Nome:	Cognome:		
Matricola:	FIRMA:		

Esame di Ricerca Operativa - 13 giugno 2012 Facoltà di Ingegneria - Udine

Problema 1 (4 punti):

La fonderia Beldur produce un acciaio, ottenuto dalla fusione di 4 diversi materiali grezzi. Il costo unitario (Euro/kg) di ciascun materiale e la su composizione espressa in percentuali kg/kg di materiale, sono espressi nella seguente tabella:

	% alluminio	% silicio	% carbonio	costo al kg
materiale 1	2	9	7	700
materiale 2	5	8	7	600
materiale 3	3	6	5	500
materiale 4	4	6	7	650

Si tenga conto che il prodotto finale deve contenere una percentuale di alluminio compresa tra il 3% e l'8%, una percentuale di silicio tra il 4% e il 5%, e una percentuale di carbonio non superiore al 5%. Formalizzare il problema di pianificare la produzione della fonderia con l'obiettivo di minimizzare i costi.

Problema 2 (2+2 punti):

Data la formula booleana $(x_1 \lor x_2 \lor \overline{x_3}) \land (x_3 \lor x_4 \lor \overline{x_5}) \land (\overline{x_1} \lor x_2 \lor \overline{x_4}) \land (\overline{x_2} \lor x_3 \lor \overline{x_5}) \land (\overline{x_3} \lor x_5)$ siamo interessati a quegli assegnamenti di valori di veritá alle variabili che rendano vera la formula (ossia che soddisfino ciascuna delle sue 5 clausole).

Assumiamo tuttavia che settare la variabile x_i a true comporti dei costi come da seguente tabella.

	x_1	x_2	x_3	x_4	x_5
cost of truth	2	5	-3	4	-1

(2pt) Formulare come problema di programmazione lineare intera (PLI) l'intento di soddisfare la formula a costo minimo.

(2pt) Piú in generale, data una formula booleana in forma normale congiuntiva $\Phi = \bigwedge_{i=1}^{m} \left(\bigvee_{j=1}^{|p_i|} x_{p_i(j)} \right) \vee \left(\bigvee_{j=1}^{|n_i|} x_{n_i(j)} \right)$, ossia una disgiunzione (.OR.) di m clausole, dove p_i é un vettore che restituisce gli indici delle variabili che appaiono positive nella clausola i e $|p_i|$ indica la lunghezza di p_i , mentre n_i é un vettore che restituisce gli indici delle variabili che appaiono negate nella clausola i e, analogamente, $|n_i|$ é il numero di variabili che compaiono negate nella clausola i, si esprima come un problema di PLI la ricerca di assegnamenti di veritá che soddisfino alla formula a costo minimo, dove con c_j , $j=1,2,\ldots,n$, indichiamo il costo di settare la variabile x_j a true.

Problema 3 (4 punti):

Trovare la più lunga sottosequenza comune tra le stringhe s = CTGTGAGAATCGCTGTA e t = GTACGACTGAAGCTAT. Fare lo stesso con alcuni prefissi di $s \in t$.

- 3.1(1pt) quale è la più lunga sottosequenza comune tra s e t?
- **3.2** (1pt) e nel caso sia richiesto che la sottosequenza comune termini con 'C'?
- **3.3 (1pt)** quale è la più lunga sottosequenza comune tra s e il prefisso $t_9 = GTACGACTG$ di t?
- **3.4 (1pt)** quale è la più lunga sottosequenza comune tra t e il prefisso $s_8 = CTGTGAGA$ di s?

tipo di sottosequenza comune	lunghezza	sottosequenza
qualsiasi		
termina con 'C'		
$\operatorname{tra} s e t_9$		
$\operatorname{tra} s_8 e t$		

Problema 4 (4 punti):

Si consideri la seguente sequenza di numeri naturali.

- **4.1(1pt)** trovare una sottosequenza decrescente che sia la più lunga possibile. Specificare quanto è lunga e fornirla.
- **4.2(2pt)** una sequenza è detta quasi-decrescente, o sequenza decrescente con un possibile ripensamento, se esiste un indice *i* tale cha ciascuno degli elementi della sequenza esclusi al più il primo e l'*i*-esimo sono strettamente minori dell'elemento che immediatamente li precede nella sequenza. Trovare la più lunga sequenza quasi-decrescente che sia una sottosequenza della sequenza data. Specificare quanto è lunga e fornirla.
- **4.3(1pt)** trovare la più lunga sottosequenza decrescente che includa l'elemento di valore 11. Specificare quanto è lunga e fornirla.

tipo sottosequenza	max lung	sottosequenza ottima
decrescente		
quasi-decrescente		
decrescente con 11		

Problema 5 (8 punti):

$$\max 6x_1 - 5x_2 - 3x_3 + 6x_4
\begin{cases}
-4x_1 + 5x_2 - 3x_3 + x_4 \le 5 \\
2x_1 - 5x_2 + x_3 - x_4 \le -5 \\
2x_1 - x_2 + 2x_3 - x_4 \le 4 \\
x_1, x_2, x_3, x_4 \ge 0
\end{cases}$$

- **5.1(1pt)** Impostare il problema ausiliario.
- **5.2(2pt)** Risolvere il problema ausiliario per ottenere una soluzione ammissibile di base al problema originario.
- **5.3(2pt)** Risolvere il problema originario all'ottimo.
- **5.4(1pt)** Quanto si sarebbe disposti a pagare per ogni unità di incremento per l'availability nei tre vincoli? (Per piccole variazioni.)
- **5.5(2pt)** Fino a dove si sarebbe disposti a pagare tali prezzi ombra?

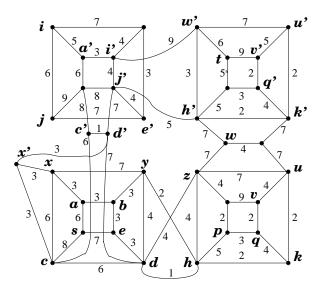
Problema 6 (6 punti):

Progettare un problema di PL in forma standard (od argomentare che esso non esista) tale che:

- 6.1 (2pt) ha esattamente 3 soluzioni di base ottime;
- 6.2 (2pt) ha infinite soluzioni ottime ma nessuna di esse é di base;
- 6.3 (1pt) il duale ha una soluzione degenere;
- 6.4 (1pt) il duale ha almeno 2 soluzioni di base ottime.

Problema 7 (18 punti):

Si consideri il grafo, con pesi sugli archi, riportato in figura.



- 7.1.(1pt) Dire, certificandolo, se il grafo è planare oppure no. In ogni caso, disegnare il grafo in modo da minimizzare il numero di incroci tra archi.
- 7.2.(1+1pt) Dire, certificandolo, se il grafo G' ottenuto da G sostituendo l'arco c'c con un arco c'x è planare oppure no. Se non planare, rimuovere il minimo numero di archi per planarizzarlo.
- 7.3.(1+1+1pt) Dire, certificandolo, se G e G' è bipartito oppure no. Ove non bipartito, rimuovere il minimo numero di archi per bipartizzarlo. (Certificando che quel numero di archi è necessario).
 - 7.4.(1+1pt) Trovare l'albero dei cammini minimi dal nodo s. Esprimere la famiglia di tali alberi.
 - 7.5.(2pt) Trovare un albero ricoprente di peso minimo.
 - 7.6.(2pt) Trovare tutti gli alberi ricoprenti di peso minimo. (Dire quanti sono e specificare con precisione come generarli).
 - 7.7.(2pt) Per i seguenti archi dire, certificandolo, in quale categoria ricadano (contenuti in ogni/nessuna/qualcunama non-tutte le soluzioni ottime): ij, ab, h'w.
 - 7.8.(2pt) Trovare un massimo flusso dal nodo s al nodo t.
 - 7.9.(2pt) Certificare l'ottimalità del flusso massimo dal nodo s al nodo t.