Nome:	Cognome:
Matricola:	FIRMA:

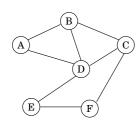
Esame di Ricerca Operativa - 28 giugno 2010 Facoltà di Ingegneria - Udine

Problema 1 (2+2 punti):

Un MATCHING in un grafo G=(V,E) è un sottoinsieme di archi $M\subseteq E$ tale che ogni nodo in V è estremo di al più un arco in M. Un matching di G è detto massimale se non esiste un altro matching di G che lo contenga propriamente.

Ad esempio, $\{AB, DE\}$ e $\{DC, EF\}$ sono due matchings non-massimali mentre $\{BC, DE\}$ e $\{AB, DE, CF\}$ sono due matchings massimali per il grafo G in figura.

Quando ad ogni arco e è associato un costo w_e , allora il costo di $X \subseteq E$ è espresso da $val(X) := \sum_{e \in X} w_e$.



	AB	AD	BC	BD	CD	CF	DE	EF
Costo	12	13	15	14	11	16	17	18

Nelle applicazioni siamo solitamente interessati a trovare matching massimali di costo minimo.

Formulare come un problema di Programmazione Lineare Intera (PLI) la ricerca di un matching massimale di costo minimo per il grafo G in figura.

Mostrare come sia più in generle possibile formulare come un problema di Programmazione Lineare Intera (PLI) la ricerca di un matching massimale di costo minimo su un grafo G = (V, E) generico.

Problema 2 (4 punti):

La rete idrica del basso Tagliamento deve soddisfare il fabbisogno di tre centri abitati che richiedono giornalmente la seguente quantità d'acqua (in Gigalitri):

Flaibano	Sedegliano	Codroipo
50	80	290

I tre centri possono essere riforniti da due sorgenti S_1 e S_2 , aventi capacità giornaliera di 160 e 310 Gl rispettivamente. Trasportare acqua da una sorgente a un centro comporta le perdite indicate nella seguente tabella (hl/Gl)

	Flaibano	Sedegliano	Codroipo
S_1	10	15	20
S_2	8	14	7

Formulare come PL il problema di pianificare il trasporto d'acqua ai tre centri abitati minimizzando le perdite. Si tenga presente che l'acquedotto dalla sorgente S_1 verso Codroipo porta massimo 150 Gl al giorno.

Problema 3 (4 punti):

Un robot R deve portarsi dalla cella A-1 alla sua home H nella cella G-8.

Ī		1	2	3	4	5	6	7	8
	A	R						•	•
	B	•	•	•	•	•		•	•
I	C	•						•	•
	D	•	•				•		•
	E	•			•				•
	F	•	•	•	•	•		•	
	G	•		•	•				H

I movimenti base possibili sono il passo verso destra (ad esempio dalla cella A−3 alla cella A−4) ed il passo verso in basso (ad esempio dalla cella A−3 alla cella B−3). Tuttavia il robot non può visitare le celle occupate da un pacman (•). Quanti sono i percorsi possibili?

- 2.1(1pt) Quanti sono i percorsi possibili se la partenza è in A-1?
- 2.2 (1pt) e se la partenza è in B-3?
- 2.2 (1pt) e se con partenza in A-1 il robot deve giungere in F-6?
- 2.4 (1pt) partenza in A-1 ed arrivo in G-8, al robot viene richiesto di passare per D-5.

consegna	numero percorsi
$A-1 \rightarrow G-8$	
$B-3 \rightarrow G-8$	
$A-1 \rightarrow F-6$	
passaggio per D–5	

Problema 4 (4 punti):

Trovare la più lunga sottosequenza comune tra le stringhe $s = C\,C\,A\,C\,A\,G\,A\,G\,G\,C\,T\,A\,C\,C\,A\,C\,G$ e $t = A\,C\,G\,C\,A\,G\,T\,C\,A\,G\,G\,A\,A\,C\,G\,C$. Fare lo stesso con alcuni suffissi di s e t.

- 3.1(1pt) quale è la più lunga sottosequenza comune tra s e t?
- 3.2 (1pt) e nel caso sia richiesto che la sottosequenza comune incominci con 'G'?
- **3.3 (1pt)** quale è la più lunga sottosequenza comune tra s e il suffisso $t_9 = C A G G A A C G C$ di t?
- **3.4 (1pt)** quale è la più lunga sottosequenza comune tra t e il suffisso $s_8 = CTACCACG$ di s?

tipo di sottosequenza comune	lunghezza	sottosequenza
qualsiasi		
parte con 'G'		
$\operatorname{tra} s e t_9$		
$\operatorname{tra} s_8 e t$		

Problema 5 (4 punti):

Si consideri la seguente sequenza di numeri naturali.

15 8 10 5 9 25 32 56 8 29 57 12 35 23 50 52 13 11 6 29 54 17 34 46 18

- **5.1(1pt)** trovare una sottosequenza crescente che sia la più lunga possibile. Specificare quanto è lunga e fornirla.
- **5.2(2pt)** una sequenza è detta una Z-sequenza, o sequenza crescente con un possibile ripensamento, se esiste un indice *i* tale cha ciascuno degli elementi della sequenza esclusi al più il primo e l'*i*-esimo sono strettamente maggiori dell'elemento che immediatamente li precede nella sequenza. Trovare la più lunga Z-sequenza che sia una sottosequenza della sequenza data. Specificare quanto è lunga e fornirla.
- **5.3(1pt)** trovare la più lunga sottosequenza crescente che includa l'elemento di valore 13. Specificare quanto è lunga e fornirla.

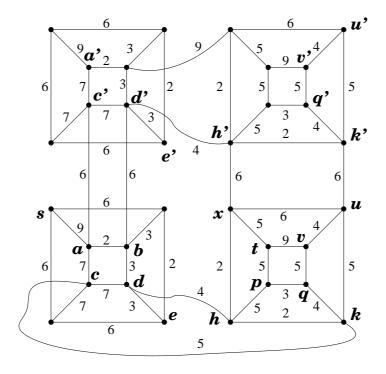
tipo sottosequenza	max lung	sottosequenza ottima
crescente		
Z-sequenza		
crescente con 13		

Problema 6 (6 punti):

Si consideri la soluzione $x_5=x_6=0,\ x_1=3,\ x_2=\frac{5}{2},\ x_3=7,\ x_4=5$ del seguente problema.

$$\max x_1 + 7x_2 + 6x_3 + 11x_4 + C_5x_5 + C_6x_6
\begin{cases}
x_1 + x_2 + x_3 + x_4 + x_5 + x_6 & \leq 18 \\
x_4 + x_5 & \leq 5 \\
x_3 + x_6 & \leq 7 \\
x_1 + x_3 + x_5 & \leq 10 \\
x_2 + x_4 + x_6 & \leq \frac{15}{2} \\
x_1, x_2, x_3, x_4, x_5, x_6 \geq 0
\end{cases}$$

- 1.1.(1pt) Verificare esplicitamente che la soluzione proposta è ammissibile.
- 1.2.(1pt) Scrivere il problema duale.
- 1.3.(1pt) Impostare il sistema che esprima le condizioni agli scarti complementari.
- 1.4.(1pt) Risolvere il sistema per trovare una soluzione duale complementare alla soluzione primale fornita.
- 1.5.(2pt) Per quali valori dei parametri C_5 e C_6 la soluzione assegnata è ottima? Indica con chiarezza tutte le verifiche che sei stato chiamato a compiere.



Problema 7 (14 punti):

Si consideri il grafo, con pesi sugli archi, riportato in figura.

- 5.1.(1pt) Dire, certificandolo, se il grafo è planare oppure no. In ogni caso, disegnare il grafo in modo da minimizzare il numero di incroci tra archi.
- 5.2.(1pt) Dire, certificandolo, se il grafo ottenuto da G sostituendo l'arco h'x con un arco q'x è planare oppure no.
- 5.3.(1+1pt) Trovare l'albero dei cammini minimi dal nodo s. Esprimere la famiglia di tali alberi.
 - 5.4.(2pt) Trovare un albero ricoprente di peso minimo.
 - 5.5.(2pt) Trovare tutti gli alberi ricoprenti di peso minimo. (Dire quanti sono e specificare con precisione come generarli).
 - 5.6.(2pt) Trovare un massimo flusso dal nodo s al nodo t.
 - 5.7.(2pt) Certificare l'ottimalità del flusso massimo dal nodo s al nodo t.
- 5.8.(1+1pt) Fornire (con certificato di ottimalità) il flusso massimo dal nodo s al nodo q.