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Introduction
A Temporal Network Hierarchy
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This lecture does not present dashed types.
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Simple Temporal Network
Motivating Example

Given a plan of a fly from New York to Rome,
Determine if the plan is consistent,
If it is consistent, determine a temporal schedule.

Fly from New York to Rome
Leave New York after 4 p.m., June 8
Return to New York before 10 p.m., June 18
Away from New York no more than 7 days
In Rome at least 5 days
Return flight lasts no more than 7 hours
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Simple Temporal Network (STN)∗
Description

STN
Y − X ≤ δ

STNU
(actions with

uncertain durations)

CDTN

CDTNU

DTN
(disjunctive
constraints)

CSTN
(test actions,
test results)

CSTNUDTNUm
ore

expressive

STN
Y − X ≤ δ

Includes time-points and
temporal constraints of only
one kind.
Flexible: Time-points may
“float”; not “nailed down” until
they are executed
Efficient algorithms for
determining consistency,
managing real-time execution,
and handling new constraints

∗ [Dechter et al., 1991]
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Simple Temporal Network∗
Definition

Definition 1 (Simple Temporal Network (STN))
A Simple Temporal Network (STN) is a pair, S = (T , C), where:

T is a set of real-valued variables called time-points:
{X1, . . . ,Xn | Xi ∈ R}; and
C is a set of binary constraints, each of the form:

Xj − Xi ≤ δ

where Xj ,Xi ∈ T and δ ∈ R.

Time-points represent events.
Each binary constraint represents the maximal temporal distance
between the first time point and the second one.
There is only one time unit.

∗[Dechter et al., 1991]
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Simple Temporal Network
The Zero Time-Point, Z

It is useful to have one time-point, called Z, whose value is fixed
at 0.
Binary constraints involving Z are equivalent to unary constraints.

Example 1

X − Z ≤ 7⇐⇒ X ≤ 7

Z− X ≤ −3⇐⇒ X ≥ 3
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Simple Temporal Network
Basic Notions for STNs

A solution to an STN S = (T , C) is a complete set of assignments
to the time-points in T :

{X1 = t1, X2 = t2, . . . , Xn = tn}

that together satisfy all of the constraints in C.
An STN with at least one solution is consistent.
STNs with identical solution sets are equivalent.

Roberto Posenato Simple Temporal Networks and some its Extensions 8 / 55



Simple Temporal Network
STN for Travel Example

NYC→ Rome (In Rome) Rome→ NYC
X1 X2 X3 X4

T = {Z,X1,X2,X3,X4}, where Z = Noon, June 8

C =



Z− X1 ≤ −4 X1=leave-time NYC (Lv NYC after 4 p.m., June 8)
X4 − Z ≤ 250 X4=return-time NYC (Ret NYC by 10 p.m., June 18)
X4 − X1 ≤ 168 (Gone no more than 7 days)
X2 − X3 ≤ −120 X2(X3)=arrive(leave)-time Rome (In Rome at least 5 days)
X4 − X3 ≤ 8 (Return flight less than 8 hrs)
X1 − X2 ≤ −7 (Flight requires at least 7 hrs)
X3 − X4 ≤ −7 (Return flight requires at least 7 hrs)
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Simple Temporal Network
Graph for an STN∗

The graph for an STN, S = (T , C), is a graph, G = (T , E), where:

Time-points in S ⇐⇒ nodes in G

Constraints in C ⇐⇒ edges in E:
Y − X ≤ δ ⇐⇒ X δ Y

∗[Dechter et al., 1991]
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Simple Temporal Network
Graphical Representations

Constraint(s) Edge(s) Interval Notation

Y − X ≤ 7 X Y7 X Y(−∞,7]

X − Y ≤ −3
(⇔ 3 ≤ Y − X )

X Y−3 X Y[3,+∞)

3 ≤ Y − X ≤ 7 X Y
7
−3

X Y[3,7]

4 ≤ X ≤ 9 Z X
9
−4

Z X[4,9]
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Simple Temporal Network
Graph for Airline Scenario


Z− X1 ≤ −4, X4 − Z ≤ 250
X4 − X1 ≤ 168, X2 − X3 ≤ −120
X4 − X3 ≤ 8, X1 − X2 ≤ −7
X3 − X4 ≤ −7

Z X1 X2 X3 X4

250

−4

168

−7 −120 8
−7
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Simple Temporal Network
Implicit Constraints

Explicit constraints combine (propagate) to form implicit constraints:

Xj − Xi ≤ 30

Xk − Xj ≤ 40

Xk − Xi ≤ 70 Xi

Xj

Xk

30

40

70
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Simple Temporal Network
Chains of Constraints as Paths

Chains of constraints correspond to paths in the graph.
Stronger constraints correspond to shorter paths.

Xi

•

• •

Xj

• •

5

3
4

6

2
3

4
9
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Simple Temporal Network
Distance Matrix∗

Definition 2 (Distance Matrix)
The Distance Matrix for an STN, S = (T , C), is a matrix D defined by:

D(Xi ,Xj) = Length of Shortest Path from Xi to Xj in the graph for S

Xi

Xj
D(Xi ,Xj)

The strongest implicit constraint on Xi and Xj in S is:

Xj − Xi ≤ D(Xi ,Xj)

∗[Dechter et al., 1991]
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Simple Temporal Network
Distance Matrix

The strongest implicit constraint on Xi and Xj in S is:

Xj − Xi ≤ D(Xi ,Xj)

D is the All-Pairs, Shortest-Path (APSP) Matrix for the STN’s
graph.∗

Floyd-Warshall Algorithm
Johnson’s Algorithm

∗[Cormen et al., 2009]
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Simple Temporal Network
Travel Scenario’s Distance Matrix

Z X1 X2 X3 X4

250

−4

168

−7 −120 8
−7

D Z X1 X2 X3 X4

Z 0 116 123 243 250
X1 -4 0 41 161 168
X2 -11 -7 0 154 161
X3 -131 -127 -120 0 8
X4 -138 -134 -127 -7 0
Gray cells contain the original values.
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Simple Temporal Network
Fundamental Theorem of STNs∗

For an STN S, with graph G, and distance matrix D, the following are
equivalent:
S is consistent
D has non-negative values on main diagonal
G has no negative-length loops

Moreover, any consistent STN S is backtrack-free relative to the
constraints in its distance matrix.
∗[Dechter et al., 1991]
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Simple Temporal Network
Finding a solution for an STN

D has all necessary information.
Time window for any Xi : [−D(Xi ,Z),D(Z,Xi)]

Two solutions are always given by free:
1 Earlier execution-time solution:
X1 = −D(X1,Z),X2 = −D(X2,Z), . . . ,Xn = −D(Xn,Z);

2 Latest execution-time solution:
X1 = D(Z,X1),X2 = D(Z,X2), . . . ,Xn = D(Z,Xn).

Simple algorithm to find a different solution:
Pick any time-point that doesn’t yet have a value;
Give it a value from its time-window;
Update D; ⇐ expensive . . .
Repeat until all time-points have values.

∗[Dechter et al., 1991]
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Simple Temporal Network
Computing D from Scratch∗

D is the All-Pairs, Shortest-Paths (APSP) Matrix for G.
If S has n time-points and m constraints:

Floyd-Warshall Algorithm: O(n3)
Johnson’s Algorithm: O(n2 log n +mn)

– uses Bellman-Ford and Dijkstra

∗[Cormen et al., 2009]
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Floyd-Warshall Algorithm∗

Xi

Xr

Xj

U V

D(X i,Xr
) D(Xr ,Xj )

D(Xi ,Xj )

Algorithm 1: Flowd-Warshall(D)
Initialize D(_,_) using edge-weights;
for r := 1 to n do

for i := 1 to n do
for j := 1 to n do

D(Xi ,Xj ) := min{D(Xi ,Xj ), D(Xi ,Xr ) + D(Xr ,Xj )};

The r th cycle finds all minimal paths having r intermediate nodes
at most;
Time complexity Θ(n3)

∗[Cormen et al., 2009]
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Bellman-Ford Algorithm

S

X1

X2 X3

X4

X5

0
0 0

0
0

Algorithm 2: Bellman-Ford()
foreach Xi do

d(Xi) :=∞
d(S) := 0;
for i := 1 to n − 1 do

foreach edge (Xi , δ,Xj) do
d(Xj) := min{d(Xj),d(Xi) + δ};

foreach edge (Xi , δ,Xj) do
if d(Xj) > d(Xi) + δ then return NO;

return {D(S,X1),. . . , D(S,Xn)};

Time complexity O(nm)
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Dijkstra’s SSSP Algorithm
Single-Source Shortest-Paths

Works on STN graphs with non-negative edges
For a given source node S, computes D(S,X ) for all X

Algorithm 3: Dijkstra()
foreach Xi do

d(Xi) :=∞
d(S) := 0;
Q := an empty priority queue;
Insert S into Q with priority 0;
while Q 6= ∅ do

X :=ExtractMinFrom(Q);
foreach edge (X , δ,Y ) do

d(Y ) := min{d(Y ),d(X ) + δ};

return {D(S,X1),. . . , D(S,Xn)}

Time complexity O(m + n log n) if using Fibonacci Heap for
priority queue
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Dijkstra Example

S[0]

X[∞]

Y[∞]

W[∞]

V[∞]

R[∞]
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2

6

2

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55



Dijkstra Example

S[0]

X[3]

Y[∞]

W[∞]

V[1]

R[5]
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2
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Dijkstra Example

S[0]

X[3]

Y[∞]

W[∞]

V[1]
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Dijkstra Example

S[0]

X[3]

Y[7]
W[∞]

V[1]

R[5]

3

1
8

5

1

2

6

2
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Dijkstra Example

S[0]

X[3]

Y[7]
W[∞]

V[1]

R[5]

3

1
8

5

1

2

6

2
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Dijkstra Example

S[0]

X[3]

Y[4]
W[∞]

V[1]

R[5]
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Dijkstra Example
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Dijkstra Example

S[0]

X[3]

Y[4]
W[12]

V[1]

R[5]

3

1
8

5

1

2

6

2

8

Roberto Posenato Simple Temporal Networks and some its Extensions 24 / 55



Dijkstra Example
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Dijkstra Example
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Dijkstra Example

S[0]

X[3]

Y[4]
W[7]

V[1]

R[5]
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Potential Functions & Re-weighted Graphs

Let S = (T , C) be any consistent STN.
Let f : T → R be any solution for S.

Then f (Y )− f (X ) ≤ δ for each constraint (Y − X ≤ δ) ∈ C
In other words, 0 ≤ f (X ) + δ − f (Y )
Let C′ = {(X , δ′,Y ) | (X , δ,Y ) ∈ C}, where δ′ = f (X ) + δ − f (Y )
Then S ′ = (T , C′) has only non-negative edges.
Therefore, can use Dijkstra’s SSSP algorithm on S ′
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Johnson’s Algorithm∗

Algorithm 4: Johnson()
Input: An STN, S = (T , C)
Output: S minimized if consistent, NO otherwise
Run Bellman-Ford SSSP with new source node S;
if Bellman-Ford returns NO then return NO;
f (X ) := D(S,X ) for each X ∈ T ; // It is a solution for S
foreach (X , δ,Y ∈ C) do

δ′ := f (X ) + δ − f (Y ); // δ′ ≥ 0
S ′ := (T , C′); // Re-weighted graph based on δ′
foreach X ∈ T do

Run Dijkstra on S ′ with X as source node; // Computes D′(X ,Y ) for all
Y ∈ T .

foreach X ,Y ∈ T do
D(X ,Y ) = −f (X ) +D′(X ,Y ) + f (Y ); // Reverse the re-weighting to

obtain D for S

Time Complexity: O(mn) + n ∗O(m + n log n) = O(mn + n2 log n)
∗[Cormen et al., 2009]
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Simple Temporal Network
Incrementally updating D

Given a consistent STN S = (T , C) with distance matrix D.
Insert new constraint (Y − X ≤ δ).
How to update D?

Re-compute from scratch: O(mn + n2 log n).
“Naïve” algorithm: O(n2): For each U,V ∈ T ,

D(U,V ) := min{D(U,V ), D(U,X ) + δ +D(Y ,V )}

U

X Y

V
D(U

,X) D(Y ,V )

D(U,V )

δ
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Simple Temporal Networks
Incremental Update Algorithm

Propagate updates to D along edges in graph
Only propagate along tight edges; // (Y −X ≤ δ) is tight iff D(X ,Y ) = δ

Phase I: propagate forward
Phase II: propagate backward
Checks no more than b ·∆ cells of D, where:

∆ = number of cells needing updating;
b = max number of edges incident to any node.

∗ [Even and Gazit, 1985, Ramalingam and Reps, 1996, Rohnert, 1985]
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Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[5] A[9]

B[17]

C[18]

D[22]

4

8

6

4

5

Numbers in brackets are current values of D(X ,_).
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Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[2] A[9]

B[17]

C[18]

D[22]

4

8

6

4

2

Numbers in brackets are current values of D(X ,_).
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Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[2] A[9]

B[17]

C[18]

D[22]

4

8

6

4

2
4

6, stronger!

Numbers in brackets are current values of D(X ,_).
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Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[2] A[6]

B[17]

C[18]

D[22]

4

8

6

4

2

14, stronger!

8

Numbers in brackets are current values of D(X ,_).
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Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[2] A[6]

B[14]

C[18]

D[22]

4

8

6

4

2

20, weaker! 6

Propagation stops!
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Incremental Update Algorithm
Propagate forward from XY as long as new values obtained

X

Y[2] A[6]

B[14]

C[18]

D[22]

4

8

6

4

2

20, weaker! 6

Forward propagation done along this path.
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Incremental Update Algorithm
For each entry D(X , _) that was updated, propagate backward from X

X[14]

B

W[30]

V[34]

U[29]

3

6

7

14

Numbers in brackets are D(_,B) values.
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Incremental Update Algorithm
For each entry D(X , _) that was updated, propagate backward from X

X[14]

B

W[30]

V[34]

U[29]

3

6

7

14

7

21,stronger!

Numbers in brackets are D(_,B) values.
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Incremental Update Algorithm
For each entry D(X , _) that was updated, propagate backward from X

X[14]

B

W[21]

V[34]

U[29]

3

6

7

14
6

27, stronger!

Numbers in brackets are D(_,B) values.

Roberto Posenato Simple Temporal Networks and some its Extensions 30 / 55



Incremental Update Algorithm
For each entry D(X , _) that was updated, propagate backward from X

X[14]

B

W[21]

V[27]

U[29]

3

6

7

14

3

30, weaker!

No further updates along this path.

Roberto Posenato Simple Temporal Networks and some its Extensions 30 / 55



Incremental Update Algorithm
For each entry D(X , _) that was updated, propagate backward from X

X[14]

B

W[21]

V[27]

U[29]

3

6

7

14

No further updates along this path.
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Simple Temporal Network
Incremental Consistency

Verifying consistency of an STN after inserting, weakening or deleting
a constraint is less expensive than fully updating the distance matrix.∗

Algorithm maintains/updates a solution to the STN.
After inserting a new constraint (or strengthening an existing one),
can verify consistency in O(m + n log n) time.
After deleting or weakening a constraint, only need constant time,
because the same solution will work for the modified STN.

∗ [Ramalingam et al., 1999]
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Simple Temporal Network
Sample STN

Z

B

C

D

−5

63 −2

−4

30
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Simple Temporal Network
“Solving” Sample STN

First, form APSP graph (equiv. compute D).

Z

B

C

D

26

−5

28

−2

30

−9
63

25

−4

28

−2

Time Windows: B ∈ [5,26], C ∈ [2,28], D ∈ [9,30]
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Simple Temporal Network
“Solving” Sample STN

Next, select D = 20; and update APSP graph:

Z

B

C

D

16

−5

18

−2

20

−20
63

15

−4

18

−2

Remaining Time Windows: B ∈ [5,16], C ∈ [2,18]
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Simple Temporal Network
“Solving” Sample STN

Next, select B = 10; and update APSP graph:

Z

B

C

D

10

−10

16

−7

20

−20
63

10

−10

13

−4

Remaining Time Windows: C ∈ [7,16]
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Simple Temporal Network
“Solving” Sample STN

Finally, select C = 9; and update APSP graph:

Z

B

C

D

10

−10

9

−9

20

−20
1−1

10

−10

11

−11

Easy to verify that this is a solution.
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Simple Temporal Network
Problems with “Solving” an STN

May need to go back in time:
Pick D = 20, then after updating, pick B = 10
(i.e., no relationship to real-time execution)
Expensive to update D
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Simple Temporal Network
Executing an STN in real time

Only executed enabled time-points: those having no negative
edges to unexecuted time-points.
Focus updating on entries involving Z: reduces cost to linear time
per update, O(n2) overall.∗

Alternatively, prior to execution, transform STN into dispatchable
form in O(n2 log n + nm) time; then during execution, only need
to propagate bounds to neighboring time-points.†

∗[Hunsberger, 2008]; †[Muscettola et al., 1998], †[Tsamardinos et al., 1998]
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Simple Temporal Network
Dispatchable STN

An STN S is dispatchable if the following algorithm necessarily
successfully executes S:
Algorithm 5: ExecuteDispatchableNetwork(G = (T , E))
t := 0; // current time
X := {}; // executed nodes
E := {Z}; // currently enabled nodes
while X 6= T do

Pick any X ∈ E such that t is in X ’s time window;
X := t , X := X ∪ {X};
Propagate t ≤ X ≤ t to X ’s immediate neighbors;
E := E ∪ {all time-points Y s.t. all non-positive edges emanating
from Y have a destination in X};

Wait until t has advanced to some time in
[min{lb(W ) |W ∈ E},min{ub(W ) |W ∈ E}];
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Simple Temporal Network
Making STN Dispatchable

Start with APSP Graph:

Z

B

C

D

26

−5

28

−2

30

−9
63

25

−4

28

−2

Then remove dominated edges . . .
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Simple Temporal Network
Remove Dominated Edges

A negative edge AC is dominated by a negative edge AB
if D(A,B) +D(B,C) = D(A,C):

A

B

C
−8 2

−6

AB and AC have the same source node: A.
During the execution, it is not necessary to propagate along
dominated edges like AC.
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Simple Temporal Network
Remove Dominated Edges (ctd.)

A non-negative edge AC is dominated by a non-negative edge BC
if D(A,B) +D(B,C) = D(A,C):

A

B

C
2 9

11

BC and AC have the same destination node: C.
During the execution, it is not necessary to propagate along
dominated edges like AC.
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Simple Temporal Network
Making STN Dispatchable (ctd.)

Remove “dominated” edges:∗

Z

B

C

D

26

−5

28

−2
63

25

−4

28

−2

30

−9

∗[Muscettola et al., 1998]
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Simple Temporal Network
Dispatching the STN

Initially: t = 0, X = {}, E = {Z}.

Z

B

C

D

26

−5

28

−2

30

63

−4

−2

Pick Z from E. Set Z = 0.
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Simple Temporal Network
Dispatching the STN (ctd.)

Propagate Z = 0 to neighbors;

Z

B

C

DZ

26

−5

28

−2

30

63

−4

−2

X = {Z}, E = {B,C}; B ∈ [5, 26],C ∈ [2, 28],D ∈ [0, 30].
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Simple Temporal Network
Dispatching the STN (ctd.)

X = {Z}, E = {B,C}; Bounds: B ∈ [5,26], C ∈ [2,28].

Z

B

C

DZ

26

−5

28

−2

30

63

−4

−2

Let t advance to 12; Pick B from E; Set B = 12.

Roberto Posenato Simple Temporal Networks and some its Extensions 43 / 55



Simple Temporal Network
Dispatching the STN (ctd.)

Propagate B = 12 to neighbors

Z

B

C

DZ

B

26

−5

28

−2

30

63

−4

−2

X = {Z,B}, t = 12, E = {C}, C ∈ [12,18],D ∈ [16,30]
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Simple Temporal Network
Dispatching the STN (ctd.)

X = {Z,B}, t = 12, E = {C}, C ∈ [12,18],D ∈ [16,30]

Z

B

C

DZ

B

26

−5

28

−2

30

63

−4

−2

Let t advance to 16, pick C from E, set C = 16.

Roberto Posenato Simple Temporal Networks and some its Extensions 45 / 55



Simple Temporal Network
Dispatching the STN (ctd.)

Propagate C = 16 to C ’s only remaining neighbor, D.

Z

B

C

DZ

B

C

26

−5

28

−2

30

63

−4

−2

X = {Z,B,C}, t = 16, E = {D}, D ∈ [18,30]
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Simple Temporal Network
Dispatching the STN (ctd.)

X = {Z,B,C}, t = 16, E = {D}, D ∈ [18,30]

Z

B

C

DZ

B

C

D

26

−5

28

−2

30

63

−4

−2

Let t advance to 25, pick D from E, set D = 25.
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Simple Temporal Network
Dispatching the STN (ctd.)

X = {Z,B,C,D}, t = 25, E = {}

Z

B

C

DZ

B

C

D

26

−5

28

−2

30

63

−4

−2

Solution: Z = 0,B = 12,C = 16,D = 25.
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Simple Temporal Network
Dispatching the STN (ctd.)

Easy to check that Z = 0,C = 20,B = 23,D = 28 can also be
generated by the dispatcher.

Z

B

C

D

26

−5

28

−2

30

63

−4

−2
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Simple Temporal Network
New View of Dispatchability∗

(1) A path P has the prefix/postfix (PP) property if:
Every proper prefix of P has non-negative length, and
Every proper postfix of P has negative length.

A

B
C

D

E

5

−2 6

−123
9

∗ [Morris, 2014]
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Simple Temporal Network
New View of Dispatchability∗

(1) A path P has the prefix/postfix (PP) property if:
Every proper prefix of P has non-negative length, and
Every proper postfix of P has negative length.

A

B
C

D

E

5

−2 6

−12
−8

−6

∗ [Morris, 2014]
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Simple Temporal Network
New View of Dispatchability (ctd)

(2) An STN is PP-complete if for each shortest path from any X to
any Y that has the prefix/postfix property, there is an edge from X
to Y with the same length.

A

B
C

D

E

5

−2

3

6

−12−6

−3

(3) A consistent and PP-complete STN is dispatchable.
∗ [Morris, 2014]
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Simple Temporal Network
More on Dispatchability

Further graphical analyses of the dispatchability of STNs has been
presented recently [Morris, 2016].
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Additional Research on STNs

Temporal Decoupling Problem (TDP) [Hunsberger, 2002,
Jr. and Durfee, 2013, Mountakis et al., 2017]
APSP algorithms on chordal graphs [Xu and Choueiry, 2003]
Enforcing partial path consistency [Planken, 2008]
Incorporating STNs in multi-agent
auctions [Hunsberger and Grosz, 2000]
For further info:
http://www.cs.vassar.edu/~hunsberg/__papers__/
(See pages 22-24, 27-28, 32, 53-70, 76-79 of
2005 AAMAS tutorial.)
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STN Summary

STNs have been used to provide flexible planning and scheduling
systems for more than a decade.
Efficient algorithms for checking consistency, incrementally
updating the APSP matrix, and managing execution in real time
for maximum flexibility.
However, STNs cannot represent uncertainty (e.g., actions with
uncertain durations) or conditional constraints (e.g., only do X if
test result is negative).
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