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Abstract

The application of machine learning techniques
to open problems in different medical research
fields appears to be stimulating and fruitful, es-
pecially in the last decade. In this paper, a new
method for MRI data segmentation is proposed,
which aims at improving the support of medical
researchers in the context of cancer therapy. In
particular, our effort is focused on the process-
ing of raw output obtained by Dynamic Contrast-
Enhanced MRI (DCE-MRI) techniques. Here,
morphological and functional parameters are ex-
tracted, which seem indicate the local develop-
ment of cancer. Our contribute consists in or-
ganizing automatically these output, separating
MRI slice areas with different meaning, in a his-
tological sense. The technique adopted is based
on the Mean-Shift paradigm, and it has recently
shown to be robust and useful for different and
heterogeneous segmentation tasks. Moreover,
the technique appears to be predisposed to nu-
merous extensions and medical-driven optimiza-
tions.

1 Introduction
Segmentation is a vast and complex domain, both in terms
of problem formulation and resolution techniques. It con-
sists in formally translating the delicate visual notions of
homogeneity and similarity, and defining criteria which al-
low their efficient implementation[Petitjean, 2002]. The
goal is to partition the source data into meaningful pieces,
i.e. those parts corresponding to the different entities, in
the physical and semantical sense of the application en-
visioned. Roughly speaking, the segmentation methods
can be categorized into two main classes:edge-basedand
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region-based[Petitjean, 2002]. In the former, features cor-
responding to part boundaries are first detected and then
regions are built, each one formed by sets of points de-
limited by the same boundary. In the latter, points shar-
ing the same similarity property are grouped together. In
particular, three are the most popular approaches to region-
based segmentation:split-and-mergemethods, identified
by a top-down paradigm;region-growingmethods, that
adopt a bottom-up paradigm, andclustering-basedmeth-
ods, based on the projection of the points onto a higher
dimensional space where the clusters (i.e., segments) are
recovered by defining some particular distance functions
[Jainet al., 1999a].

In this paper, we apply a recently proposed clustering-
based technique for the analysis of data, which considers
as leading framework the Mean Shift (MS) clustering para-
digm, proposed in[Comaniciu and Meer, 2002]. The main
underlying idea of such non parametric approach is that the
data space is regarded as an empirical probability density
function to estimate. The MS procedure operates by shift-
ing a fixed size estimation window, i.e.,the kernel, from
each data point towards a local mode, denoted, roughly
speaking, as a high concentration of points. The points
converging to the same mode are considered as belonging
to the same region.

Although MS has shown to be a powerful technique for
several research fields such as image and video segmenta-
tion, tracking, clustering and data mining[Comaniciu and
Meer, 2002; Collins, 2003; Georgescuet al., 2003], very
few work has been derived from it in the context of med-
ical multidimensional data segmentation.

In this paper, the MS paradigm is applied to perform
segmentation of multidimensional data, obtained using Dy-
namic Contrast-Enhanced Magnetic Resonance Imaging
(DCE-MRI). Briefly speaking, DCE-MRI techniques rep-
resent non-invasive ways to discover symptoms of local tu-
mor growth, based on a manually-driven feature extraction
step that operates on the MRI imagery.

As explained in the following, our method bring two
advantages to the current state of the DCE-MRI analysis.
First, it permits a more accurate feature extraction step, that
here operates in anautomaticfashion. Second, it permits
to fasten the analysis itself, ensuring a higher throughput,
that turns out to be useful in the case of massive analysis.

The rest of the paper is organized as follow. In Section
2, an overview of the previous work done in the context



of medical data segmentation is provided; subsequently, in
Section 3, the necessary medical background is provided,
considering the classical DCE-MRI experimental method-
ology, in the contest of the tumor development monitoring.
This section will elucidate the nature of the data managed;
moreover, here it will be possible to deeply understand the
advantages brought by our method. In Section 4, the Mean
Shift procedure is explained, connecting it with a classical
pattern recognition procedure, i.e. the Parzen Windows es-
timation method. In Section 5, the technical details of the
proposed method are reported. Results are shown in Sec-
tion 6, also compared with a state of the art method, and,
finally, Section 7 concludes the paper.

2 Previous Works

In the realm of medical data segmentation, several works
have been introduced, especially for MRI clustering and
classification[Windishbergeret al., 2003; Dimitriadouet
al., 2004; Zhang and Chen, 2004; Wismulleret al., 2006;
Arulmurgan et al., 2005; Wei and Yang, 2005; Jainet
al., 1999b; Scarthet al., 1995; Castellaniet al., 2005].
Most proposed methods are based on theK-Means al-
gorithm [McQueen, 1967; Han and Kamber, 2000]. In
[Windishbergeret al., 2003; Zhang and Chen, 2004], a
variant of the K-Means has been implemented, calledfuzzy
C-Means(FCM) [Scarthet al., 1995; Jainet al., 1999b;
Dimitriadouet al., 2004]. Such variant takes advantages of
fuzzy logic algorithms to enhance clustering performance.
In particular, the FCM algorithm assigns pixels to fuzzy
clusters without labels. Unlike the hard clustering methods
which force pixels to belong exclusively to one class, FCM
allows pixels to belong to multiple clusters with varying de-
grees of memberships. In[Windishbergeret al., 2003] the
clustering of MRI time series have been performed for the
identification and separation of artifacts as well as quan-
tification of expected novel information on brain activi-
ties. In[Zhang and Chen, 2004] the authors focused on the
methodological aspect of thefuzzy C-Meansby introduc-
ing a kernel-induced distance metric and a spatial penalty
on the membership functions. The proposed approach has
proved to be more robust to noise and other artifacts with
respect to standard algorithms. In[Castellaniet al., 2005]
the authors proposed a DCE-MRI clustering approach, cou-
pled with a Information Visualization module, in which a
Bayesian development of the K-Means was applied. Here
the add-on is that the number of the clusters is automati-
cally computed; the algorithm is similar in spirit to the X-
Means algorithm proposed by[Pelleg and Moore, 2000].
In [Dimitriadouet al., 2004], a quantitative comparison of
MRI cluster analysis has been reported.
With respect to the proposed evaluation, the results clearly
show that approaches based on k-means algorithm perform
significantly better than all the other methods.
More complex techniques have been proposed in[Wis-
mulleret al., 2006; Arulmurganet al., 2005; Wei and Yang,
2005] which are based on neural networks or genetic algo-
rithms[Jainet al., 1999b; Han and Kamber, 2000], but they
are time consuming and therefore are not suitable for inter-
active applications.

3 The DCE-MRI analysis
The main purpose of DCE-MRI analysis is to accurately
monitor the local development of cancer, eventually sub-
ject to different treatments.
The traditional criteria to assess the tumor response to treat-
ment is based on the local measurement of tumor size
change. This phenomenon is due to the localangiogenesis,
i.e., the process of growth of new vessels which provide the
tumor tissue with nutrients. In consequence, various angio-
genesis inhibitors have been developed to target vascular
endothelial cells and to block tumor angiogenesis.

Recently, a different and more appealing indicative
symptom of the cancer development has been analyzed, i.e.
the tissue vascularization[Marzolaet al., 2004]. Roughly
speaking, vascular effect may precede, by a remarkably
long time interval, the effect on tumor growth. For these
reasons, the assessment of antiangiogenic compounds re-
quires imaging methods that can detect early vascular al-
terations.

DCE-MRI techniques play a relevant role in this field
[Marzolaet al., 2004]. The final aim is to provide quan-
titative measures that indicate the level of vascularization
in the cancer tissue, eventually treated with antiangiogenic
compounds, in anon-invasiveway.
Roughly speaking, the DCE-MRI analysis can be divided
in the following steps (see Fig.1)1: 1) injecting macromole-
cular contrast agents in the tissue being analyzed; 2) pro-
ducing MRI image sets of different slices of the tissue; 3)
extracting morphological and functional parameters such
as fractional plasma volume(fPV) and transendothelial
permeability(kPS), that model the tissue vascularization;
in practice, to each point of the MRI image is associated a
pair consisting offPV andkPS values; 4) manually select-
ing a Region Of Interest on the MRI slices, in order to iso-
late the highly vascularized local tumoral area; usually this
area is ring-shaped and separates a necrotic area (that lies
in the center of the ring) from the external healthy portion
of the tissue; 5) averaging the values offPV andkPS in
such ring-shaped area, obtaining for each slice a couple of
fPV andkPS mean values, that indicate the overall level
of vascularization. This process has been recently tested
using a well-known anti-cancer treatment[Marzolaet al.,
2005], evidencing that thefPV andkPS parameters well
describe the effectiveness of the treatment, as checked by
additional histological analysis; as we see in the following,
we take as experimental data-set the one coming from this
research.

In this paper, we strongly improve the process above,
providing an automatic method of data segmentation; the
proposed technique is applied to this particular kind of
analysis, but we suppose it can be also applied in general in
the DCE-MRI context. In detail, we focus on steps 3), 4)
and 5); our method takes as input the functional parameters
fPV andkPS obtained in step 3); in an automatic fashion,
it is able to segment areas that experimentally corresponds
to the tumoral area extracted by hands in step 4); note that
originally this step was driven by histological and physio-

1The procedure listed above comes from the investigation de-
tailed in [Marzola et al., 2005], that in turn presents additional
similar researches
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Figure 1: DEC-MRI analysis: example of DEC-MRI
analysys procedure; 1) contrast agent injection; 2) MRI im-
age acquisition 3)kPS,fPV extraction; for clarity, here the
bright zone highlights the tumor4) ring shape ROI drawing
by hand; 5) meankPS,fPV values computation

logical a-priori considerations, being the ring-shaped zone
segmented by hand by an human operator.

The advantage brought by the proposed approach is
twofold: firstly and mostly important is that, given a DCE-
MRI slice, we provide a region of points composed by an
ensemble offPV andkPS values that individuate separate
groups; note that the partition is histologically meaning-
ful, and not relies on a-priori manual settings. Secondly,
such a segmentation is produced automatically and quickly
( 5 seconds, versus the 4-5 minutes needed for an accu-
rate manual setting), thus fasting the analysis process listen
above.

4 Mean Shift
The Mean Shift procedure is a dated non-parametric
density estimation technique [Fukunaga, 1990;
Comaniciu and Meer, 2002]. The main underlying
idea is that the data feature space is regarded as an em-
pirical probability density function to estimate: therefore,
a big concentration of points that fall near the locationx
indicates a big density nearx.

The theoretical framework of the mean shift arises from
the Parzen Windows[Dudaet al., 2001] basic expression,
i.e. the kernel density estimator, that is

f̂(x) =
1
n

n∑

i=1

KH(x− xi) (1)

wheref̂(x) represents the approximated density calculated
in thed-dimensional locationx, n is the number of avail-
able points and

KH(x) = |H|−1/2K(H−1/2x). (2)

Here above,KH can be imagined as a weighted window
used to estimate the density, dependent on the kernelK
and the symmetric positive definited×d bandwidth matrix
H. The functionK is a bounded function with compact
support (for full details, see[Comaniciu and Meer, 2002]);

the bandwidth matrix codifies the uncertainty associated to
the whole feature space.

In the case of particular radial symmetric kernels (see
[Comaniciu and Meer, 2002]), K can be specified using
only a 1-dimensional function, theprofile k(·), equal for
each dimension. Moreover, if we assume independence
among the feature dimensions and equal uncertainty over
them, the bandwidth matrix can be rewritten as propor-
tional to the identity matrixH = h2I. Under such hy-
potheses, Eq. 2 can be rewritten as:
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whereck,d is a normalizing constant,n is the number of
points available, andk(·) is the kernel profile; in Eq.(3) it
is easy to note thatk(·) models how strongly the points are
taken into account for the estimation, in dependence with
their distanceh to x.

Mean Shift extends this “static” expression, differentiat-
ing (3) and obtaining the gradient of the density, i.e.:
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whereg(x) = k′(x). In the above equation, the first term
in square brackets isproportional to the normalized den-
sity gradient, and the second term is theMean Shiftvector,
that is guaranteed to point towards the direction of maxi-
mum increase in the density[Comaniciu and Meer, 2002].
Therefore, starting from a pointxi in the feature space, the
mean shift produces iteratively a trajectory that converges
in a stationary pointyi, representing a mode of the whole
feature space.

5 The proposed method
Our segmentation method can be thought as a clustering
process, derived from the approach proposed in[Comani-
ciu and Meer, 2002]. Briefly speaking, the first step of such
process is made by applying the Mean Shift procedure to
all the points{xi}, producing several convergency points
{yi}. A consistent number of close convergency locations,
{yi}l, indicates a modeµl. The labeling consists in mark-
ing the corresponding points{xi}l that produces the set
{yi}l with the labell. This happens for all the convergency
locationl = 1, 2, . . . , L.

In this paper, we consider each point of the MRI as a
d-dimensional entity, living in ajoint domain. In specific,
eachxi is composed by the pairxs ∈ R2 of spatial coordi-
nates relative to thex,y image axes (theforming the spatial
sub-domain) and the pairxc ∈ R2 of fPV andkPS co-
efficients (forming thecoefficients sub-domain). For each
sub-domain we assume Euclidian metric.
In order to explore the joint domain, a multivariate kernel is
used[Comaniciu and Meer, 2002; Wanget al., 2004], that
has the form

Khs,hc(xi) =
C
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sh
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wherexi,s indicates the spatial coordinates of thei−th
point and so on forxi,c; C is a normalization constant,
andhs,hc are the kernel bandwidths for each sub-domain.
These values give to each feature domain the intuitive con-
cept of “importance”: strictly speaking, the bigger the re-
lated kernel bandwidth, the less important that feature. In
other words, a big amplitude of the kernel tends to agglom-
erate points in few convergence locations, while a small
kernel highlights better local modes, encouraging cluster
separations.
In this paper, we use the Epanechnikov kernel[Comaniciu
and Meer, 2002], that can be described by the profile

k(x) =
{

1− x if 0 ≤ x ≤ 1
0 otherwise (6)

that differentiated leads to the uniform kernel, i.e. ad-
dimensional unit sphere.

6 Experiments
The experiments performed in this paper are related to a
series of investigations on the effects of a particular tumor
treatment, using DCE-MRI techniques. Here, human mam-
mary carcinoma fragments (13762 MAT B III) were subcu-
taneously injected in the right flank of 42 female rats at the
level of the median-lateral. The details about the experi-
ment outstand the scope of the paper (see[Marzolaet al.,
2005] for details); anyway, the interesting aspects are the
following: 1) after the injection of a contrast compound in
the animals, MRI images were acquired for tumor local-
ization and good visualization of extratumoral tissues. The
dynamic evolution of the Signal Intensity in MR images is
analyzed using a two compartments tissue model in which
the contrast agent can freely diffuse between plasma and
interstitial space. The kPS and fPV values are obtained
pixel by pixel by fitting the theoretical expression to exper-
imental data. After that, data were transferred on a PC for
analysis. Images were analyzed on a ring-like region-of in-
terest (ROI) basis to obtain the average value ofkPS and
fPV within it: in each animal, the central 5 slices of the
3D data set were analyzed.

In our case, we select a reasonable section of the MRI
slice, (Fig.2 (a); in principle, the analysis can be applied to
the entire slice); in this area, we calculate the relatedkPS
andfPV coefficients (Fig.2 (b) and (c)) and we perform
MS segmentation using a uniform kernel for each subdo-
main.

After the normalization of the data, that brought all
the values between 0 and 1, the kernel bandwidth widths
have been easily chosen. In particular, after some (less
than 10) trials the bandwidth values have been set to
[0.3, 0.3, 0.03, 0.06] for the spatial (first pair of values), and
the coefficient sub-domain (second pair of values), respec-
tively.

The current implementation of the proposed method is
working under the Matlab 7 environment. The segmenta-
tion process takes∼ 5 sec. each for each MRI slice.

A result obtained for the slice shown in Fig.2 is shown
in Fig.3 (b).
As comparative test, we perform the same analysis using
the approach based on the Bayesian development of the K-
Means, presented in[Castellaniet al., 2005]; the result is

(a)

(b)

(c)

Figure 2: DEC-MRI: (a) example of MRI slice, where a
contrast agent has been introduced into the tissue before
the image acquisition; a rough section of the tissue was se-
lected in order to apply our algorithm, highlighted by the
dotted circle; (b) intensity image representing thefPV val-
ues; (c) intensity image representing thekPS values; in b)
and c), the higher the values of the parameters, the brighter
the color of the correspondent pixels.

shown in Fig.3 (a). As one can see, our approach iden-
tify two clusters: both of them have a different histolog-
ical meaning; the darker cluster, roughly forming a ring,
indicates effectively the zone of the tumor more affected
by vascularization. This zone corresponds to the one seg-
mented by hand at steps 4) and 5) of the DCE-MRI analy-
sis discussed in Sect.3. The second cluster, that spreads
over the center, indicates another different zone, affected
by high permeability with respect to the contrast agent. The
result obtained using the X-Means based approach shows
slightly only the circular high vascularized ring.

With the same experimental setup, we perform another
two tests on the same DCE-MRI data set. As shown in
Fig.4 (b) and (d), in both the cases the resulting segmen-
tations show 2 clusters, i.e., an external high vascularized



(a) (b)

Figure 3: Comparative results: (a) the segmentation ob-
tained using the X-means method; (b) our approach

ring and a central necrotic spread zone, with precise histo-
logical meanings, as written above.

(a) (b)

(c) (d)

Figure 4: DCE-MRI results: on the left, the MRI images
related to two different experiments, with the tumoral zone
highlighted. On the right, the resulting segmentations

7 Conclusions
In this paper, we introduce a multidimensional segmenta-
tion technique derived by the Mean Shift (MS) procedure,
aimed at improving the analysis and the characterization of
tumor tissues. Briefly speaking, the multidimensional out-
put obtained by a recent and non invasive tissue analysis,

namely, the Dynamic Contrast-Enhanced MRI (DCE-MRI)
technique is considered; the output of this technique, com-
posed by spatial, morphological and functional tumor pa-
rameters is projected in a joint space, where anautomatic
clustering-based segmentation is performed; this process
results in a histologically meaningful partition, that indi-
viduates tissue zones differently involved with the devel-
opment of the tumor. The goals of the proposed method
are two: 1) we permit an analysis of the tissue more precise
and 2) fast than the manual analysis currently performed;
these two results assess that the non-parametric paradigm
derived from the MS strategy well behaves with medical
segmentation issues, related to the DCE-MRI context. Fur-
ther research is currently under study, specially devoted to
make automatic the phase of kernel selection.
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