
Simple Temporal Networks and some its
Extensions

Version 162, 2019-12-04 14:43:39Z

Roberto Posenato

Department of Computer Science, University of Verona

November 2019

Credits: this presentation is based on Luke Hunsberger and
Roberto Posenato slides

Roberto Posenato Simple Temporal Networks and some its Extensions 1 / 55

Outline

1 Introduction

2 Simple Temporal Network (STN)

3 STNs with Uncertainty (STNU)

4 Conditional STNs (CSTN)

5 Conditional STNs with Uncertainty (CSTNUs)

6 CSTNU with Disjunction (CDTNUs)

Roberto Posenato Simple Temporal Networks and some its Extensions 2 / 55

Introduction
A Temporal Network Hierarchy

STN
Y − X ≤ δ

STNU
(actions with

uncertain durations)

CDTN

CDTNU

DTN
(disjunctive
constraints)

CSTN
(test actions,
test results)

CSTNUDTNU

m
or

e
ex

pr
es

si
ve

This lecture does not present dashed types.

Roberto Posenato Simple Temporal Networks and some its Extensions 3 / 55

Simple Temporal Network
Motivating Example

Given a plan of a fly from New York to Rome,
Determine if the plan is consistent,
If it is consistent, determine a temporal schedule.

Fly from New York to Rome
Leave New York after 4 p.m., June 8
Return to New York before 10 p.m., June 18
Away from New York no more than 7 days
In Rome at least 5 days
Return flight lasts no more than 7 hours

Roberto Posenato Simple Temporal Networks and some its Extensions 4 / 55

Simple Temporal Network (STN)∗
Description

STN
Y − X ≤ δ

STNU
(actions with

uncertain durations)

CDTN

CDTNU

DTN
(disjunctive
constraints)

CSTN
(test actions,
test results)

CSTNUDTNUm
ore

expressive

STN
Y − X ≤ δ

Includes time-points and
temporal constraints of only
one kind.
Flexible: Time-points may
“float”; not “nailed down” until
they are executed
Efficient algorithms for
determining consistency,
managing real-time execution,
and handling new constraints

∗ [Dechter et al., 1991]

Roberto Posenato Simple Temporal Networks and some its Extensions 5 / 55

Simple Temporal Network∗
Definition

Definition 1 (Simple Temporal Network (STN))
A Simple Temporal Network (STN) is a pair, S = (T , C), where:

T is a set of real-valued variables called time-points:
{X1, . . . ,Xn | Xi ∈ R}; and
C is a set of binary constraints, each of the form:

Xj − Xi ≤ δ

where Xj ,Xi ∈ T and δ ∈ R.

Time-points represent events.
Each binary constraint represents the maximal temporal distance
between the first time point and the second one.
There is only one time unit.

∗[Dechter et al., 1991]
Roberto Posenato Simple Temporal Networks and some its Extensions 6 / 55

Simple Temporal Network
The Zero Time-Point, Z

It is useful to have one time-point, called Z, whose value is fixed
at 0.
Binary constraints involving Z are equivalent to unary constraints.

Example 1

X − Z ≤ 7⇐⇒ X ≤ 7

Z− X ≤ −3⇐⇒ X ≥ 3

Roberto Posenato Simple Temporal Networks and some its Extensions 7 / 55

Simple Temporal Network
Basic Notions for STNs

A solution to an STN S = (T , C) is a complete set of assignments
to the time-points in T :

{X1 = t1, X2 = t2, . . . , Xn = tn}

that together satisfy all of the constraints in C.
An STN with at least one solution is consistent.
STNs with identical solution sets are equivalent.

Roberto Posenato Simple Temporal Networks and some its Extensions 8 / 55

Simple Temporal Network
STN for Travel Example

NYC→ Rome (In Rome) Rome→ NYC
X1 X2 X3 X4

T = {Z,X1,X2,X3,X4}, where Z = Noon, June 8

C =



Z− X1 ≤ −4 X1=leave-time NYC (Lv NYC after 4 p.m., June 8)
X4 − Z ≤ 250 X4=return-time NYC (Ret NYC by 10 p.m., June 18)
X4 − X1 ≤ 168 (Gone no more than 7 days)
X2 − X3 ≤ −120 X2(X3)=arrive(leave)-time Rome (In Rome at least 5 days)
X4 − X3 ≤ 8 (Return flight less than 8 hrs)
X1 − X2 ≤ −7 (Flight requires at least 7 hrs)
X3 − X4 ≤ −7 (Return flight requires at least 7 hrs)

Roberto Posenato Simple Temporal Networks and some its Extensions 9 / 55

Simple Temporal Network
Graph for an STN∗

The graph for an STN, S = (T , C), is a graph, G = (T , E), where:

Time-points in S ⇐⇒ nodes in G

Constraints in C ⇐⇒ edges in E:
Y − X ≤ δ ⇐⇒ X δ Y

∗[Dechter et al., 1991]

Roberto Posenato Simple Temporal Networks and some its Extensions 10 / 55

Simple Temporal Network
Graphical Representations

Constraint(s) Edge(s) Interval Notation

Y − X ≤ 7 X Y7 X Y(−∞,7]

X − Y ≤ −3
(⇔ 3 ≤ Y − X)

X Y−3 X Y[3,+∞)

3 ≤ Y − X ≤ 7 X Y
7
−3

X Y[3,7]

4 ≤ X ≤ 9 Z X
9
−4

Z X[4,9]

Roberto Posenato Simple Temporal Networks and some its Extensions 11 / 55

Simple Temporal Network
Graph for Airline Scenario


Z− X1 ≤ −4, X4 − Z ≤ 250
X4 − X1 ≤ 168, X2 − X3 ≤ −120
X4 − X3 ≤ 8, X1 − X2 ≤ −7
X3 − X4 ≤ −7

Z X1 X2 X3 X4

250

−4

168

−7 −120 8
−7

Roberto Posenato Simple Temporal Networks and some its Extensions 12 / 55

Simple Temporal Network
Implicit Constraints

Explicit constraints combine (propagate) to form implicit constraints:

Xj − Xi ≤ 30

Xk − Xj ≤ 40

Xk − Xi ≤ 70 Xi

Xj

Xk

30

40

70

Roberto Posenato Simple Temporal Networks and some its Extensions 13 / 55

Simple Temporal Network
Chains of Constraints as Paths

Chains of constraints correspond to paths in the graph.
Stronger constraints correspond to shorter paths.

Xi

•

• •

Xj

• •

5

3
4

6

2
3

4
9

Roberto Posenato Simple Temporal Networks and some its Extensions 14 / 55

Simple Temporal Network
Distance Matrix∗

Definition 2 (Distance Matrix)
The Distance Matrix for an STN, S = (T , C), is a matrix D defined by:

D(Xi ,Xj) = Length of Shortest Path from Xi to Xj in the graph for S

Xi

Xj
D(Xi ,Xj)

The strongest implicit constraint on Xi and Xj in S is:

Xj − Xi ≤ D(Xi ,Xj)

∗[Dechter et al., 1991]

Roberto Posenato Simple Temporal Networks and some its Extensions 15 / 55

Simple Temporal Network
Distance Matrix

The strongest implicit constraint on Xi and Xj in S is:

Xj − Xi ≤ D(Xi ,Xj)

D is the All-Pairs, Shortest-Path (APSP) Matrix for the STN’s
graph.∗

Floyd-Warshall Algorithm
Johnson’s Algorithm

∗[Cormen et al., 2009]

Roberto Posenato Simple Temporal Networks and some its Extensions 16 / 55

Simple Temporal Network
Travel Scenario’s Distance Matrix

Z X1 X2 X3 X4

250

−4

168

−7 −120 8
−7

D Z X1 X2 X3 X4

Z 0 116 123 243 250
X1 -4 0 41 161 168
X2 -11 -7 0 154 161
X3 -131 -127 -120 0 8
X4 -138 -134 -127 -7 0
Gray cells contain the original values.

Roberto Posenato Simple Temporal Networks and some its Extensions 17 / 55

Simple Temporal Network
Fundamental Theorem of STNs∗

For an STN S, with graph G, and distance matrix D, the following are
equivalent:
S is consistent
D has non-negative values on main diagonal
G has no negative-length loops

Moreover, any consistent STN S is backtrack-free relative to the
constraints in its distance matrix.
∗[Dechter et al., 1991]

Roberto Posenato Simple Temporal Networks and some its Extensions 18 / 55

Simple Temporal Network
Finding a solution for an STN

D has all necessary information.
Time window for any Xi : [−D(Xi ,Z),D(Z,Xi)]

Two solutions are always given by free:
1 Earlier execution-time solution:
X1 = −D(X1,Z),X2 = −D(X2,Z), . . . ,Xn = −D(Xn,Z);

2 Latest execution-time solution:
X1 = D(Z,X1),X2 = D(Z,X2), . . . ,Xn = D(Z,Xn).

Simple algorithm to find a different solution:
Pick any time-point that doesn’t yet have a value;
Give it a value from its time-window;
Update D; ⇐ expensive . . .
Repeat until all time-points have values.

∗[Dechter et al., 1991]

Roberto Posenato Simple Temporal Networks and some its Extensions 19 / 55

Simple Temporal Network
Computing D from Scratch∗

D is the All-Pairs, Shortest-Paths (APSP) Matrix for G.
If S has n time-points and m constraints:

Floyd-Warshall Algorithm: O(n3)
Johnson’s Algorithm: O(n2 log n +mn)

– uses Bellman-Ford and Dijkstra

∗[Cormen et al., 2009]

Roberto Posenato Simple Temporal Networks and some its Extensions 20 / 55

Floyd-Warshall Algorithm∗

Xi

Xr

Xj

U V

D(X i,Xr
) D(Xr ,Xj)

D(Xi ,Xj)

Algorithm 1: Flowd-Warshall(D)
Initialize D(_,_) using edge-weights;
for r := 1 to n do

for i := 1 to n do
for j := 1 to n do

D(Xi ,Xj) := min{D(Xi ,Xj), D(Xi ,Xr) + D(Xr ,Xj)};

The r th cycle finds all minimal paths having r intermediate nodes
at most;
Time complexity Θ(n3)

∗[Cormen et al., 2009]
Roberto Posenato Simple Temporal Networks and some its Extensions 21 / 55

Bellman-Ford Algorithm

S

X1

X2 X3

X4

X5

0
0 0

0
0

Algorithm 2: Bellman-Ford()
foreach Xi do

d(Xi) :=∞
d(S) := 0;
for i := 1 to n − 1 do

foreach edge (Xi , δ,Xj) do
d(Xj) := min{d(Xj),d(Xi) + δ};

foreach edge (Xi , δ,Xj) do
if d(Xj) > d(Xi) + δ then return NO;

return {D(S,X1),. . . , D(S,Xn)};

Time complexity O(nm)

Roberto Posenato Simple Temporal Networks and some its Extensions 22 / 55

Dijkstra’s SSSP Algorithm
Single-Source Shortest-Paths

Works on STN graphs with non-negative edges
For a given source node S, computes D(S,X) for all X

Algorithm 3: Dijkstra()
foreach Xi do

d(Xi) :=∞
d(S) := 0;
Q := an empty priority queue;
Insert S into Q with priority 0;
while Q 6= ∅ do

X :=ExtractMinFrom(Q);
foreach edge (X , δ,Y) do

d(Y) := min{d(Y),d(X) + δ};

return {D(S,X1),. . . , D(S,Xn)}

Time complexity O(m + n log n) if using Fibonacci Heap for
priority queue

Roberto Posenato Simple Temporal Networks and some its Extensions 23 / 55

Dijkstra Example

S[0]

X[∞]

Y[∞]

W[∞]

V[∞]

R[∞]

3

1
8

5

1

2

6

2

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Dijkstra Example

S[0]

X[3]

Y[∞]

W[∞]

V[1]

R[5]

3

1
8

5

1

2

6

2

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Dijkstra Example

S[0]

X[3]

Y[∞]

W[∞]

V[1]

R[5]

3

1
8

5

1

2

6

2

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Dijkstra Example

S[0]

X[3]

Y[7]
W[∞]

V[1]

R[5]

3

1
8

5

1

2

6

2

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Dijkstra Example

S[0]

X[3]

Y[7]
W[∞]

V[1]

R[5]

3

1
8

5

1

2

6

2

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Dijkstra Example

S[0]

X[3]

Y[4]
W[∞]

V[1]

R[5]

3

1
8

5

1

2

6

2

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Dijkstra Example

S[0]

X[3]

Y[4]
W[∞]

V[1]

R[5]

3

1
8

5

1

2

6

2

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Dijkstra Example

S[0]

X[3]

Y[4]
W[12]

V[1]

R[5]

3

1
8

5

1

2

6

2

8

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Dijkstra Example

S[0]

X[3]

Y[4]
W[12]

V[1]

R[5]

3

1
8

5

1

2

6

2

8

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Dijkstra Example

S[0]

X[3]

Y[4]
W[7]

V[1]

R[5]

3

1
8

5

1

2

6

2

8

2

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Dijkstra Example

S[0]

X[3]

Y[4]
W[7]

V[1]

R[5]

3

1
8

5

1

2

6

2

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55

Potential Functions & Re-weighted Graphs

Let S = (T , C) be any consistent STN.
Let f : T → R be any solution for S.

Then f (Y)− f (X) ≤ δ for each constraint (Y − X ≤ δ) ∈ C
In other words, 0 ≤ f (X) + δ − f (Y)
Let C′ = {(X , δ′,Y) | (X , δ,Y) ∈ C}, where δ′ = f (X) + δ − f (Y)
Then S ′ = (T , C′) has only non-negative edges.
Therefore, can use Dijkstra’s SSSP algorithm on S ′

Roberto Posenato Simple Temporal Networks and some its Extensions 25 / 55

Johnson’s Algorithm∗

Algorithm 4: Johnson()
Input: An STN, S = (T , C)
Output: S minimized if consistent, NO otherwise
Run Bellman-Ford SSSP with new source node S;
if Bellman-Ford returns NO then return NO;
f (X) := D(S,X) for each X ∈ T ; // It is a solution for S
foreach (X , δ,Y ∈ C) do

δ′ := f (X) + δ − f (Y); // δ′ ≥ 0
S ′ := (T , C′); // Re-weighted graph based on δ′
foreach X ∈ T do

Run Dijkstra on S ′ with X as source node; // Computes D′(X ,Y) for all
Y ∈ T .

foreach X ,Y ∈ T do
D(X ,Y) = −f (X) +D′(X ,Y) + f (Y); // Reverse the re-weighting to

obtain D for S

Time Complexity: O(mn) + n ∗O(m + n log n) = O(mn + n2 log n)
∗[Cormen et al., 2009]

Roberto Posenato Simple Temporal Networks and some its Extensions 26 / 55

Simple Temporal Network
Incrementally updating D

Given a consistent STN S = (T , C) with distance matrix D.
Insert new constraint (Y − X ≤ δ).
How to update D?

Re-compute from scratch: O(mn + n2 log n).
“Naïve” algorithm: O(n2): For each U,V ∈ T ,

D(U,V) := min{D(U,V), D(U,X) + δ +D(Y ,V)}

U

X Y

V
D(U

,X) D(Y ,V)

D(U,V)

δ

Roberto Posenato Simple Temporal Networks and some its Extensions 27 / 55

Simple Temporal Networks
Incremental Update Algorithm

Propagate updates to D along edges in graph
Only propagate along tight edges; // (Y −X ≤ δ) is tight iff D(X ,Y) = δ

Phase I: propagate forward
Phase II: propagate backward
Checks no more than b ·∆ cells of D, where:

∆ = number of cells needing updating;
b = max number of edges incident to any node.

∗ [Even and Gazit, 1985, Ramalingam and Reps, 1996, Rohnert, 1985]

Roberto Posenato Simple Temporal Networks and some its Extensions 28 / 55

Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[5] A[9]

B[17]

C[18]

D[22]

4

8

6

4

5

Numbers in brackets are current values of D(X ,_).

Roberto Posenato Simple Temporal Networks and some its Extensions 29 / 55

Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[2] A[9]

B[17]

C[18]

D[22]

4

8

6

4

2

Numbers in brackets are current values of D(X ,_).

Roberto Posenato Simple Temporal Networks and some its Extensions 29 / 55

Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[2] A[9]

B[17]

C[18]

D[22]

4

8

6

4

2
4

6, stronger!

Numbers in brackets are current values of D(X ,_).

Roberto Posenato Simple Temporal Networks and some its Extensions 29 / 55

Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[2] A[6]

B[17]

C[18]

D[22]

4

8

6

4

2

14, stronger!

8

Numbers in brackets are current values of D(X ,_).

Roberto Posenato Simple Temporal Networks and some its Extensions 29 / 55

Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[2] A[6]

B[14]

C[18]

D[22]

4

8

6

4

2

20, weaker! 6

Propagation stops!

Roberto Posenato Simple Temporal Networks and some its Extensions 29 / 55

Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[2] A[6]

B[14]

C[18]

D[22]

4

8

6

4

2

20, weaker! 6

Forward propagation done along this path.

Roberto Posenato Simple Temporal Networks and some its Extensions 29 / 55

Incremental Update Algorithm
For each entry D(X , _) that was updated, propagate backward from X

X[14]

B

W[30]

V[34]

U[29]

3

6

7

14

Numbers in brackets are D(_,B) values.

Roberto Posenato Simple Temporal Networks and some its Extensions 30 / 55

Incremental Update Algorithm
For each entry D(X , _) that was updated, propagate backward from X

X[14]

B

W[30]

V[34]

U[29]

3

6

7

14

7

21,stronger!

Numbers in brackets are D(_,B) values.

Roberto Posenato Simple Temporal Networks and some its Extensions 30 / 55

Incremental Update Algorithm
For each entry D(X , _) that was updated, propagate backward from X

X[14]

B

W[21]

V[34]

U[29]

3

6

7

14
6

27, stronger!

Numbers in brackets are D(_,B) values.

Roberto Posenato Simple Temporal Networks and some its Extensions 30 / 55

Incremental Update Algorithm
For each entry D(X , _) that was updated, propagate backward from X

X[14]

B

W[21]

V[27]

U[29]

3

6

7

14

3

30, weaker!

No further updates along this path.

Roberto Posenato Simple Temporal Networks and some its Extensions 30 / 55

Incremental Update Algorithm
For each entry D(X , _) that was updated, propagate backward from X

X[14]

B

W[21]

V[27]

U[29]

3

6

7

14

No further updates along this path.

Roberto Posenato Simple Temporal Networks and some its Extensions 30 / 55

Simple Temporal Network
Incremental Consistency

Verifying consistency of an STN after inserting, weakening or deleting
a constraint is less expensive than fully updating the distance matrix.∗

Algorithm maintains/updates a solution to the STN.
After inserting a new constraint (or strengthening an existing one),
can verify consistency in O(m + n log n) time.
After deleting or weakening a constraint, only need constant time,
because the same solution will work for the modified STN.

∗ [Ramalingam et al., 1999]

Roberto Posenato Simple Temporal Networks and some its Extensions 31 / 55

Simple Temporal Network
Sample STN

Z

B

C

D

−5

63 −2

−4

30

Roberto Posenato Simple Temporal Networks and some its Extensions 32 / 55

Simple Temporal Network
“Solving” Sample STN

First, form APSP graph (equiv. compute D).

Z

B

C

D

26

−5

28

−2

30

−9
63

25

−4

28

−2

Time Windows: B ∈ [5,26], C ∈ [2,28], D ∈ [9,30]

Roberto Posenato Simple Temporal Networks and some its Extensions 33 / 55

Simple Temporal Network
“Solving” Sample STN

Next, select D = 20; and update APSP graph:

Z

B

C

D

16

−5

18

−2

20

−20
63

15

−4

18

−2

Remaining Time Windows: B ∈ [5,16], C ∈ [2,18]

Roberto Posenato Simple Temporal Networks and some its Extensions 33 / 55

Simple Temporal Network
“Solving” Sample STN

Next, select B = 10; and update APSP graph:

Z

B

C

D

10

−10

16

−7

20

−20
63

10

−10

13

−4

Remaining Time Windows: C ∈ [7,16]

Roberto Posenato Simple Temporal Networks and some its Extensions 33 / 55

Simple Temporal Network
“Solving” Sample STN

Finally, select C = 9; and update APSP graph:

Z

B

C

D

10

−10

9

−9

20

−20
1−1

10

−10

11

−11

Easy to verify that this is a solution.

Roberto Posenato Simple Temporal Networks and some its Extensions 33 / 55

Simple Temporal Network
Problems with “Solving” an STN

May need to go back in time:
Pick D = 20, then after updating, pick B = 10
(i.e., no relationship to real-time execution)
Expensive to update D

Roberto Posenato Simple Temporal Networks and some its Extensions 34 / 55

Simple Temporal Network
Executing an STN in real time

Only executed enabled time-points: those having no negative
edges to unexecuted time-points.
Focus updating on entries involving Z: reduces cost to linear time
per update, O(n2) overall.∗

Alternatively, prior to execution, transform STN into dispatchable
form in O(n2 log n + nm) time; then during execution, only need
to propagate bounds to neighboring time-points.†

∗[Hunsberger, 2008]; †[Muscettola et al., 1998], †[Tsamardinos et al., 1998]

Roberto Posenato Simple Temporal Networks and some its Extensions 35 / 55

Simple Temporal Network
Dispatchable STN

An STN S is dispatchable if the following algorithm necessarily
successfully executes S:
Algorithm 5: ExecuteDispatchableNetwork(G = (T , E))
t := 0; // current time
X := {}; // executed nodes
E := {Z}; // currently enabled nodes
while X 6= T do

Pick any X ∈ E such that t is in X ’s time window;
X := t , X := X ∪ {X};
Propagate t ≤ X ≤ t to X ’s immediate neighbors;
E := E ∪ {all time-points Y s.t. all non-positive edges emanating
from Y have a destination in X};

Wait until t has advanced to some time in
[min{lb(W) |W ∈ E},min{ub(W) |W ∈ E}];

Roberto Posenato Simple Temporal Networks and some its Extensions 36 / 55

Simple Temporal Network
Making STN Dispatchable

Start with APSP Graph:

Z

B

C

D

26

−5

28

−2

30

−9
63

25

−4

28

−2

Then remove dominated edges . . .

Roberto Posenato Simple Temporal Networks and some its Extensions 37 / 55

Simple Temporal Network
Remove Dominated Edges

A negative edge AC is dominated by a negative edge AB
if D(A,B) +D(B,C) = D(A,C):

A

B

C
−8 2

−6

AB and AC have the same source node: A.
During the execution, it is not necessary to propagate along
dominated edges like AC.

Roberto Posenato Simple Temporal Networks and some its Extensions 38 / 55

Simple Temporal Network
Remove Dominated Edges (ctd.)

A non-negative edge AC is dominated by a non-negative edge BC
if D(A,B) +D(B,C) = D(A,C):

A

B

C
2 9

11

BC and AC have the same destination node: C.
During the execution, it is not necessary to propagate along
dominated edges like AC.

Roberto Posenato Simple Temporal Networks and some its Extensions 39 / 55

Simple Temporal Network
Making STN Dispatchable (ctd.)

Remove “dominated” edges:∗

Z

B

C

D

26

−5

28

−2
63

25

−4

28

−2

30

−9

∗[Muscettola et al., 1998]

Roberto Posenato Simple Temporal Networks and some its Extensions 40 / 55

Simple Temporal Network
Dispatching the STN

Initially: t = 0, X = {}, E = {Z}.

Z

B

C

D

26

−5

28

−2

30

63

−4

−2

Pick Z from E. Set Z = 0.

Roberto Posenato Simple Temporal Networks and some its Extensions 41 / 55

Simple Temporal Network
Dispatching the STN (ctd.)

Propagate Z = 0 to neighbors;

Z

B

C

DZ

26

−5

28

−2

30

63

−4

−2

X = {Z}, E = {B,C}; B ∈ [5, 26],C ∈ [2, 28],D ∈ [0, 30].

Roberto Posenato Simple Temporal Networks and some its Extensions 42 / 55

Simple Temporal Network
Dispatching the STN (ctd.)

X = {Z}, E = {B,C}; Bounds: B ∈ [5,26], C ∈ [2,28].

Z

B

C

DZ

26

−5

28

−2

30

63

−4

−2

Let t advance to 12; Pick B from E; Set B = 12.

Roberto Posenato Simple Temporal Networks and some its Extensions 43 / 55

Simple Temporal Network
Dispatching the STN (ctd.)

Propagate B = 12 to neighbors

Z

B

C

DZ

B

26

−5

28

−2

30

63

−4

−2

X = {Z,B}, t = 12, E = {C}, C ∈ [12,18],D ∈ [16,30]

Roberto Posenato Simple Temporal Networks and some its Extensions 44 / 55

Simple Temporal Network
Dispatching the STN (ctd.)

X = {Z,B}, t = 12, E = {C}, C ∈ [12,18],D ∈ [16,30]

Z

B

C

DZ

B

26

−5

28

−2

30

63

−4

−2

Let t advance to 16, pick C from E, set C = 16.

Roberto Posenato Simple Temporal Networks and some its Extensions 45 / 55

Simple Temporal Network
Dispatching the STN (ctd.)

Propagate C = 16 to C ’s only remaining neighbor, D.

Z

B

C

DZ

B

C

26

−5

28

−2

30

63

−4

−2

X = {Z,B,C}, t = 16, E = {D}, D ∈ [18,30]

Roberto Posenato Simple Temporal Networks and some its Extensions 46 / 55

Simple Temporal Network
Dispatching the STN (ctd.)

X = {Z,B,C}, t = 16, E = {D}, D ∈ [18,30]

Z

B

C

DZ

B

C

D

26

−5

28

−2

30

63

−4

−2

Let t advance to 25, pick D from E, set D = 25.

Roberto Posenato Simple Temporal Networks and some its Extensions 47 / 55

Simple Temporal Network
Dispatching the STN (ctd.)

X = {Z,B,C,D}, t = 25, E = {}

Z

B

C

DZ

B

C

D

26

−5

28

−2

30

63

−4

−2

Solution: Z = 0,B = 12,C = 16,D = 25.

Roberto Posenato Simple Temporal Networks and some its Extensions 48 / 55

Simple Temporal Network
Dispatching the STN (ctd.)

Easy to check that Z = 0,C = 20,B = 23,D = 28 can also be
generated by the dispatcher.

Z

B

C

D

26

−5

28

−2

30

63

−4

−2

Roberto Posenato Simple Temporal Networks and some its Extensions 49 / 55

Simple Temporal Network
New View of Dispatchability∗

(1) A path P has the prefix/postfix (PP) property if:
Every proper prefix of P has non-negative length, and
Every proper postfix of P has negative length.

A

B
C

D

E

5

−2 6

−123
9

∗ [Morris, 2014]

Roberto Posenato Simple Temporal Networks and some its Extensions 50 / 55

Simple Temporal Network
New View of Dispatchability∗

(1) A path P has the prefix/postfix (PP) property if:
Every proper prefix of P has non-negative length, and
Every proper postfix of P has negative length.

A

B
C

D

E

5

−2 6

−12
−8

−6

∗ [Morris, 2014]

Roberto Posenato Simple Temporal Networks and some its Extensions 51 / 55

Simple Temporal Network
New View of Dispatchability (ctd)

(2) An STN is PP-complete if for each shortest path from any X to
any Y that has the prefix/postfix property, there is an edge from X
to Y with the same length.

A

B
C

D

E

5

−2

3

6

−12−6

−3

(3) A consistent and PP-complete STN is dispatchable.
∗ [Morris, 2014]

Roberto Posenato Simple Temporal Networks and some its Extensions 52 / 55

Simple Temporal Network
More on Dispatchability

Further graphical analyses of the dispatchability of STNs has been
presented recently [Morris, 2016].

Roberto Posenato Simple Temporal Networks and some its Extensions 53 / 55

Additional Research on STNs

Temporal Decoupling Problem (TDP) [Hunsberger, 2002,
Jr. and Durfee, 2013, Mountakis et al., 2017]
APSP algorithms on chordal graphs [Xu and Choueiry, 2003]
Enforcing partial path consistency [Planken, 2008]
Incorporating STNs in multi-agent
auctions [Hunsberger and Grosz, 2000]
For further info:
http://www.cs.vassar.edu/~hunsberg/__papers__/
(See pages 22-24, 27-28, 32, 53-70, 76-79 of
2005 AAMAS tutorial.)

Roberto Posenato Simple Temporal Networks and some its Extensions 54 / 55

http://www.cs.vassar.edu/~hunsberg/__papers__/

STN Summary

STNs have been used to provide flexible planning and scheduling
systems for more than a decade.
Efficient algorithms for checking consistency, incrementally
updating the APSP matrix, and managing execution in real time
for maximum flexibility.
However, STNs cannot represent uncertainty (e.g., actions with
uncertain durations) or conditional constraints (e.g., only do X if
test result is negative).

Roberto Posenato Simple Temporal Networks and some its Extensions 55 / 55

References I

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009).
Introduction to Algorithms.
The MIT Press, 3rd edition.

Dechter, R., Meiri, I., and Pearl, J. (1991).
Temporal Constraint Networks.
Artificial Intelligence, 49(1-3):61–95.

Even, S. and Gazit, H. (1985).
Updating Distances in Dynamic Graphs.
Methods of Operations Research, 49:371–387.

Hunsberger, L. (2002).
Group Decision Making and Temporal Reasoning.
PhD thesis, Harvard University.
Available as Harvard Technical Report TR-05-02.

Hunsberger, L. (2008).
A practical temporal constraint management system for real-time applications.
In European Conf. on Artificial Intelligence (ECAI-2008), pages 553–557.

Roberto Posenato Simple Temporal Networks and some its Extensions 1 / 4

References II

Hunsberger, L. and Grosz, B. J. (2000).
A combinatorial auction for collaborative planning.
In 4th Int. Conf. on Multi-Agent Systems (ICMAS-2000).

Jr., J. C. B. and Durfee, E. H. (2013).
Decoupling the multiagent disjunctive temporal problem.
In 27th AAAI Conf. on Artificial Intelligence.

Morris, P. (2014).
Dynamic controllability and dispatchability relationships.
In Integration of AI and OR Techniques in Constraint Programming, volume 8451 of
LNCS, pages 464–479.

Morris, P. (2016).
The mathematics of dispatchability revisited.
In 26th Int. Conf. on Automated Planning and Scheduling (ICAPS-2016), pages
244–252.
Mountakis, K. S., Klos, T., and Witteveen, C. (2017).
Dynamic temporal decoupling.
In 14th Int. Conf. Integration of AI and OR Techniques in Constraint Programming,
volume 10335 of Lecture Notes in Computer Science (LNCS), pages 328–343.

Roberto Posenato Simple Temporal Networks and some its Extensions 2 / 4

References III

Muscettola, N., Morris, P. H., and Tsamardinos, I. (1998).
Reformulating Temporal Plans for Efficient Execution.
In 6th Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR-1998), pages 444–452.

Planken, L. (2008).
Incrementally Solving the STP by Enforcing Partial Path Consistency.
In 27th PlanSIG Workshop, pages 87–94.

Ramalingam, G. and Reps, T. (1996).
On the Computational Complexity of Dynamic Graph Problems.
Theoretical Computer Science, 158:233–277.

Ramalingam, G., Song, J., Joskowicz, L., and Miller, R. E. (1999).
Solving Systems of Difference Constraints Incrementally.
Algorithmica, 23(3):261–275.

Rohnert, H. (1985).
A Dynamization of the All Pairs Least Cost Path Problem.
In Mehlhorn, K., editor, 2nd Symp. of Theoretical Aspects of Computer Science
(STACS-1985), volume 182 of Lecture Notes in Computer Science (LNCS), pages
279–286.

Roberto Posenato Simple Temporal Networks and some its Extensions 3 / 4

References IV

Tsamardinos, I., Muscettola, N., and Morris, P. (1998).
Fast Transformation of Temporal Plans for Efficient Execution.
In 15th National Conf. on Artificial Intelligence (AAAI-1998), pages 254–261.

Xu, L. and Choueiry, B. Y. (2003).
A new efficient algorithm for solving the simple temporal problem.
In 10th Int. Symp. on Temporal Representation and Reasoning and 4th Int. Conf. on
Temporal Logic (TIME-ICTL-2003), pages 210–220.

Roberto Posenato Simple Temporal Networks and some its Extensions 4 / 4

	Introduction
	Simple Temporal Network (STN)
	STNs with Uncertainty (STNU)
	Conditional STNs (CSTN)
	Conditional STNs with Uncertainty (CSTNUs)
	CSTNU with Disjunction (CDTNUs)
	Appendix

