Simple Temporal Networks and some its Extensions Version 162, 2019-12-04 14:43:39Z

Roberto Posenato

Department of Computer Science, University of Verona

November 2019

Credits: this presentation is based on Luke Hunsberger and Roberto Posenato slides

Outline

Introduction

- 2 Simple Temporal Network (STN)
- STNs with Uncertainty (STNU)
- 4 Conditional STNs (CSTN)
- 5
- Conditional STNs with Uncertainty (CSTNUs)
- 6 CSTNU with Disjunction (CDTNUs)

Introduction A Temporal Network Hierarchy

• This lecture does not present dashed types.

- Given a plan of a fly from New York to Rome,
- Determine if the plan is consistent,
- If it is consistent, determine a temporal schedule.

Fly from New York to Rome

- Leave New York after 4 p.m., June 8
- Return to New York before 10 p.m., June 18
- Away from New York no more than 7 days
- In Rome at least 5 days
- Return flight lasts no more than 7 hours

Simple Temporal Network (STN)* Description

- Includes time-points and temporal constraints of only one kind.
- Flexible: Time-points may "float"; not "nailed down" until they are *executed*
- Efficient algorithms for determining consistency, managing real-time execution, and handling new constraints

* [Dechter et al., 1991]

Simple Temporal Network*

Definition 1 (Simple Temporal Network (STN))

A Simple Temporal Network (STN) is a pair, S = (T, C), where:

- \mathcal{T} is a set of real-valued variables called time-points: $\{X_1, \ldots, X_n \mid X_i \in \mathbb{R}\}$; and
- *C* is a set of binary constraints, each of the form:

$$X_j - X_i \leq \delta$$

where $X_i, X_i \in \mathcal{T}$ and $\delta \in \mathbb{R}$.

- Time-points represent events.
- Each binary constraint represents the maximal temporal distance between the first time point and the second one.
- There is only one time unit.

*[Dechter et al., 1991]

- It is useful to have one time-point, called Z, whose value is fixed at 0.
- Binary constraints involving Z are equivalent to unary constraints.

Simple Temporal Networks and some its Extensions

 A solution to an STN S = (T, C) is a complete set of assignments to the time-points in T:

$$\{X_1 = t_1, X_2 = t_2, \ldots, X_n = t_n\}$$

that together satisfy all of the constraints in C.

- An STN with at least one solution is consistent.
- STNs with identical solution sets are *equivalent*.

 $\mathcal{T} = \{\mathsf{Z}, X_1, X_2, X_3, X_4\}, \text{ where } \mathsf{Z} = \mathsf{Noon, June 8} \\ \mathcal{T} = \{\mathsf{Z}, X_1, X_2, X_3, X_4\}, \text{ where } \mathsf{Z} = \mathsf{Noon, June 8} \\ X_4 - \mathsf{Z} \leq -4 \quad X_1 = \mathsf{leave-time NYC (Lv NYC after 4 p.m., June 8)} \\ X_4 - \mathsf{Z} \leq -250 \quad X_4 = \mathsf{return-time NYC (Ret NYC by 10 p.m., June 18)} \\ X_4 - X_1 \leq -168 \quad (\mathsf{Gone no more than 7 days)} \\ X_2 - X_3 \leq -120 \quad X_2(X_3) = \mathsf{arrive(leave)-time Rome (In Rome at least 5 days)} \\ X_4 - X_3 \leq -3 \quad \mathsf{Return flight less than 8 hrs} \\ X_1 - X_2 \leq -7 \quad (\mathsf{Flight requires at least 7 hrs}) \\ X_3 - X_4 \leq -7 \quad (\mathsf{Return flight requires at least 7 hrs}) \end{cases}$

The *graph* for an STN, S = (T, C), is a graph, G = (T, E), where: Time-points in $S \iff$ nodes in GConstraints in $C \iff$ edges in E: $Y - X \le \delta \qquad \iff X \xrightarrow{\delta} Y$

*[Dechter et al., 1991]

Simple Temporal Networks and some its Extensions

Simple Temporal Network Graph for Airline Scenario

Simple Temporal Networks and some its Extensions

Explicit constraints combine (propagate) to form implicit constraints:

- Chains of constraints correspond to **paths** in the graph.
- Stronger constraints correspond to shorter paths.

Simple Temporal Network Distance Matrix*

Definition 2 (Distance Matrix)

The Distance Matrix for an STN, S = (T, C), is a matrix D defined by:

 $\mathcal{D}(X_i, X_i) =$ Length of Shortest Path from X_i to X_i in the graph for S

$$\mathcal{D}(X_i, X_j)$$

• The strongest implicit constraint on X_i and X_j in S is:

$$X_j - X_i \leq \mathcal{D}(X_i, X_j)$$

*[Dechter et al., 1991]

• The strongest implicit constraint on X_i and X_j in S is:

$$X_j - X_i \leq \mathcal{D}(X_i, X_j)$$

- *D* is the *All-Pairs, Shortest-Path* (APSP) Matrix for the STN's graph.*
 - Floyd-Warshall Algorithm
 - Johnson's Algorithm

*[Cormen et al., 2009]

Simple Temporal Network Travel Scenario's Distance Matrix

\mathcal{D}	Z	X_1	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄
Ζ	0	116	123	243	250
X ₁	-4	0	41	161	168
X ₂	-11	-7	0	154	161
X ₃	-131	-127	-120	0	8
X ₄	-138	-134	-127	-7	0
Gray cells contain the original values.					

For an STN S, with graph G, and distance matrix D, the following are equivalent:

- *S* is consistent
- \mathcal{D} has non-negative values on main diagonal
- \mathcal{G} has no negative-length loops

Moreover, any consistent STN S is backtrack-free relative to the constraints in its distance matrix.

*[Dechter et al., 1991]

Simple Temporal Network Finding a solution for an STN

- $\bullet \ \mathcal{D}$ has all necessary information.
- Time window for any X_i : $[-\mathcal{D}(X_i, Z), \mathcal{D}(Z, X_i)]$
- Two solutions are always given by free:
 - Earlier execution-time solution: X₁ = -D(X₁, Z), X₂ = -D(X₂, Z), ..., X_n = -D(X_n, Z);
 Latest execution-time solution:
 - $X_1 = \mathcal{D}(\mathsf{Z}, X_1), X_2 = \mathcal{D}(\mathsf{Z}, X_2), \dots, X_n = \mathcal{D}(\mathsf{Z}, X_n).$
- Simple algorithm to find a different solution:
 - Pick any time-point that doesn't yet have a value;
 - Give it a value from its time-window;
 - Update \mathcal{D} ; \leftarrow expensive ...
 - Repeat until all time-points have values.

*[Dechter et al., 1991]

- \mathcal{D} is the *All–Pairs, Shortest–Paths* (APSP) Matrix for \mathcal{G} .
- If S has *n* time-points and *m* constraints:
 - Floyd–Warshall Algorithm: $O(n^3)$
 - Johnson's Algorithm: $O(n^2 \log n + mn)$
 - uses Bellman-Ford and Dijkstra

*[Cormen et al., 2009]

Floyd-Warshall Algorithm*

Algorithm 1: Flowd-Warshall(D)

Initialize D(_,_) using edge-weights; for r := 1 to n do for i := 1 to n do for j := 1 to n do $D(X_i, X_j) := \min\{D(X_i, X_j), D(X_i, X_r) + D(X_r, X_j)\};$

- The *r*th cycle finds all minimal paths having *r* intermediate nodes at most;
- Time complexity $\Theta(n^3)$

*[Cormen et al., 2009]

Bellman-Ford Algorithm

Algorithm 2: Bellman-Ford()

foreach X_i do $\lfloor d(X_i) := \infty$ d(S) := 0;for i := 1 to n - 1 do $\lfloor d(X_j) := \min\{d(X_j), d(X_i) + \delta\};$ foreach $edge(X_i, \delta, X_j)$ do $\lfloor if d(X_j) > d(X_i) + \delta$ then return NO; return { $D(S, X_1), \dots, D(S, X_n)$ };

• Time complexity *O*(*nm*)

Dijkstra's SSSP Algorithm Single-Source Shortest-Paths

- Works on STN graphs with non-negative edges
- For a given source node *S*, computes $\mathcal{D}(S, X)$ for all *X*

Algorithm 3: Dijkstra()

foreach X_i do $\lfloor d(X_i) := \infty$ d(S) := 0; Q := an empty priority queue; Insert *S* into Q with priority 0; while $Q \neq \emptyset$ do $\begin{bmatrix} X := ExtractMinFrom(Q); \\ foreach edge(X, \delta, Y) do \\ \lfloor d(Y) := min\{d(Y), d(X) + \delta\}; \end{bmatrix}$

return { $D(S,X_1),\ldots, D(S,X_n)$ }

• Time complexity $O(m + n \log n)$ if using *Fibonacci Heap* for priority queue

Roberto Posenato

Potential Functions & Re-weighted Graphs

- Let S = (T, C) be any consistent STN.
- Let $f : \mathcal{T} \to \mathbb{R}$ be any solution for S.
 - Then $f(Y) f(X) \le \delta$ for each constraint $(Y X \le \delta) \in C$
 - In other words, $0 \le f(X) + \delta f(Y)$
 - Let $\mathcal{C}' = \{(X, \delta', Y) \mid (X, \delta, Y) \in \mathcal{C}\}$, where $\delta' = f(X) + \delta f(Y)$
 - Then $\mathcal{S}' = (\mathcal{T}, \mathcal{C}')$ has only non-negative edges.
 - Therefore, can use Dijkstra's SSSP algorithm on \mathcal{S}^\prime

Johnson's Algorithm*

Algorithm 4: Johnson() **Input:** An STN, S = (T, C)**Output:** S minimized if consistent, NO otherwise Run Bellman-Ford SSSP with *new* source node S; if Bellman–Ford returns NO then return NO; f(X) := D(S, X) for each $X \in \mathcal{T}$; // It is a solution for Sforeach $(X, \delta, Y \in C)$ do $| \delta' := f(X) + \delta - f(Y);$ $|| \delta' > 0$ $\mathcal{S}' := (\mathcal{T}, \mathcal{C}');$ // Re-weighted graph based on δ' foreach $X \in \mathcal{T}$ do Run Dijkstra on S' with X as source node; // Computes $\mathcal{D}'(X, Y)$ for all $Y \in \mathcal{T}$. foreach X. $Y \in \mathcal{T}$ do $\mathcal{D}(X, Y) = -f(X) + \mathcal{D}'(X, Y) + f(Y);$ // Reverse the re-weighting to obtain \mathcal{D} for \mathcal{S}

Time Complexity: $O(mn) + n * O(m + n \log n) = O(mn + n^2 \log n)$ *[Cormen et al., 2009]

Roberto Posenato
Simple Temporal Network Incrementally updating \mathcal{D}

- Given a consistent STN S = (T, C) with distance matrix D.
- Insert new constraint ($Y X \le \delta$).
- How to update \mathcal{D} ?
 - Re–compute from scratch: $O(mn + n^2 \log n)$.
 - "Naïve" algorithm: $O(n^2)$: For each $U, V \in \mathcal{T}$,

 $\mathcal{D}(\boldsymbol{U}, \boldsymbol{V}) := \min\{\mathcal{D}(\boldsymbol{U}, \boldsymbol{V}), \ \mathcal{D}(\boldsymbol{U}, \boldsymbol{X}) + \delta + \mathcal{D}(\boldsymbol{Y}, \boldsymbol{V})\}$

- \bullet Propagate updates to ${\cal D}$ along edges in graph
- Only propagate along *tight* edges; // $(Y X \le \delta)$ is tight iff $\mathcal{D}(X, Y) = \delta$
- Phase I: propagate forward
- Phase II: propagate backward
- Checks no more than $b \cdot \Delta$ cells of \mathcal{D} , where:
 - $\Delta =$ number of cells needing updating;
 - *b* = max number of edges incident to any node.
- * [Even and Gazit, 1985, Ramalingam and Reps, 1996, Rohnert, 1985]

Numbers in brackets are current values of $\mathcal{D}(X, _)$.

Forward propagation done along this path.

Verifying consistency of an STN after inserting, weakening or deleting a constraint is less expensive than fully updating the distance matrix.*

- Algorithm maintains/updates a solution to the STN.
- After inserting a new constraint (or strengthening an existing one), can verify consistency in $O(m + n \log n)$ time.
- After deleting or weakening a constraint, only need constant time, because the same solution will work for the modified STN.

* [Ramalingam et al., 1999]

Simple Temporal Network Sample STN

Remaining Time Windows: $B \in [5, 16], C \in [2, 18]$

Easy to verify that this is a solution.

- May need to go back in time:
 Pick D = 20, then after updating, pick B = 10 (i.e., no relationship to real-time execution)
- Expensive to update \mathcal{D}

- Only executed enabled time-points: those having no negative edges to unexecuted time-points.
- Focus updating on entries involving Z: reduces cost to linear time per update, $O(n^2)$ overall.*
- Alternatively, prior to execution, transform STN into dispatchable form in $O(n^2 \log n + nm)$ time; then during execution, only need to propagate bounds to *neighboring* time-points.[†]

*[Hunsberger, 2008]; [†][Muscettola et al., 1998], [†][Tsamardinos et al., 1998]

An STN S is dispatchable if the following algorithm necessarily successfully executes S:

Algorithm 5: ExecuteDispatchableNetwork($\mathcal{G} = (\mathcal{T}, \mathcal{E})$)

t := 0;// current time $\mathcal{X} := \{\};$ // executed nodes $\mathbf{E} := \{Z\};$ // currently enabled nodeswhile $\mathcal{X} \neq \mathcal{T}$ doPick any $X \in \mathbf{E}$ such that t is in X's time window; $X := t, \mathcal{X} := \mathcal{X} \cup \{X\};$ Propagate $t \le X \le t$ to X's immediate neighbors; $\mathbf{E} := \mathbf{E} \cup \{\text{all time-points } Y \text{ s.t. all non-positive edges emanating from <math>Y$ have a destination in $\mathcal{X}\};$ Wait until t has advanced to some time in $[\min\{lb(W) \mid W \in \mathbf{E}\}, \min\{ub(W) \mid W \in \mathbf{E}\}];$

Simple Temporal Network Making STN Dispatchable

Then remove *dominated* edges ...

A negative edge AC is dominated by a negative edge AB if $\mathcal{D}(A, B) + \mathcal{D}(B, C) = \mathcal{D}(A, C)$:

- *AB* and *AC* have the same source node: *A*.
- During the execution, it is not necessary to propagate along dominated edges like *AC*.

Simple Temporal Network Remove Dominated Edges (ctd.)

A non-negative edge *AC* is dominated by a non-negative edge *BC* if $\mathcal{D}(A, B) + \mathcal{D}(B, C) = \mathcal{D}(A, C)$:

- *BC* and *AC* have the same destination node: *C*.
- During the execution, it is not necessary to propagate along dominated edges like *AC*.

Simple Temporal Network Making STN Dispatchable (ctd.)

*[Muscettola et al., 1998]

Simple Temporal Networks and some its Extensions

Easy to check that Z = 0, C = 20, B = 23, D = 28 can also be generated by the dispatcher.

- (1) A path \mathcal{P} has the prefix/postfix (PP) property if:
 - Every proper prefix of \mathcal{P} has non-negative length, and
 - Every proper postfix of \mathcal{P} has negative length.

* [Morris, 2014]
- (1) A path \mathcal{P} has the prefix/postfix (PP) property if:
 - Every proper prefix of \mathcal{P} has non-negative length, and
 - Every proper postfix of \mathcal{P} has negative length.

* [Morris, 2014]

(2) An STN is PP-complete if for each shortest path from any X to any Y that has the prefix/postfix property, there is an edge from X to Y with the same length.

(3) A consistent and PP-complete STN is dispatchable.

* [Morris, 2014]

Further graphical analyses of the dispatchability of STNs has been presented recently [Morris, 2016].

Additional Research on STNs

- Temporal Decoupling Problem (TDP) [Hunsberger, 2002, Jr. and Durfee, 2013, Mountakis et al., 2017]
- APSP algorithms on chordal graphs [Xu and Choueiry, 2003]
- Enforcing partial path consistency [Planken, 2008]
- Incorporating STNs in multi-agent auctions [Hunsberger and Grosz, 2000]
- For further info:

http://www.cs.vassar.edu/~hunsberg/__papers__/ (See pages 22-24, 27-28, 32, 53-70, 76-79 of 2005 AAMAS tutorial.)

- STNs have been used to provide flexible planning and scheduling systems for more than a decade.
- Efficient algorithms for checking consistency, incrementally updating the APSP matrix, and managing execution in real time for maximum flexibility.
- However, STNs cannot represent uncertainty (e.g., actions with uncertain durations) or conditional constraints (e.g., only do X if test result is negative).

References I

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). *Introduction to Algorithms*. The MIT Press, 3rd edition.

Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal Constraint Networks. *Artificial Intelligence*, 49(1–3):61–95.

Even, S. and Gazit, H. (1985). Updating Distances in Dynamic Graphs. *Methods of Operations Research*, 49:371–387.

Hunsberger, L. (2002).

Group Decision Making and Temporal Reasoning. PhD thesis, Harvard University. Available as Harvard Technical Report TR-05-02.

<u>н</u> н

Hunsberger, L. (2008).

A practical temporal constraint management system for real-time applications. In *European Conf. on Artificial Intelligence (ECAI-2008)*, pages 553-557.

References II

Hunsberger, L. and Grosz, B. J. (2000). A combinatorial auction for collaborative planning. In 4th Int. Conf. on Multi-Agent Systems (ICMAS-2000).

Jr., J. C. B. and Durfee, E. H. (2013).

Decoupling the multiagent disjunctive temporal problem. In 27th AAAI Conf. on Artificial Intelligence.

Morris, P. (2014).

Dynamic controllability and dispatchability relationships.

In *Integration of AI and OR Techniques in Constraint Programming*, volume 8451 of *LNCS*, pages 464–479.

Morris, P. (2016).

The mathematics of dispatchability revisited.

In 26th Int. Conf. on Automated Planning and Scheduling (ICAPS-2016), pages 244-252.

```
Mountakis, K. S., Klos, T., and Witteveen, C. (2017).
```

Dynamic temporal decoupling.

In 14th Int. Conf. Integration of AI and OR Techniques in Constraint Programming, volume 10335 of Lecture Notes in Computer Science (LNCS), pages 328-343.

References III

Muscettola, N., Morris, P. H., and Tsamardinos, I. (1998). Reformulating Temporal Plans for Efficient Execution. In 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR-1998), pages 444-452.

Planken, L. (2008).

Incrementally Solving the STP by Enforcing Partial Path Consistency. In *27th PlanSIG Workshop*, pages 87–94.

Ramalingam, G. and Reps, T. (1996).

On the Computational Complexity of Dynamic Graph Problems. *Theoretical Computer Science*, 158:233-277.

Ramalingam, G., Song, J., Joskowicz, L., and Miller, R. E. (1999). Solving Systems of Difference Constraints Incrementally. *Algorithmica*, 23(3):261–275.

Rohnert, H. (1985).

A Dynamization of the All Pairs Least Cost Path Problem.

In Mehlhorn, K., editor, *2nd Symp. of Theoretical Aspects of Computer Science* (*STACS–1985*), volume 182 of *Lecture Notes in Computer Science* (*LNCS*), pages 279–286.

References IV

Tsamardinos, I., Muscettola, N., and Morris, P. (1998). Fast Transformation of Temporal Plans for Efficient Execution. In 15th National Conf. on Artificial Intelligence (AAAI-1998), pages 254-261.

Xu, L. and Choueiry, B. Y. (2003).

A new efficient algorithm for solving the simple temporal problem. In 10th Int. Symp. on Temporal Representation and Reasoning and 4th Int. Conf. on Temporal Logic (TIME–ICTL–2003), pages 210–220.