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Natural scene categorization from images represents a very useful task for automatic image analysis sys-
tems. In the literature, several methods have been proposed facing this issue with excellent results. Typ-
ically, features of several types are clustered so as to generate a vocabulary able to describe in a multi-
faceted way the considered image collection. This vocabulary is formed by a discrete set of visual code-
words whose co-occurrence and/or composition allows to classify the scene category. A common draw-
back of these methods is that features are usually extracted from the whole image, actually disregarding
whether they derive properly from the natural scene to be classified or from foreground objects, possibly
present in it, which are not peculiar for the scene. As quoted by perceptual studies, objects present in an
image are not useful to natural scene categorization, indeed bringing an important source of clutter, in
dependence of their size.

In this paper, a novel, multi-scale, statistical approach for image representation aimed at scene catego-
rization is presented. The method is able to select, at different levels, sets of features that represent exclu-
sively the scene disregarding other non-characteristic, clutter, elements. The proposed procedure, based
on a generative model, is then able to produce a robust representation scheme, useful for image classifi-
cation. The obtained results are very convincing and prove the goodness of the approach even by just con-
sidering simple features like local color image histograms.
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1. Introduction

In the machine learning literature, the term “scene” is commonly
defined as a semantically coherent, nameable human-scaled view of a
real world environment [1]. The capability of analyzing and classify-
ing accurately an imaged scene is highly useful for automatic image
analysis systems in a wide variety of tasks. Other than the pure clas-
sification of the environment contained in a picture, individuating
the scene category may help also in object recognition, providing
a context on the possible semantic labels of the objects identities
(e.g., a shark is rare to see in a mountain environment) [2]. Con-
versely, as reported in a recent work [3], a human being does not
need to perceive the objects in a scene to identify its semantic cat-
egory: behavioral and computational studies show that humans
rely on global visual properties to exploit scene classification, in-
stead of performing recognition of particular objects in a scene.

In a computational context, scene categorization methods can
be partitioned into two parts: local and global methods. Such dis-
tinction follows behavioral studies on human perception, where
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local and global mechanisms are supposed to work during the early
stages of image acquisition. Nowadays, the relative importance of
each paradigm is unclear and represents an open research topic
worth to be further investigated. Local methods extract from the
image a set of unordered local descriptions, pooling them together
and building a classifier in which the global structure of the image
is usually lost. The most known and used paradigm belonging to
this category is the so-called “bag of words” [4,5]. On the other
side, global methods use information generated through the pres-
ence of large spatial structures, and the spatial arrangement of
lighter and darker areas in an image [6]. In these methods global
features are composed by local patterns in which their relative spa-
tial layout is preserved and learnt. Therefore, such methods, first,
find global spatial structures in an image, and, second, extract local
descriptions that explain more in detail the spatial layout [3].
Each class of methods brings its own pros and cons. Recently, in
[7], an interesting experiment was proposed, in which local and
global ways to perform scene categorization were analyzed in a
comparative way, measuring the classification accuracy of human
subjects against automatic systems. This study showed, as ex-
pected, that human classification outperforms automatic classifica-
tion. More interesting, global and local methods are discovered to
be more effective in particular cases: rivers, lakes, and mountains
are categorized better using global information, whereas coasts,
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forests and plains are categorized better using local information
[7]. Like for human beings, it has been shown that a hybrid classi-
fier formed by a joint global and local response outperforms a sin-
gle classifier, suggesting that both global and local mechanisms
cooperate to categorize an image. Anyway, both schemes do not
work properly (at best of their performances) when the images
analyzed present objects not being characteristic of a particular
scene; for example, faces or persons in foreground are important
causes of misclassification in such methods.

For convenience, we term as background (BG) the scene we want
to categorize, and with foreground (FG) every object which does not
belong to the scene, in the sense that it does not help to intuitively
assigning a precise natural scene class label to an image. We stress
this definition in order to ease the understanding of the “fore-
ground”: it does not represent something that is the nearest name-
able entity with respect to the camera, but its meaning here
resembles the idea of foreground in the video surveillance field in
which the FG is whatever unexpected, atypical for the scene
observed [8]. As a matter of fact, several methods for scene catego-
rization work with images in which no FG objects are present like
[9-11]. Therefore, the task of separating FG objects from their BG
environments is necessary to perform a better scene categorization.

1.1. Overview of the proposed approach

In this paper, we introduce a multi-scale method for image rep-
resentation that, equipped with a novel generative model, leads to
an intuitive natural scene classification scheme. The method is
based on a novel joint global and local paradigm for feature extrac-
tion, in the sense that a global feature extraction method is possi-
bly applied not only to the whole images, but also to different,
local, image regions. Another novelty of this approach lies at the
feature extraction level, carried out selectively in the image to ac-

(A) GOAL OF THE METHOD
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count for useful information functional to scene background
categorization.

The sketch in Fig. 1A describes the fundamental target of our
approach: the idea is to disregard in an automatic fashion atypical
objects in a scene, automatically pruning them as outliers away
from a consistent distribution of features that genuinely encodes
a natural scene. At the end, we obtain a grid representation of
the image, whose cells are labelled with different natural concepts,
disregarding FG occluders. Our approach is built as a multi-scale
framework: at the first, highest, level the whole image is consid-
ered extracting information from all the image pixels. In the subse-
quent levels, only parts of the images are considered; those defined
by foreground objects. We call the process of separating the back-
ground from the foreground as BG distillation (Section 3). At the
first level, the BG distillation individuates and assigns a label to
global aspects or patterns belonging to the BG, like general natural
patterns like sky, water, rock, grass, etc. In this phase, FG objects
are disregarded: for instance, running people on the streets, or a
small bounded presence of mountains over a lake, or ducks on a
lake do not concur to form BG global patterns (see Fig. 1A).

In the subsequent phase, named BG specialization (Section 4) the
content of the images is evaluated, calculating how well a previ-
ously built global pattern can describe the image content.

Images not well described with a single global pattern are then
subdivided into a set of regular non-overlapping rectangular win-
dows, that we call sectors (Fig. 1B), representing a local (finer) level
of analysis. After the partitioning, two different situations may
hold for a sector:

1. the sector is described by one of the BG patterns found at the
global level, and thus it can be labelled accordingly

2. the sector represents a novel “sector” BG pattern that is present
locally with high frequency in several images.
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Fig. 1. (A) Goal of the approach: our method considers the images jointly, building thus a consistent definition of BG. This permits to obtain features that portray genuinely
natural scenarios, disregarding FG objects (red crosses on the images). Such features will serve to annotate locally images with BG labels, in an automatic fashion. (B)
Overview of the proposed method: during the first distillation step (a), images in their entirety are “distilled” to find typical constitutive elements (BG patterns) disregarding
the FG elements. In the successive specialization step (b), the degree of fitting of each image to any BG pattern is evaluated. Images not well represented by a BG pattern are
divided in four sectors (c) and the BG distillation/specialization process is repeated at a finer level. This process continues iteratively until the lowest level is reached, paying
attention that, at each specialization step, the images are compared with all the previously found patterns.
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In the latter situation, the sector BG patterns are extracted in
the same fashion as the global BG patterns, hence, even in this case,
the BG distillation permits to obtain sector BG patterns deprived of
FG artifacts (Fig. 1B). Our two-step process (BG distillation and spe-
cialization) continues iteratively until a smallest patch size is
considered.

At the end of the process, a grid representation of the image is
produced (see Fig. 1A, bottom) by considering the smallest sectors
obtained, possibly dividing larger sectors and propagating accord-
ingly the corresponding labels.

It is worth noting that the process of BG distillation is cast in a
generative framework, permitting to manage in a formal way the
uncertainty derived from the BG pattern estimation (Section 3).

The rest of the paper is organized as follows. Section 2 presents a
description of the state of the art. In Sections 3 and 4, the proposed
framework is described. Section 5 details experimental compari-
sons, and, finally, the contributions of the work are summarized in
Section 6.

2. State of the art

A widely-used taxonomy considers the methods for scene cate-
gorization as separated in local and global approaches.

2.1. Local methods

The main hypothesis underlying the local approaches is that a
landscape depicted at different view-angles and lighting conditions
produces images which are globally very different, but locally sim-
ilar. This is because features which characterize natural images are
very redundant, co-occurrent and therefore robust to clutter, spa-
tial displacements, and occlusions.

Local methods have become more important in recent years,
due to a successful translation of the “bag of words” paradigm
[12] into the image domain [13,14,5,15,16]. Bag of words is a rep-
resentation model applied originally to the text classification do-
main, relying on the high discriminative power of some words
and on the redundancy of the language in general. The idea is to
use as text descriptor the histogram of words that appeared more
frequently [17]. Transferred to the image domain, a bag of words
becomes a bag of “visterms” (BOV), which are local visual features
co-occurring in the image. The drawback of these methods is that
such representation contains no information about the spatial
layout of the visterms, at the same fashion the bag of words text
representation removes the words ordering information. This
ambiguity generates undesirable effects of polysemy (one descrip-
tion for several images) and synonymy (several descriptions for
one image). This issue has been faced effectively using probabilistic
latent semantic analysis (PLSA) [18]. Basically, PLSA introduces an
intermediate representation called theme, topic, or concept, which
is a robust representative of several co-occurring visterms, solving
also the sparseness problem of the bag-of-words paradigm. There-
fore, an image can be thought of as a weighted mixture of themes
[5,15,16]. In this way, bags of visterms describing a unique image
become now associated with high probability to very few concepts
(synonymy is minimized). In the same way, polysemy of a loosely
descriptive visterm now is overcome by the concept, which is more
expressive since it is conditionally linked to several visterms.

Bag of visterms-related methods in computer vision are origi-
nally utilized for object recognition, due to the fact that objects
present less aspect variability than natural scenes [19].

This trend is changed recently. In [20], a local method based on
bag of visterms and PLSA is proposed to perform scene categoriza-
tion. Visterms here are cluster centroids of SIFT features [21], found
by K-means [22]. Experiments are divided in three separate

problems, aimed at distinguishing indoor/outdoor scenes, which
are the super-ordinate-level categories defined in [23], city/land-
scape and indoor/city/landscape scenarios [24].

A similar approach has recently been proposed by [5]: here, a
set of features extracted with four different policies (on evenly
sampled grid, by random sampling the locations, using Kadir &
Brady saliency detector and SIFT descriptors) was clustered by
K-means, resulting in a set of quantized visterm. Unlike the previ-
ous approach, the image categories, other than the themes, are
modelled as random variables. In this fashion, the extraction of
themes is conditioned on the label of the category chosen.

In [25], multi-class SVMs were trained on the BOV representa-
tion of the member images of each scene category, where the vis-
terms are salient points detected by difference of Gaussian
operators [21]. Here, a deep analysis has been carried out on
how the change of the number of different visterms affects scene
classification performances.

In all the local approaches, a big effort is spent in choosing a
good set of low-level features: actually, a possible inclusion of
loosely representative information represents a serious drawback
for all the subsequent analysis. Scene categorization is particularly
sensitive to this issue: the risk is to focus only on objects acciden-
tally appearing in a scene, disregarding the scene itself. The prob-
lem of choosing a good visterms codebook for scene categorization
is, among others, addressed in [26,27,25]. In [26], the solution was
to consider features well-suited for capturing natural image statis-
tics at local level, i.e., the Weibull-based features [28].

Another contribution towards robustness of features is given in
[29]. In this work, invariance with respect to affine transformations
is achieved by treating the entire image dataset with an affine
invariant preprocessing procedure.

The bags of visterms has been augmented with local spatial
modelling in [14], including the “doublets”, i.e., features formed
by pair of spatially local co-occurring visterms. Spatial layout anal-
ysis techniques [30-33] are local approaches that learn: (1) the
locations associated to topics in the images [31] and (2) the loca-
tions of the visterms of a single topic grouping them in a single clus-
ter [30,32], also introducing robust management of the clutter [33].

Another approach that organizes local features in a more gen-
eral spatial structure is the one proposed in [34]; the idea is to
repeatedly subdividing the image and computing histogram of
local features at increasingly finer resolution. This spatial pyrami-
dal structure permits to flow down from a global point of view to a
local analysis and is found to be perceptually effective. This
approach has to be differentiated from the one presented in [35],
where histograms are iteratively calculated on the image at differ-
ent resolutions, but with a fixed number of bins.

2.2. Global methods

We define the class of global approaches as the one formed by
methods that explicitly use information of all the pixels in the im-
age, without eliminating or highlighting some local parts.

The use of global analysis to perform scene categorization rep-
resents the first strategy adopted in the machine learning literature
[36-38].

However in the last 5 years, local methods appeared to be more
effective in image analysis than global paradigms, due to the bag of
visterms approaches. Anyway, the absence of an explicit and
structured spatial layout description discourages a purely local
approach for scene categorization applications.

An example of a global method is the approach proposed in
[39]. It first performs multiple partitions of the considered images
by segmenting them using Normalized Cut [40], using different
parameterizations. Then, it extracts relevant invariant features
from each image and visual codewords are thus obtained by



930 A. Perina et al. /Image and Vision Computing 28 (2010) 927-939

clustering the features using K-means. Finally, it discovers robust
descriptions of segments by Latent Dirichlet Allocation [4], which
is an extension of PLSA.

Oliva and Torralba propose a more general global algorithm for
describing images [41], which has been refined recently in [3]. The
key concept is the spatial envelope, which encodes five global prop-
erties of the scenes (naturalness, openness, roughness, expansion,
ruggedness). The approach extracts features from the power spec-
trum of the images by convolving them with Gabor-like filters at
12 orientations and 5 scales. Because many filters are needed to
cover the spectrum, they extract only the first 16 principal compo-
nents of the images as determined by Principal Component Analy-
sis on the training set. In the same paper, results of previous
perceptual experiments are reported, which encourage the use of
global methods in the scene categorization. In particular, it is dis-
cussed that human beings avoid to perform object recognition
when the goal of the categorization regards the correct labelling
of real environments.

In relation to the local-global taxonomy, our approach presents
global and local elements. Actually, it parses images in a multi-
scale fashion, and most importantly, provides a finer representa-
tion of the image only when necessary, exploiting the fact that in
natural scene classification, some categories are better classified
with global methods, while other ones are best modelled with local
methods.

3. Background distillation
3.1. Technical preliminaries: occlusion model

The BG distillation step takes inspiration from a probabilistic
generative model named here occlusion model, which was proposed
in [42]. The occlusion model has been applied in a toy scenario, i.e.,
with images that have been generated from background visual
scenes, upon which one or more foreground objects have been
superimposed. BG scenes and FG objects come from a set of prede-
termined classes; for each image, one FG class generates one in-
stance of a particular object (a particular face) which is placed in a
given position. (Fig. 2A). The goal of this model is to estimate the
appearance of all the FG objects and all the BG scenes, as a set of
FG and BG classes, separating them through transparency masks.
An improved version of the occlusion model was proposed in [43],
where the FG objects belonging to a given class were not constrained
to appear in a fixed position, permitting a finite set of translations
and rotations. These two generative models are meaningful and
intuitive, because they express an image partition scheme which
has a clear semantic interpretation (one or more foreground objects
imposed on a scene). Our goal is to employ the idea of superposition
of FG entities over a BG scenario in a scene classification context. Ta-
ken in their original version, none of the two models above can be
applied. First, while it is intuitive in a natural scene classification
framework to have a well defined finite set of natural BG scenario
classes [23], the goal of estimating all the possible classes of FG pat-
terns cannot be fulfilled, for both intuitive and technical reasons
(e.g.,how many FG classes?). Another lack of the two models regards
robustness: other than translation and rotations, invariance with re-
spect to scale transformations should be faced, as well as to illumi-
nation changes.

Our solution consists in proposing a novel generative model,
named occluded background (OB) model. Such model describes
images at different levels, following a quad tree structure, in order
to obtain invariance with respect to translations, rotations, occlu-
sion and scale. As a robust global image descriptor, we choose a
quantized color-histogram in HSV space. In this way, pixel intensi-
ties z0 = {Z” .. .Z¥} with K being the number of pixels in the tth

image, t =1,...,T, are replaced by the histogram’s bin values
h® = {h" ... h"}, where H varies depending on the bin quantiza-
tion. Note that, in principle, whatever feature that can be described
with histograms can be employed. Developments of our frame-
work using different kind of features is subject of future work.

3.2. Occluded background model

The occluded background model (Fig. 2B) is essentially a mix-
ture model (with b as mixture variable) with a binary feature selec-
tion variable m = {my,...my} which aims at individuating the
salient observed features of each image that characterize a partic-
ular mixture component. Differently from [42], the observations
are the bin values of the histogram h = {hy,...hy} and the key
structural element in our model consists in the conditional link
from the mask random variable m to the BG class b and the pres-
ence of a dummy class which models all the FG objects, so that
an histogram bin h; is generated starting from the bth prototype
if that bin is salient, otherwise from the dummy class.

The mixture variable b clusters the data in B components or
classes, whose centroids are called here prototypes and are repre-
sented by HSV histograms. The prototype represents the formal
translation of the BG pattern expressed in Section 1.1. Note that
h, b, m are replicated for T times, as expressed by the plate notation

In this way, assuming only a unique, gldbal level of analysis (i.e.,
each image is an atomic entity), the generative process that forms
an observed image histogram is shown in Fig. 2C and described
below:

1. Choose a prototype class b for the tth image, where
b"Y € {1,...,B}. Bis the total number of background prototypes.

2. For a particular image histogram generated by the b”th proto-
type, determine which bins are significant given that prototype.
This is done by choosing the image binary mask ml@, with
m" € {0,1}, where m!" = 1 indicates that the ith bin is a salient
background bin, so contributing to form the bth background
class prototype.

3. Finally, the values of the histogram bin are chosen indepen-
dently, given the mask, the prototype class and the noise class.

This generative process leads to the joint distribution?

P(h,m, b) = P(b) - <f[P<h,»|mi,b>> : (ﬁp(mb)) (1)
i=1 i=1

In this equation, P(h;|m;, b) can be further factorized by noticing
that, if m; = 0, the pixel values are generated by the foreground
dummy class, whereas if m; = 1 the pixel values are generated by
the b”th BG class so

P(hy|mi. b) = P(lb)" P(hyjn)' " @)

We parameterize the probability P(b) of a background class b by
7, Which is a B-dimensional array representing a multinomial
prior probability.

The probability that m; = 1 given that the background class is b
(i.e., P(m = 1|b)), follows a binomial distribution parameterized by
opi. We call o = {1, ... o5y} the peculiarity map, since it high-
lights the distinguishing bins of a particular background class pro-
viding a prior on m;. In practice «, could be considered a weight
that codifies our certainty about how much a bin is salient for a
particular class. Since the prior probability that m; =0 is 1 — o,
we can write

3 For the sake of clarity, in the following we omit the index t, when not strictly
necessary.
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Fig. 2. (A) The generative process underlying the occlusion model [42]. (B) Graphical representation of the occluded background model. Circles represent the hidden variables,
shaded circles are visible variables, squares are the parameters and diamonds represent constants. All the variables in the central plate are replicated T times, one for each
image. (C) The sketch of the generative process of the occluded background model. The example reported here uses information collected during the experimental phase. We
are considering the “grass” prototype: please note that its peculiarity map has white values (=high saliency) in correspondence with the bins which model the green color (the
green bins). (D) Sample images under different saliency masks, visualized via backprojection (see Section 3.3).

P(m;[b) = o (1 — o)™ 3)

Each bin value is modelled by a Gaussian function with param-
eters g and v, so h; ~ A"(u,y? - 1), 1 being the H x H identity matrix.

Each cluster centroid is hence modelled by a Gaussian of param-
eters u,,y, for the background classes; p,,y, are the respective
parameters for the dummy (FG) class.

Since the dummy class n models all the possible FG objects, we
have to discourage low values of i,,. In other words, we have to en-
sure a low specificity, since FG objects are highly variable entities.

To this end, we place an inverse-gamma prior Inv-I"(\/,;a;,a,)
on y, with hyper parameters A = ay, a,. This prior is used to keep
¥, within 60-100% of the dynamic range of the training data.

The parameterized version of the joint probability of the OB
model is thus

H
P(h,m,b) = m, - lnth//n,abH (1 — o)™
i=1

N (B g )™ - A (i ) ™ (4)

were A (h;; p;, ;) is the Gaussian density function calculated in h;
with mean g; and variance y?.

3.2.1. Free energy of the occluded background model

The model is learnt using a variational version of the Expecta-
tion-Maximization algorithm (EM) [44,45]. Here, we derive the
inference (E step) and the parameters update rule (M step).

In this case, the only visible variable is V®© = { i) }; t =1...T,
being T the number of images under analysis; the hidden variables
are HY = { b m(® }. Each observation h” has a separate compo-
nent variable b and an array of H masks variables m®, the param-
eters 0 = {o, ,y} are shared among the observations, the inverse
gamma prior is fixed and not learned from the data.

A standard criterion to optimize when fitting such (graphical)
models is the likelihood or the log likelihood of the observed data

logV, obtained by summing or integrating over the hidden vari-
ables H" for a given set of parameters 0. For occluded background
model we have an exponential number of configurations (27) so
approximate methods such as variational approximations must
be used. Variational approximations are based on an alternative
cost, named free energy for its similarity with the quantity used
in statistical physics. The free energy is defined as (re-including
here the index t for clarity)

m|0) log(q(b"’, m)|0)

—1In P +Z ZZq

b0 m®

=2 > a0

b0 m®

m|0) log P(h"”,b",m|0) )

where ¢’s are arbitrary probability distributions. The free energy is
limited from below by the negative log likelihood of the data
—logp({h“)}) and this bound becomes tight when q is equal to
the true posterior over the hidden variables b and m [45]. Varia-
tional learning consists in the minimization of F with respect to a
constrained posterior ¢ and the model parameters 0. Since for our
model the number of possible configurations of {m;} is exponential,
so we have to use a factorized form that lead us to a structured var-
iational approximation [46]:

a6, m10) = 5(0— 0) - < q(b?}9) - ﬁ q(m|p®, 0)) (6)

=1

Substituting P(m, b, h) (Eq. (2)) and q(m, b) (Eq. (6)) into Eq. (5),
we obtain the free energy for the occluded background model. EM
alternates between minimizing F with respect to the set of distri-
butions g(H"),...q(H™) in the E step, and minimizing F with re-
spect to 0 in the M step.



932 A. Perina et al. /Image and Vision Computing 28 (2010) 927-939

When updating q(H"), the only constraint is [, g(H”) = 1 and
this is accounted for by using Lagrange multipliers. In summary,
the pseudo-code for the EM minimization process is:

Initialization: choose randomly initial values for the parame-
ters 0
E Step: minimize F w.r.t. q by setting

a(H") — PHOV.0) 7)
for each training case, given the parameters 0 and the data V*

M step: minimize F w.r.t. the model parameters 0 by solving

d
50 log P(6) — Z: (

This is the derivative of the expected log-probability of the com-
plete data. For M parameters, this results in a system of M equa-
tions. The prior probability on the parameters (except v,) is
assumed to be uniform, i.e., P(6) = constant.

q(HY). 2

" -%P(H“), v<f>\0)> =0 (8)

Repeat for a fixed number of iterations or until convergence

This process yields the following intuitive update rules:

e Cluster assignment of an image t is based on the similarity of
observed local measurements to what is expected in a particular
background class b, according to the estimated parameters
Wy, Wy, as well as the expected salient bins o,.

H o a(mi=1lb)
b=b)ocmy [] | —2—— W (hi; 5, 5
q( ) o< T E (Q(mi —1}b) (hi; p; Wm))

1— o a(m;=0lb)
: _—bIN V/V.(hi; n7¢n)> (9)
(mm=mm g

e The masks are updated so as to balance the agreement with the
overall peculiarity maps o,

q(m; = 1|b) oc oty - A" (hy; fyi, i)

q(ml = O‘b) S (1 - ab) : “V(hﬁ ,uni'/ l//m’)

q(m; = +,b) = q(m; = +|b) - q(b) (10)
(

mi =)= q(m; = =b)
b
where x stands for 1 or 0.

e The parameters are updated to reflect the assignment statistics
over all images

o s am® = 1,67 )
>am® =1, =b) - (B — p,)?

Vo = S qm” = 1.6 —b) (11)
_>am =0)-hY

Hoi =5 qm = 0)

g — 2 =0 (Y — p)*

" Sq(m =0)

3.3. Back-projection and the effect of the masks

To ease the understanding of the effects of the learning phase,
we introduce here the back-projection operation. Once the learn-
ing has been performed, the saliency mask m® parameterized by
the peculiarity map o, represents the salient feature bins of a par-
ticular image with respect to a particular background prototype.
Therefore, each image z® will have B saliency masks, modelled
variationally by q(m®|b"”) (see Eq. (6)). The back-projection de-
picts the effect of the bth peculiarity map (and thus, of the mask)
directly on the images. This is given by showing on the image only
those pixel values that are modelled by a salient bin; this is not an
exact operation since we do not take into account the value of pixel
present in the associated bin (u,;), however it gives a good approx-
imation of what our method considers background.

For example, in Fig. 2D, three peculiarity maps are projected on
a picture. The first peculiarity map is associated to a prototype
shown in Fig. 2C, that models the grass, the second is associated
to a prototype modeling the water while the third is associated
to the road. Other projections are shown in Fig. 3; on the second
column from right, it is worth noting the image with the three run-
ners: both the street and the trees are highlighted and recognized
as two different prototypes.

4. The proposed approach: background distillation and
specialization

In our approach, the OB model is applied in a multi-scale fash-
ion (see Fig. 4). We have S« levels, indexed by s = 1...Spu.

At each level, a two-step approach is performed, composed by
the distillation phase (i.e., the OB model learning) and the special-
ization phase. At the first level, s = 1, all the T images in their en-
tirety are considered, by collecting in the set I; their histogram
descriptors h"”,t = 1,...,T (Fig. 4A). The OB model is trained on
mal” value for B could be selected by the user or estimated by eval-
uating a model selection principle, such as the maximum
description length (MDL) principle [47,48], but, in this paper, mod-
el selection issues are not investigated; instead, an effective heuris-
tics for choosing the correct B is proposed later in this sections.

In the subsequent phase (Fig. 4B), namely the BG specialization, a
similarity matrix between image descriptors {h”} and distilled
prototypes {u,,,} is built, employing as similarity measure the
intersection distance:

i min (hgt)7 ﬂbi)
—

1

9(t,b)y=1- (12)

The intersection distance measures the percentage of the image
histogram h® covered by the bth BG prototype.

Each tth image (z") is then associated with the couple (b;,d;)
where b, represents the index of the nearest prototype and d; the
relative distance between the image and its nearest prototype. In
formulae:

(b, dr) = (argmin D(t, b), min D(t, b)) (13)

Now, all the images whose distance from their nearest proto-
type exceeds a threshold 7 (i.e., d; > 7) are split in four non-over-
lapping squared sectors following a quad tree structure (Fig. 4C).
All the sectors resulting from the splitting form the novel training
set I, (Fig. 4D). The remaining images (i.e., those for which the rela-
tion d; < T does hold) are labelled with b;.

The intuitive idea underlying the splitting process is that if an
image is not well modelled by any prototype, it could be better
modelled by a potential prototype whose evidence has not
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Fig. 4. Overview of the proposed method.

emerged in the training dataset, or that it exhibits a composite
structure whose local visual components may fit with one the pre-
viously found prototypes. The threshold 7 can be chosen by cross
validation, although in all the experiments performed a choice of
T = 0.25 leaded to good results.

This two-step process continues iteratively until a smallest
sector size is considered, making sure that at each specialization
step, the intersection distance between each sector and each pro-
totype found at the upper levels is evaluated (Fig. 4E), so that the
prototypes found at a given level s are inherited at the lower
levels.

At the end of the process, a multi-scale representation of the
image is produced and stored as a quad tree. In order to create a
normalized image signature, a subdivision is performed on the en-
tire dataset. Each image is partitioned in sectors. The size of the
sectors is equal to the (smallest) size of a sector at level S,.. Each
sector inherits the label of the correspondent ancestor quad tree
level.

In this way, each image can be described as an histogram of pro-
totype labels, called concept occurrence vector (COV, See Fig. 5).
We use this definition since each prototype models a natural pat-
tern present in an image, such as sky, water, and grass.
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Fig. 5. Outcome of the representation framework: some segmentations and related concept occurrence vector (COV).

This information enables us to make a global statement about
the amount of a particular concept being present in the image,
e.g., “This image contains 25% grass” and, from a probabilistic point
of view, represents the probability of finding a concept in that
image.

This image representation allows us to model information
about which concept appears in which location of an image, thus
going beyond the bag-of-words paradigm, where the spatial layout
of the features is lost.

At the end of the process described so far, we have at most
Smax - B prototypes modeling typical, natural scene concepts with
the relative peculiarity maps (see Fig. 6).

5. Experiments and discussion

Natural image classification is a very difficult task as boundaries
between natural classes are not well defined and images across
categories share much of their content. In the literature, natural
scene classification often rests upon two levels of abstraction, i.e.,
the concept and the category levels. The concept level can be
thought of as the analogue to the “latent” (topic) level in topic
models [15], that, if translated into a natural image classification
context, models natural constitutive elements, such as sky, rocks,
sand, and snow.

Above this description level, category can be thought of as a
weighted ensemble of several concepts in which the weight of
each concept reflects the importance of that concept in the cate-
gory definition (e.g., in the “high mountain” category, the “snow”
concept has high weight). A general definition of natural catego-
ries has been devised accounting for different psychophysical
studies [23,49-51], which witness the presence of smooth bound-
aries and important overlapping among categories. To test our
approach, we investigate how our method works at both concept
and category level, employing different kinds of natural
categories.

5.1. Data description and experimental setup

In the experiments we consider two subsets of the Washington
database [52] and one from the Corel PhotoCD database.

e Corel Photo CD (Dcpc). We chose the same subset used in [11],
probably the most complete natural image dataset. Images are
divided into six categories coasts, rivers/lakes, forests, planes,
mountains, sky/clouds. This categorization was introduced in
[11] by combining and extending the basic-level categories
introduced in [23,49].

e Reduced Washington dataset (Drw). We took only five categories,
Arborgreens (AR), Green Lake (GL), Cherry (CH), Swiss Moun-
tains (SM) and Greenland (GR), for a total amount of nearly
450 images. We annotated manually this dataset in two ways,
in order to gather ground truth data for comparative image rep-
resentation experiments. In particular, we partition all the
images into non-overlapping square sectors of 1/16 of the origi-
nal image size. Then, we adopt the original text labels furnished
with the dataset to classify all the sectors. A more principled
labelling was performed by employing the concepts definition
proposed by Mojsilovic and Gomes [49]. They introduced nine
local semantic concepts through the analysis of the semantic
similarities and dissimilarities of a large set of images. These
nine semantic concepts permit to annotate in an intuitive and
precise way any landscape, forming the vocabulary SC = [sky,
water, grass, trunks, foliage, field, rocks, flowers, sand]. The manual
labelling turned out to be very expensive, and for this reason it
has been limited to a little part of the whole dataset.

e Natural Washington dataset (Dyy ). We took all the 13 categories
of natural images present in the Washington dataset: Arbor-
green (AG), Australia (AU), Cannon beach (CB), Cherry (CH),
Columbia George (CG), Green lake (GL) Greenland (GR), Indone-
sia (IN), Leafless trees (LT), San Juan (S]), Spring flowers (SF),
Swiss Mountains (SM), Yellowstone (YE), for a total amount of
more than 800 images.

A selection of images is visible in Fig. 7. For what concerns the
setting of the parameters, we set syax = 3, thus managing sectors
large 1/16th of the original image size. At each background distilla-
tion step, we learn B = 6 prototypes, considering as valid only those
prototypes which were assigned to more than five images/sectors
after the BG specialization step. This heuristic model selection strat-
egy worked well but a more principled procedure is currently under
study.

5.2. Validation of the prototypes

The first test consists in applying our approach to the Dgy data-
base. At the end of the whole multi-scale process, we identified
eight prototypes for Dgy, estimated at different levels (three at
the first level and five at the second one). Image segmentations
through the sector labelling are visible in Fig. 8. Labels were given
by following the strategy explained later in this section.

As test for the significance of the obtained prototypes, we con-
sider the ground truth text annotations of the reduced Washington

4 This parameter depends on the resolution of the images.
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database (Dgw ), and we draw a correspondence table of that anno-
tations with our prototypes. In such table, we report those corre-
spondences that hold more than the 90% of the examined cases
(see Table 1). In practice, we list those correspondences that linked
at least 90 occurrences of the same textual annotation with 100
sectors labelled with the same BG prototype. The typicality of the
label assignment performed by our approach is evident, in the
sense that each prototype refers to particular natural concept. In
order to summarize all the valid text correspondences in a unique
concept label, we assign to the eight ordered prototypes the fol-
lowing text labels, forming the concept vocabulary SC, = [wilder-
ness, cherry flowers,water, field/bushes, foliage, street, high mountain,
cherry gems].

In Fig. 93, for each prototype its nearest image/sector is shown.

The second test considers the labelling performed by using the
concepts of SC. Here, after learning we have learned the prototypes
SCqc and SC,, (see Fig. 9), respectively, for we calculate the number
of times that each of the prototypes is assigned by the proposed
method to a region labelled by each of the concept present in SC,
forming thus a similarity matrix depicted in Fig. 10a.> This result
confirms what was found in the previous test, i.e., that our approach
is able to naturally segregate natural patterns, disregarding clutter
elements, providing prototypes which can be considered as accurate
natural concepts, in the sense defined by [15].

In the same way, we apply our approach to the Corel dataset,
whose per-sector ground-truth labelling is given in [11]. We obtain
12 prototypes (five at the first level, seven at the second level). In
Fig. 9b the list of the nearest image/sector to each prototype is re-
ported. The similarity matrix that explains the correspondence be-
tween our prototypes and their natural concept is given in Fig. 10b.
To ease the understanding of the matrix, we manually assign to
each prototype a text label explaining the most prominent intui-
tive natural concept forming SCg,.. Even in this case, we can ob-
serve that the similarity matrix is peaked, highlighting the
capability of our prototype to capture well defined natural con-
cepts. Moreover, it is worth to note that: (1) our method avoids

5 We used the ground-truth labels provided by [11] for D¢pc and we repeated the
labelling procedure of [11] to create the ground-truth for Dgy.

to produce wrong similarities (i.e., there is no similarity between
rocks and sea) and (2) the approach uses simple image descriptors
such as the color histogram, which have a very limited expressive-
ness. Working with more complex descriptors in a bag-of-words
framework could lead to a more powerful and precise prototype
definition.

5.3. Image classification

In order to test the ability of our image concept representation
to build category definitions, in the sense of ensemble of natural
concepts of [15], we adopt the category partitions proposed in
the Washington database (provided by the database authors) for
what concerns Dyw (we drop the restricted Dgy database), and
the categories introduced in [11] for what concerns the D¢pc data-
base. After having learnt the concept representations for each data-
base, producing the vocabulary SC,, and SC., we calculate the
concept occurrence vector COV for each image (see Section 4),
and subsequently we calculate p¢, the “category COV”, built by cal-
culating the mean over all the COV of the images of a given
category.

The resulting p¢ are depicted in Fig. 11.

The classification policy is the following: given an image and its
COV, we assign it to the nearest category via L2-norm between
COV and p¢; the resulting procedure is unsupervised for what con-
cerns the concepts but supervised at category level.

We compared our method with the discriminative method of
[11], employing the same classification policy, and with the gener-
ative topic model presented in [5].

In [11], nine support vector machines are learnt in order to dis-
criminate between the nine natural semantic concepts SC found in
[49]. Each image is then partitioned in 100 non-overlapping fixed-
regions and each region is assigned to a concept via SVM
classification.

In [5], Latent Dirichlet Allocation (LDA) is used to classify
scenes. In particular, in this work a visible class variable is added
to the original LDA graphical model inferring, separately for each
class, a prior o over the theme distributions of the single images.
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Fig. 7. Some examples of the images used for each category. Note how in many images the presence of foreground is evident, i.e., visual object(s) not characteristic of any
natural category. On the bottom we report some images that would be difficult to classify even for humans.

The classification is performed in a generative way, i.e., calculating
the likelihood of unseen images under each class parameters.

It is worth to note that our method presents similarities with
[11] for what concern image description but it has three important
conceptual differences: (1) the concepts are not a-priori defined
but extracted from the dataset, (2) the method does not require
manual preprocessing operations, and (3) the images are subdi-
vided only if necessary.

We performed image classification on each dataset mentioned.
Confusion matrices of results of our method are shown in Fig. 12,
while overall classification rates are reported in Table 2, where
we report the accuracy for the proposed method for 2 choice of
Smax- The column “[11] with OB)” refers to the method in [11] pre-
viously presented, with the SVM learned using the concepts esti-
mated by our method (see Fig. 9). In practice, for each concept b

found by our method, we sort the image sectors according to their
distance from the bth prototype (see Fig. 6), and we learn an SVM
with RBF kernel with the 15 nearest images. In formulae the train-
ing set used is:

TRAINING, = {h | Dsr(t,b) is ranked between 1 and 15} (14)

The optimal SVM parameters are found via cross-validation. As
additional test for evaluating the contribute of the generative mod-
eling, we repeated the classification task using a simple mixture of
Gaussians (MoG) instead of OB model. It is worth to note that mix-
ture of Gaussians is a particular case of OB model with the masks
m‘ =1 Vi, t, i.e., considering salient each pixel. The usage of mix-
ture of Gaussians degrades the performance of 7-10 % for these
datasets (See Table 2).
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Table 1
Correspondence between concepts. The text annotations for each prototype are
ordered in decreasing order with respect to relative frequency.

OB model prototypes Washington annotations

Prototype 1 Ground, grass, mountain

Prototype 2 Tree, trunk
Prototype 3 Water
Prototype 4 Grass, bush

Prototype 5
Prototype 6
Prototype 7
Prototype 8

Bushes, fern, lily

Street, trail, sidewalk
Rocks, snow, ice, clear sky
Flowers, cherry tree

The results are easy to understand; OB model per se reaches
good performances in all dataset providing similar performances
to [11,5]. Moreover, combining the concepts of our approach with
the discriminative and finer method of [11], we obtain the best re-
sults on all the datasets.

6. Conclusions

In this paper, a generative model for multi-scale image repre-
sentations from an image dataset is presented. The final image rep-

(a)

Wilderness

SCow (b)

Cherry flower

Field / Bush

resentation is functional to tasks like natural image classification
and natural scene categorization. The method is based on a gener-
ative image model able to distinguish, at different levels, the back-
ground information from the foreground elements in whatever
position, thus allowing to focus on the scene information only. In
summary, given an image database, the designed generative model
allows to disregard the entities which are not in accordance with
the background data, and this process is iterated at different levels
down to a certain (a priori fixed) sector size. The image (sector)
subdivision is carried out automatically in case its content is not
homogeneous enough, hence requiring a further split to better
identify the constitutive elements of the scene considered. This
method differs from the approaches in the literature in several as-
pects. Although there are other generative methods for image clas-
sification, none of them attempts to discriminate actual useful
information given by the background from other clutter informa-
tion present in the image and this much improves the classification
accuracy.

The experiments show how the proposed method is able to se-
lect salient concepts from an image dataset of natural scenes of dif-
ferent types. Concepts are selected in a robust way by extracting
the so-called saliency masks which make possible to work also
with personal pictures typically affected by clutter, i.e., informa-
tion not useful for natural scene classification (e.g., persons, faces,

SCo

Sea

Water

Woods Bushes

Field Yellow Fields

Red Rocks

Fig. 9. Concept listings: for each Dy (a) and Dcpe (b), we show the nearest image (or sector) to each prototype.
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Fig. 10. Concept listings: similarity matrices between the prototypes found by the occluded background model (SC,, and SC,,c) and the semantic concepts SC introduced in [49].
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