group (at least, a couple) of neighboring pixels must be
labelled as belonging to the same region. The similarity

measure should exhibit some precise characteristics: two se-
quences have to be considered similar if they share a compa-
rable main chromatic and temporal behavior, independently
from the values assumed by the less stable components. By
using the measure proposed in equations (1) or in (2), we
have that the Gaussian of each state contributes in the same
way to the computation of the probability because of the
forward-backward procedure. For our target, nevertheless,
we need that the Gaussian of each state can contribute dif-
ferently to the probability computation, depending on the
importance of the corresponding state. The idea is then to
“flatten” or “spread out” the Gaussians of those states that
are not really important, by increasing their variance. In
such a way, their contribution to the computation of the
probability results decreased. As explained in Section 3.2,
the concept of “state importance” could be measured using
the stationary probability distribution of the Markov Chain
associated with the HMM.
The operation of “flattening” is performed by transform-

ing each model λi in a new model λ′i, where all components
remain unchanged, except variances σk of state Sk, for each
state k = 1, .., N , that becomes

σ
′
k =

σk

p∞(k)
. (4)

The new distance, calledDES(i, j) (Enhanced Stationary),
is then computed using the equation (2) using the modified
HMM models λ′i (i = 1, .., L, L number of image pixels).
The increase of the variance σk, corresponding to the flat-
tening of the Gaussian N (µk, σk) has two beneficial effects:
1) the possibility of matching between Gaussians of impor-
tant states of different models is increased; 2) Gaussians of
not important states are very flattened, reducing their con-
tributions to the probability computation. It is worthwhile
to notice that such a metric is able to remove moving objects
from the video sequence, as they are considered non station-
ary components of the temporal evolution of the pixel.
Assumed this kind of similarity measure between sequences,

the spatio-temporal segmentation is developed as a typical
segmentation process of static images, and a simple region-
growing algorithm has been adopted. The first step pre-
sumes to rank the pixel locations by their importance. For
each pixel i, the importance is measured by max

1≤k≤N
p∞(k),

where p∞ is the stationary probability distribution of the
HMM associated to the pixel i. Starting from the most im-
portant pixel, a simple region growing process is applied, us-
ing a threshold θ on the distance DES(i, j) to estimate when
two adjacent sequences are similar. When the growing pro-
cess stops, we choose as new seed the subsequent most im-
portant pixel, not belonging to an existent segmented region.
The process ends when all the pixels have been labelled. We
will see in the experimental session that the modification of
the metric in eq. (2) together with the integration of the
spatial-temporal information of the video sequence, lead to
a visible improvement of the segmentation results in both
synthetic experiments and real sequences.

4. EXPERIMENTAL TRIALS
In this section, some experimental results are presented.

As first step, a subsequence of 1/4 of the length of the orig-
inal video sequence is considered. This fraction is mod-
elled by the proposed HMM-based initialization method.



From this probabilistic model, we could infer both the pixel-
and the region-level initialization of the background mod-
elling. After presenting few results on the pixel-level ini-
tialization, we will show some synthetic and real examples
for the region-level initialization (spatio-temporal segmen-
tation), which represents the most innovative part of our
work.

4.1 Pixel-level initialization
The proposed approach was tested in a real case, con-

cerning an indoor sequence, with a corridor in which several
doors are present. A person is present in the scene, walking
around the corridor. Some frames of the sequence are pre-
sented in Fig. 1. In Fig. 2 the median frame of the sequence
is displayed. This image does not contain the moving ob-
jects, so the initialization could be considered correct. We
apply our algorithm to the video sequence, obtaining a pixel
level initialization. In the training step we have fixed the
number of states of each HMM to 3, with the aim of per-
mitting a sufficient expressive explanation of the chromatic
behavior of each pixel of the sequence.
After the training process, for each pixel i, we obtain the
HMMmodel λi from which we consider the 3 different Gaus-
sian parameters (mean and variance), i.e. the HMM states,
and the 3 corresponding mixing coefficients, which are the
different stationary probabilities. In order to graphically
show the representation obtained, we build an image in
which for each pixel we consider the sum of all the 3 means,
weighted by the related stationary probabilities. The re-
sulting representation is displayed in Fig. 3. One can no-
tice that also our representation is correct: by considering
only the stationary part of the background signal, all the
moving objects have been removed, so our approach is able
to correctly initialize the pixel-level background. Actually,
the real advantage of our representation is indeed expressed
in the region-level initialization, in which the spatial and
temporal information becomes crucial in order to correctly
identify all the semantically different regions of the scene.

4.2 Region-level initialization
The proposed region level initialization is tested, using

synthetic and real experiments. The input for the testing is
a video sequence, and the wanted output is a segmentation
of the background, in which all the semantically different
regions of the scene are captured. The proposed approach
returns a spatio-temporal segmentation of the background,
representing the region-level initialization of the background
model. It is important to note that, like the pixel-level ini-
tialization, also the region-level initialization is recovered
from the unique probabilistic modelling of the sequence.
The testing was performed using both synthetic and real

sequences. In the former case, the synthetic sequence, con-
taining blocks flickering with the same color palette but with
different frequency, is shown in Fig. 4 (the central region is
stable). In Fig. 5(a), the resulting segmentation is pre-
sented, showing that all 9 regions are correctly identified by
our algorithm. In order to explicitly assess the advantage
owned by the use of temporal information of our spatio-
temporal segmentation, we also present results obtained by
a simpler classic segmentation algorithm, applied on the av-
eraged image. In this case, after obtaining the mean image
by averaging the gray level values of all frames of the se-
quence, we applied a region-growing algorithm similar to
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Figure 1: Frames of the corridor sequence.

that used in our algorithm. Results are shown in Fig. 5(b),
in which it is evident that this method is not able to capture
the temporal diversity between the pixels of the regions. In
other words, not all the semantically different regions of the
scene have been discovered, and only five regions have been
detected. The above comparison is in some way improper
as it evident that a segmentation method which does not
take into account temporal information is likely to fail with
respect to our proposed algorithm. In fact, to the best of
our knowledge, this is the first segmentation method that
exploits the temporal gray-level behavior in order to ob-
tain a single spatio-temporal segmentation of a scene. To



Figure 2: Median Frame

Figure 3: Pixel level initialization using the pro-
posed approach.

frame 1 frame 10 frame 20 frame 30

frame 40 frame 50 frame 60 frame 70

frame 80 frame 90 frame 100

Figure 4: Synthetic sequence used for testing spatio-
temporal segmentation.

some extent, our approach shares some intuitions of the so-
called JSEG algorithm [6], in which a spatial segmentation
is performed in the initial frame, and is propagated in the
subsequent frames using temporal constraints. The differ-
ence is that JSEG uses only the frame by frame temporal
information in order to obtain a series of spatial segmen-
tated images (one for each frame), whereas our approach
considers the sequence as a whole in order to get a single
summarizing spatio-temporal scene representation.
To assess the robustness of our approach to noisy se-

(a) (b)

Figure 5: Segmented sequence obtained by (a) the
proposed approach (b) a region growing method
onto the averaged image.

Noisy sequence Segmentation

(a)

(b)

(c)

Figure 6: Synthetic experiment with added noise.
In the left column, a frame from the noisy sequence,
and, in the right column, the resulting segmenta-
tion, for different noise type and level. (a) Salt &
Pepper, density 5%, (b) Salt & Pepper, density 25%,
and (c) Gaussian, variance 0.01.

quences, we add two types of synthetic noise: a Salt &
Pepper noise, of density 5% and 25%, and a white Gaussian
noise, of variance 0.01. An example of a noisy frame and the
corresponding sequence segmentation are presented in Fig.
6 for all noisy situations. As one can notice, our approach is
quite robust to recover from both types of noise: even if the
sequence is quite corrupted, the different semantic regions
are identified rather well.
The proposed approach has been tested also with some



real sequences. The first example regards the sequence pre-
sented in the previous subsection, and is aimed at explaining
how the temporal information used in the proposed segmen-
tation could be useful in order to solve the problem of a
sudden change of illumination at region level. Looking at
the Fig. 1, you can notice that during time some doors were
opened and closed several times, each one with a random
different frequency. The action of opening-closing a door
determines a local variation of the illumination, i.e., there
are two particular regions of the corridor in which the illu-
mination changes with different frequencies. These different
spatial chromatic zones are highlighted in Fig. 7: one is
on the left part of the corridor, and the other on the right
part. Considering only the median (or the mean) of the

(a)

(b)

Figure 7: Different spatial chromatic zones.

sequence, displayed in Fig. 2, it is not possible to detect
the two semantically different zones of the background. Ac-
tually, any spatial segmentation technique applied to the
image segments the zone between the two doors as belong-
ing to the same region. In Fig. 8, a comparative result
between the segmentation resulting from our approach and
an ordinary region growing based segmentation on the me-
dian image is shown. One can easily notice that our ap-
proach clearly separates the two zones, labelled as different
regions of the scene. This is important since the integrated
pixel- and region-based approach to background modelling
uses the region information derived from the segmentation of
the background as the modulating information. In order to
assess the gain obtained with the Enhanced Stationary sim-
ilarity measure, the segmentation of the corridor sequence
based on the measure of the eq.(2) is depicted in Fig. 9. It
is evident that the noise of the sequence and the presence of
foreground produce a very noisy over-segmentation. Actu-

(a)

(b)

Figure 8: Segmentation of the corridor sequence (a)
using the proposed approach, and (b) using an ordi-
nary method of region growing based segmentation.

ally, only if the segmentation is able to correctly detect all
the semantically different regions of the scene, the method
can correctly work. It has been shown in [5] that, using this
segmentation, a video surveillance system is able to correctly
track objects also in presence of sudden non-uniform changes
of illumination.

Figure 9: Segmentation of the corridor sequence us-
ing the HMM similarity measure without the flat-
tening of the non stationary states.

We perform a further test on another sequence, consist-
ing in two moving objects in a outdoor scene. A few frames
of the sequence are presented in Fig. 10, and the resulting
segmentation is proposed in Fig. 11(a). The resulting seg-
mentation is clear, expressive, and quite accurate, even more



frame 20 frame 40

frame 60 frame 80

Figure 10: Few frames from the outdoor sequence.

valuable if one notices that it is obtained by processing the
whole sequence, without any need to remove the moving ob-
jects, as they are naturally taken out by the procedure used
to compute the distance. This result was compared to that
obtained by an ordinary region growing approach performed
on the first frame, presented in Fig. 11(b). The result of the

(a)

(b)

Figure 11: Segmentation of the outdoor se-
quence:(a) proposed approach, (b) standard region
growing method.

proposed approach appears more accurate, in particular in
the ground in front of the scooters and in the segmentation
of the windows of the two lateral buildings.

5. CONCLUSIONS AND FUTURE WORK
In this paper, a novel algorithm for background initial-

ization is proposed, able to characterize the chromatic and
spatial behavior of a scene at pixel- and region-levels using
an arbitrary uncontrolled training sequence. The process
realizes a probabilistic modelling of the video sequence us-
ing a battery of Hidden Markov Models (HMM), modelling
the gray intensity values assumed by each pixel as a set of
independent process. From this probabilistic representation
it is possible to initialize the background modelling scheme
at both pixel- and region-levels. The former is obtained
by observing the stationary probability distribution of each
HMM, in order to infer the most stable gray intensity val-
ues. The latter is obtained by clustering the HMMs, using
a novel similarity measure between HMMs. This measure,
together with a region growing process, couples neighboring
pixels that exhibit a similar chromatic-temporal behavior,
providing a segmented image. In this image each cluster in-
dicates a spatial region with a homogeneous gray level that
changes its intensity similarly along time. The proposed
measure is also able to consider only stationary components
of the scene, removing possible moving objects.
The main drawback of this method is the strong computa-

tional effort, but an off-line computation for an initialization
algorithm is indeed allowed. Nevertheless, a parallel com-
putational architecture may solve this problem, permitting
a very quickly and useful batch mode scheme.
Finally, the use of an on-line HMM training [22] together

with a parallel architecture would provide the first effective
background modelling algorithm based on region informa-
tion only, able to identify the foreground using regions as
elementary units. This is our main interest for the progress
of this work.
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