
A semantic analysis of wireless network
security protocols

Damiano Macedonio and Massimo Merro

Dipartimento di Informatica, Università degli Studi di Verona, Italy

Abstract Gorrieri and Martinelli’s tGNDC schema is a well-known gen-
eral framework for the formal verification of security protocols in a con-
current scenario. We generalise the tGNDC schema to verify wireless
network security protocols. Our generalisation relies on a simple timed
broadcasting process calculus whose operational semantics is given in
terms of a labelled transition system which is used to derive a stan-
dard simulation theory . We apply our tGNDC framework to perform
a security analysis of LiSP, a well-known key management protocol for
wireless sensor networks.

1 Introduction

Wireless communication has become very popular in industry, business, com-
merce, and in everyday life. Wireless technology spans from user applications,
such as personal area networks, ambient intelligence, and wireless local area
networks, to real-time applications, such as cellular and ad hoc networks.

In this paper, we adopt a process calculus approach to formalise and verify
wireless network protocols. We propose a simple timed broadcasting process cal-
culus, called aTCWS, for modelling wireless networks. The time model we adopt is
known as the fictitious clock approach (see e.g. [7]): A global clock is supposed to
be updated whenever all nodes agree on this, by globally synchronising on a spe-
cial timing action σ.1 Broadcast communications span over a limited area, called
transmission range. Both broadcast actions and internal actions are assumed to
take no time. This is a reasonable assumption whenever the duration of those
actions is negligible with respect to the chosen time unit. The operational se-
mantics of our calculus is given in terms of a labelled transition semantics in the
SOS style of Plotkin. The calculus enjoys standard time properties, such as: time
determinism, maximal progress, and patience [7]. The labelled transition seman-
tics is used to derive a (weak) simulation theory which can be easily mechanised .
Based on our simulation theory, we generalise Gorrieri and Martinelli’s timed
Generalized Non-Deducibility on Compositions (tGNDC) schema [5,6], a well-
known general framework for the formal verification of timed security properties.
The basic idea of tGNDC is the following: a protocol M satisfies tGNDC ρ(M)

if the presence of an arbitrary attacker does not affect the behaviour of M with

1 Time synchronisation relies on some clock synchronisation protocol [16].

respect to the abstraction ρ(M). By varying ρ(M) it is possible to express dif-
ferent timed security properties for the protocol M . Examples are the timed
integrity property, which ensures the freshness of authenticated packets, and the
timed agreement property, when agreement between two parties must be reached
within a certain deadline. In this paper, we will focus on the first property. In
order to avoid the universal quantification over all possible attackers when prov-
ing tGNDC properties, we provide a sound proof technique based on the notion
of the most powerful attacker .

As a main application of our theory, we provide a formal specification of
LiSP [13], a well-known key management protocol for wireless sensor networks
that, through an efficient mechanism of re-keying, provides a good trade-off
between resource consumption and network security. We perform our tGNDC -
based analysis on LiSP showing that old packets can be authenticated as a
consequence of a replay attack . To our knowledge this attack has never appeared
in the literature. Then, we formally prove that similar attacks can be avoided if
nonces are added to the original LiSP protocol.

Related Work A number of process calculi have been proposed for modelling
different aspects of wireless systems [8,15,9,3,2,10,4]. The paper [12] proposes an
algebraic approach to perform security analysis of communication protocols for
ad hoc networks. The paper [1] proposes a first formalisation of tGNDC in our
setting and a security analysis of the authentication protocols µTESLA [14] and
LEAP+ [17]. The protocol µTESLA has also been studied within the process
algebra tCryptoSPA [5,6], an extension of Milner’s CCS, where node distribu-
tion, local broadcast communication, and message loss are codified in terms of
point-to-point transmission and a (discrete) notion of time. As a consequence,
specifications and security analyses of wireless network protocols in tCryptoSPA
are much more complicated than ours.

2 The Calculus

In Table 1, we provide the syntax of our applied Timed Calculus for Wireless
Systems, in short aTCWS, in a two-level structure: A lower one for processes and
an upper one for networks. We assume a set Nds of logical node names, ranged
over by letters m,n. Var is the set of variables, ranged over by x, y, z. We define
Val to be the set of values, and Msg to be the set of messages, i.e., closed values
that do not contain variables. Letters u, u1 . . . range over Val , and w . . . range
over Msg . We assume a class of message constructors ranged over by Fi.

Both syntax and operational semantics of aTCWS are parametric with respect
to a given decidable inference system, i.e. a set of rules to model operations on
messages by using constructors. For instance, the rules

(pair)
w1 w2

pair(w1, w2)
(fst)

pair(w1, w2)
w1

(snd)
pair(w1, w2)

w2

allow us to deal with pairs of values. We write w1 . . . wk `r w0 to denote an
application of rule r to the closed values w1 . . . wk to infer w0. Given an inference

2

Table 1 Syntax of aTCWS
Networks:
M, N ::= 0 empty network˛̨

M1 | M2 parallel composition˛̨
n[P]ν node

Processes:
P, Q ::= nil termination˛̨

!〈u〉.P broadcast˛̨
b?(x).P cQ receiver with timeout˛̨ ¨ P

i∈I τ.Pi

˝
Q internal choice with timeout˛̨

σ.P sleep˛̨
[u1 = u2]P ; Q matching˛̨
[u1 . . . un `r x]P ; Q deduction˛̨
H〈ũ〉 guarded recursion

system, the deduction function D : 2Msg → 2Msg associates a (finite) set φ of
messages to the set D(φ) of messages that can be deduced from φ, by applying
instances of the rules of the inference system.

Networks are collections of nodes running in parallel and using a unique
common channel to communicate with each other. All nodes have the same
transmission range (this is a quite common assumption in models for ad hoc
networks [11]). The communication paradigm is local broadcast : only nodes lo-
cated in the range of the transmitter may receive data. We write n[P]ν for a
node named n (the device network address) executing the sequential process P .
The tag ν contains the neighbours of n (ν ⊆ Nds \ {n}). Our wireless networks
have a fixed topology as node mobility is not relevant to our analysis.

Processes are sequential and live within the nodes. In the processes !〈w〉.P ,
b?(x).P cQ,

⌊ ∑
i∈I τ.Pi

⌋
Q and σ.Q, the occurrences of P , Pi and Q are said

to be guarded ; the occurrences of Q are also said to be time-guarded. In the
processes b?(x).P cQ and [w1 . . . wn `r x]P the variable x is said to be bound
in P . A variable which is not bound is said to be free. We adopt the standard
notion of α-conversion on bound variables and we identify processes up to α-
conversion. We assume there are no free variables in our networks. The absence
of free variables will be maintained as networks evolve. We write {w/x}P for the
substitution of the variable x with the message w in P . We write H〈w1, . . . , wk〉
to denote a recursive process H defined via an equation H(x1, . . . , xk) = P ,
where (i) the tuple x1, . . . , xk contains all the variables that appear free in P ,
and (ii) P contains only guarded occurrences of the process identifiers, such as
H itself. We say that recursion is time-guarded if P contains only time-guarded
occurrences of the process identifiers.

We report some notational conventions. We write
∏

i∈I Mi to mean the par-
allel composition of all Mi, for i ∈ I. We identify

∏
i∈I Mi = 0 if I = ∅. The

3

Table 2 LTS - Transmissions, internal actions and time passing

(Snd)
−

m[!〈w〉.P]ν
m!wBν−−−−−−→ m[P]ν

(Rcv)
m ∈ ν

n[b?(x).P cQ]ν
m?w−−−−→ n[{w/x}P]ν

(RcvEnb)
m /∈ nds (M)

M
m?w−−−−→ M

(RcvPar)
M

m?w−−−−→ M ′ N
m?w−−−−→ N ′

M | N
m?w−−−−→ M ′ | N ′

(Bcast)
M

m!wBν−−−−−−→ M ′ N
m?w−−−−→ N ′ µ := ν\nds (N)

M | N
m!wBµ−−−−−−→ M ′ | N ′

(Tau)
h ∈ I

m[
¨ P

i∈I τ.Pi

˝
Q]ν

τ−−→ m[Ph]
ν (TauPar)

M
τ−−→ M ′

M | N
τ−−→ M ′ | N

(σ-nil)
−

n[nil]ν
σ−−→ n[nil]ν

(Sleep)
−

n[σ.P]ν
σ−−→ n[P]ν

(σ-Rcv)
−

n[b?(x).P cQ]ν
σ−−→ n[Q]ν

(σ-Sum)
−

m[
¨ P

i∈I τ.Pi

˝
Q]ν

σ−−→ m[Q]ν

(σ-Par)
M

σ−−→ M ′ N
σ−−→ N ′

M | N
σ−−→ M ′ | N ′ (σ-0)

−
0

σ−−→ 0

process [w1 = w2]P is an abbreviation for [w1 = w2]P ; nil. Similarly, we will
write [w1 . . . wn `r x]P to mean [w1 . . . wn `r x]P ; nil.

In the sequel, we will make use of a standard notion of structural congruence
to abstract over processes that differ for minor syntactic differences.

Definition 1. Structural congruence over networks, written ≡, is defined as
the smallest equivalence relation, preserved by parallel composition, which is a
commutative monoid with respect to parallel composition and internal choice,
and for which n[H〈w̃〉]ν ≡ n[{w̃/̃x}P]ν , if H(x̃) = P .

Here, we provide some definitions that will be useful in the remainder of the
paper. Given a network M , nds (M) returns the node names of M . More formally,
nds (0) = ∅, nds (n[P]ν) = {n} and nds (M1 | M2) = nds (M1) ∪ nds (M2). For
m ∈ nds (M), the function ngh(m,M) returns the set of the neighbours of m
in M . Thus, if M ≡ m[P]ν | N then ngh(m,M) = ν. We write Env (M) to
mean all the nodes of the environment reachable by the network M . Formally,
Env (M) = ∪m∈nds(M)ngh(m,M) \ nds (M).

The syntax provided in Table 1 allows us to derive networks which are some-
how ill-formed. The following definition identifies well-formed networks.

Definition 2 (Well-formedness). M is said to be well-formed if (i) M ≡ N |
m1[P1]

ν1 | m2[P2]
ν2 implies m1 6= m2; (ii) M ≡ N | m1[P1]

ν1 | m2[P2]
ν2 , with

m1 ∈ ν2, implies m2 ∈ ν1; (iii) for all m,n ∈ nds (M) there are m1, . . . ,mk ∈
nds (M), such that m=m1, n=mk, mi ∈ ngh(mi+1,M), for 1 ≤ i ≤ k−1.

In Table 2, we provide a labelled transition system (LTS) for aTCWS in the
SOS style of Plotkin. Intuitively, the computation proceeds in lock-steps: between

4

Table 3 LTS - Matching, recursion and deduction

(Then)
n[P]ν

λ−−→ n[P ′]ν

n[[w = w]P ; Q]ν
λ−−→ n[P ′]ν

(Else)
n[Q]ν

λ−−→ n[Q′]ν w1 6= w2

n[[w1 = w2]P ; Q]ν
λ−−→ n[Q′]ν

(Rec)
n[{w̃/̃x}P]ν

λ−−→ n[P ′]ν H(x̃)
def
= P

n[H〈w̃〉]ν λ−−→ n[P ′]ν

(DT)
n[{w/x}P]ν

λ−−→ n[R]ν w1. . .wn `r w

n[[w1 . . . wn `r x]P ; Q]ν
λ−−→ n[R]ν

(DF)
n[Q]ν

λ−−→ n[R]ν 6 ∃ w. w1. . .wn `r w

n[[w1. . .wn `r x]P ; Q]ν
λ−−→ n[R]ν

every global synchronisation all nodes proceeds asynchronously by performing
actions with no duration, which represent either broadcast or input or internal
actions. Communication proceeds even if there are no listeners: Transmission is a
non-blocking action. Moreover, communication is lossy as some receivers within
the range of the transmitter might not receive the message. This may be due to
several reasons such as signal interferences or the presence of obstacles.

The metavariable λ ranges over the set of labels {τ, σ,m!wBν, m?w} denoting
internal action, time passing, broadcasting and reception. Let us comment on the
transition rules of Table 2. In rule (Snd) a sender m dispatches a message w to its
neighbours ν, and then continues as P . In rule (Rcv) a receiver n gets a message
w coming from a neighbour node m, and then evolves into process P , where all
the occurrences of the variable x are replaced with w. If no message is received in
the current time slot, a timeout fires and the node n will continue with process Q,
according to the rule (σ-Rcv). The rule (RcvPar) models the composition of two
networks receiving the same message from the same transmitter. Rule (RcvEnb)

says that every node can synchronise with an external transmitter m. Notice
that a node n[b?(x).P cQ]ν might execute rule (RcvEnb) instead of rule (Rcv).
This is because a potential receiver may miss a message for several reasons
(internal misbehaving, interferences, weak radio signal, etc); in this manner we
model message loss. Rule (Bcast) models the propagation of messages on the
broadcast channel. Note that this rule looses track of the neighbours of m that
are in N . Thus, in the label m!wBν the set ν always contains the neighbours
of m which can receive the message w. The remaining rules are straightforward.
Rules (Bcast) and (TauPar) have their symmetric counterparts. Table 3 reports
the standard rules for nodes containing matching, recursion or deduction.

Below, we report a number of basic properties of our LTS.
Proposition 1. Let M , M1 and M2 be well-formed networks.

1. m 6∈ nds (M) if and only if M
m?w−−−−→ N , for some network N .

2. M1 | M2
m?w−−−−→ N if and only if there are N1 and N2 such that M1

m?w−−−−→
N1, M2

m?w−−−−→ N2 with N = N1 | N2.

3. If M
m!wBµ−−−−−−→ M ′ then M ≡ m[!〈w〉.P]ν | N , for some m, ν, P and N

such that m[!〈w〉.P]ν
m!wBν−−−−−−→ m[P]ν , N

m?w−−−−→ N ′, M ′ ≡ m[P]ν | N ′ and
µ = ν \ nds (N).

5

4. If M
τ−−→ M ′ then M ≡ m[

⌊ ∑
i∈I τ.Pi

⌋
Q]ν | N , for some m, ν, Pi, Q and

N such that m[
⌊ ∑

i∈I τ.Pi

⌋
Q]ν

τ−−→ m[Ph]
ν , for some h ∈ I, and M ′ ≡

m[Ph]
ν | N .

5. M1 | M2
σ−−→ N if and only if there are N1 and N2 such that M1

σ−−→ N1,
M2

σ−−→ N2 and N = N1 | N2.

Proposition 2. Let M be well-formed. If M
λ−−→ M ′ then M ′ is well-formed.

Based on the LTS of Section 2, we define a standard notion of timed labelled
similarity for aTCWS. We distinguish between the transmissions which may be
observed and those which may not be observed by the environment. We extend
the set of rules of Table 2 with the following two rules:

(Shh)
M

m!wB∅−−−−−−→ M ′

M
τ−−→ M ′

(Obs)
M

m!wBν−−−−−−→ M ′ µ ⊆ ν µ 6= ∅
M

!wBµ−−−−−→ M ′

Rule (Shh) models transmissions that cannot be observed because none of the
potential receivers is in the environment. Rule (Obs) models transmissions that
can be received (and hence observed) by those nodes of the environment con-
tained in ν. Notice that the name of the transmitter is removed from the label.
This is motivated by the fact that nodes may refuse to reveal their identities, e.g.
for security reasons or limited sensory capabilities in perceiving these identities.

In the sequel, the metavariable α will range over the following actions: τ ,
σ, !wBν and m?w. We adopt the standard notation for weak transitions: the
relation =⇒ denotes the reflexive and transitive closure of

τ−−→; the relation α==⇒
denotes =⇒ α−−→ =⇒; the relation α̂==⇒ denotes =⇒ if α = τ and α==⇒ otherwise.

Definition 3 (Similarity). A relation R over well-formed networks is a sim-
ulation if M R N and M

α−−→ M ′ imply there is N ′ such that N
α̂==⇒ N ′ and

M ′ R N ′. We write M . N , if there is a simulation R such that M R N .

Our notion of of similarity between networks is a pre-congruences, as it is pre-
served by parallel composition.

Theorem 1. Let M and N be two well-formed networks such that M . N .
Then M | O . N | O for all O such that M | O and N | O are well-formed.

3 A tGNDC schema for Wireless Networks

Gorrieri and Martinelli [5] have proposed a general schema for the definition of
timed security properties, called timed Generalized Non-Deducibility on Compo-
sitions (tGNDC). Basically, a system M is tGNDC ρ(M) if for any attacker A

M
∣∣ A . ρ(M)

i.e. the composed system M | A satisfies the abstraction ρ(M).

6

A wireless protocol involves a set of nodes which may be potentially under
attack, depending on the proximity to the attacker. This means that, in general,
the attacker of a protocol M is a distinct network A of possibly colluding nodes.
For the sake of compositionality, we assume that each node of the protocol is
attacked by exactly one node of A.

Definition 4. We say that A is a set of attacking nodes for the network M if
and only if |A| = nds (M) and A ∩ (nds (M) ∪ Env (M)) = ∅.

During the execution of the protocol an attacker may increase its initial knowl-
edge by grasping messages sent by the parties, according to Dolev-Yao constrains.
The knowledge of a network is expressed by the set of messages that the net-
work can manipulate. Thus, we write msg(M) (resp. msg(P)) to denote the set
of the messages appearing in the network M (resp. in the process P). To ensure
that attackers cannot prevent the passage of time, in the following definition we
denote Prcwt the set of processes in which summations are finite-indexed and
recursive definitions are time-guarded.

Definition 5 (Attacker). Let M be a network, with nds (M) ={m1, ...,mk}.
Let A = {a1, . . . , ak} be a set of attacking nodes for M . We define the set of
attackers of M with initial knowledge φ0 ⊆ Msg as:

Aφ0
A/M

def=
{ k∏

i=1

ai[Qi]
µi : Qi ∈ Prcwt, msg(Qi) ⊆ D(φ0), µi=(A \ ai) ∪mi

}
.

Sometimes, for verification reasons, we will be interested in observing part
of the protocol M under examination. For this purpose, we assume that the
environment contains a fresh node obs /∈ nds (M) ∪ Env (M) ∪ A, that we call
the ‘observer’, unknown to the attacker. For convenience, the observer cannot
transmit: it can only receive messages.

Definition 6. Let M=
∏k

i=1 mi[Pi]
νi . Given a set A={a1, . . . , ak} of attacking

nodes for M and fixed a set O ⊆ nds (M) of nodes to be observed, we define:

MA
O

def=
k∏

i=1

mi[Pi]
ν′i where ν′i

def=
{

(νi ∩ nds (M)) ∪ ai ∪ obs if mi ∈ O
(νi ∩ nds (M)) ∪ ai otherwise.

This definition expresses that (i) every node mi of the protocols has a dedicated
attacker located at ai, (ii) network and attacker are considered in isolation,
without any external interference, (iii) only obs can observe the behaviour of
nodes in O, (iv) node obs does not interfere with the protocol as it cannot
transmit, (v) the behaviour of the nodes in nds (M) \ O is not observable.

We can now formalise the tGNDC family properties as follows.

Definition 7 (tGNDC for wireless networks). Given a network M , an ini-
tial knowledge φ0, a set O ⊆ nds (M) of nodes under observation and an abstrac-
tion ρ(M), representing a security property for M , we write M ∈ tGNDC ρ(M)

φ0,O

if and only if for all sets A of attacking nodes for M and for every A ∈ Aφ0
A/M

it holds that MA
O

∣∣ A . ρ(M).

7

It should be noticed that when showing that a system M is tGNDC ρ(M)
φ0,O , the

universal quantification on attackers required by the definition makes the proof
quite involved. Thus, we look for a sufficient condition which does not make use
of the universal quantification. For this purpose, we rely on a timed notion of
term stability [5]. Intuitively, a network M is said to be time-dependent stable if
the attacker cannot increase its knowledge in a indefinite way when M runs in
the space of a time slot. Thus, we can predict how the knowledge of the attacker
evolves at each time slot. First, we need a formalisation of computation. For
Λ=α1 . . . αn, we write Λ==⇒ to denote =⇒ α1−−−→ =⇒ ... =⇒ αn−−−→ =⇒. In order to
count how many time slots embraces an execution trace Λ, we define #σ(Λ) to
be the number of occurrences of σ-actions in Λ.

Definition 8 (Time-dependent stability). A network M is said to be time-
dependent stable with respect to a sequence of knowledge {φj}j≥0 if whenever

MA
nds(M)

∣∣A Λ==⇒ M ′
∣∣A′, where A is a set of attacking nodes for M , #σ(Λ) = j,

A ∈ Aφ0
A/M and nds (M ′) = nds (M), then msg(A′) ⊆ D(φj).

The set of messages φj expresses the knowledge of the attacker at the end of
the j-th time slot. Time-dependent stability is the crucial notion that allows us
to introduce the notion of most general attacker. Intuitively, given a sequence
of knowledge {φj}j≥0 and a network M , with P = nds (M), we pick a set A =
{a1, . . . , ak} of attacking nodes for M and we define the top attacker Top

φj

A/P
as the network which at (the beginning of) the j-th time slot is aware of the
knowledge (derivable) from φj .

Definition 9 (Top Attacker). Let M be a network with P=nds (M) =
⋃k

i=1 mi.
Let A = {a1, . . . , ak} be a set of attacking nodes for M , and {φj}j≥0 a sequence
of knowledge. We define:

Top
φj

A/P
def=

∏k
i=1 ai[Tφj

]mi where Tφj

def=
⌊ ∑

w∈D(φj)
τ.!〈w〉.Tφj

⌋
Tφj+1 .

Basically, from j-th time slot onwards, Top
φj

A/P can replay any message in D(φj)
to the network under attack. Moreover, every attacking node ai can send mes-
sages to the corresponding node mi, but, unlike the attackers of Definition 5, it
does not need to communicate with the other nodes in A as it already owns the
full knowledge of the system at time j.

Top attackers are strong enough to guarantee tGNDC.
Theorem 2 (Criterion for tGNDC). Let M be time-dependent stable with
respect to a sequence {φj}j≥0, A be a set of attacking nodes for M and O ⊆
nds (M) = P. Then MA

O
∣∣ Topφ0

A/P . N implies M ∈ tGNDCN
φ0,O.

Top attackers can be employed to reason in a compositional manner.
Theorem 3 (Compositionality). Let M = M1 | . . . | Mk be time-dependent
stable with respect to a sequence of knowledge {φj}j≥0. Let A1, . . . ,Ak be disjoint
sets of attacking nodes for M1, . . . ,Mk, respectively. Let Oi ⊆ nds (Mi) = Pi,
for 1 ≤ i ≤ k. Then, (Mi)Ai

Oi

∣∣ Topφ0
Ai/Pi

. Ni, for 1 ≤ i ≤ k, implies M ∈
tGNDC N1|...|Nk

φ0,O1∪...∪Ok
.

8

4 A security analysis of LiSP

LiSP [13] is a well-known key management protocol for wireless sensor net-
works. A LiSP network consists of a Key Server (ks) and a set of sensor nodes
m1, . . . ,mk. The protocol assumes a one way function F , pre-loaded in every
node of the system, and employs two different key families: (i) a set of temporal
keys k0, . . . , kn, computed by ks by means of F , and used by all nodes to en-
crypt/decrypt data packets; (ii) a set of master keys kks:mj , one for each node
mj , for unicast communications between mj and bs. The transmission time is
split into time intervals, each of them is ∆refresh time units long. Thus, each
temporal key is tied to a time interval and renewed every ∆refresh time units.
At a time interval i, the temporal key ki is shared by all sensor nodes and it is
used for data encryption. Key renewal relies on loose node time synchronisation
among nodes. Each node stores a subset of temporal keys in a buffer of a fixed
size, say s with s << n.

The LiSP protocol consists of the following phases.

Initial Setup. At the beginning, ks randomly chooses a key kn and computes
a sequence of temporal keys k0, . . . , kn, by using the function F , as ki :=
F (ki+1). Then, ks waits for reconfiguration requests from nodes. More pre-
cisely, when ks receives a reconfiguration request from a node mj , at time
interval i, it unicasts the packet InitKey:

ks → mj : enc(kks:mj , (s | ks+i | ∆refresh)) | hash(s | ks+i | ∆refresh) .

The operator enc(k, p) represents the encryption of p by using the key of k,
while hash(p) generates a message digest for p by means of a cryptographic
hash function used to check the integrity of the packet p. When mj receives
the InitKey packet, it computes the sequence of keys ks+i−1, ks+i−2, . . . , ki

by several applications of the function F to ks+i. Then, it activates ki for
data encryption and it stores the remaining keys in its local buffer; finally
it sets up a ReKeyingTimer to expires after ∆refresh/2 time units (this value
applies only for the first rekeying).

Re-Keying. At each time interval i, with i ≤ n, ks employs the active encryp-
tion key ki to encode the key ks+i. The resulting packet is broadcast as an
UpdateKey packet:

ks → ∗ : enc(ki, ks+i) .

When a node receives an UpdateKey packet, it tries to authenticate the key
received in the packet; if the node succeeds in the authentication then it
recovers all keys that have been possibly lost and updates its key buffer.
When the time interval i elapses, every node discards ki, activates the key
ki+1 for data encryption, and sets up the ReKeyingTimer to expire after
∆refresh time units for future key switching (after the first time, switching
happens every ∆refresh time units).

Authentication and Recovery of Lost Keys. The one-way function F is used to
authenticate and recover lost keys. If l is the number of stored keys in a buffer

9

of size s, with l ≤ s, then s−l represents the number of keys which have been
lost by the node. When a sensor node receives an UpdateKey packet carrying
a new key k, it calculates F s−l(k) by applying s− l times the function F . If
the result matches with the last received temporal key, then the node stores
k in its buffer and recovers all lost keys.

Reconfiguration. When a node mj joins the network or misses more than s tem-
poral keys, then its buffer is empty. Thus, it sends a RequestKey packet in
order to request the current configuration:

mj → ks : RequestKey | mj .

Upon reception, node ks performs authentication of mj and, if successful, it
sends the current configuration via an InitKey packet.

Encoding In Table 4, we provide a specification in aTCWS of the entire LiSP
protocol. We introduce some slight simplifications with respect to the original
protocol. We assume that (i) the temporal keys k0, . . . , kn have already been
computed by ks, (ii) both the buffer size s and the refresh interval ∆refresh are
known by each node. Thus, the InitKey packet can be simplified as follows:

ks → mj : enc(kks:mj , ks+i) | hash(ks+i) .

Moreover, we assume that every σ-action models the passage of ∆refresh/2 time
units. Therefore, every two σ-actions the key server broadcasts the new temporal
key encrypted with the key tied to that specific interval. Finally, we do not model
data encryption.

When giving our encoding in aTCWS we will require some new deduction rules
to model an hash function and encryption/decryption of messages:

(hash)
w

hash(w)
(enc)

w1 w2

enc(w1, w2)
(dec)

w1 w2

dec(w1, w2)
.

The protocol executed by the key server is expressed by the following two
threads: a key distributor Di and a listener Li waiting for reconfiguration re-
quests from the sensor nodes, with i being the current time interval. Every
∆refresh time units (that is, every two σ-actions) Di broadcasts the new tempo-
ral key ks+i encrypted with the key ki of the current time interval i. The process
Li replies to reconfiguration requests by sending an initialisation packet.

At the beginning of the protocol, a sensor node runs the process Z, which
broadcasts a request packet to ks, waits for a reconfiguration packet q, and then
checks authenticity by verifying the hash code. If the verification is successful
then the node starts the broadcasting new keys phase. This phase is formalised
by the process R(kc, kl, l), where kc is the current temporal key, kl is the last
authenticated temporal key, and the integer l counts the number of keys that
are actually stored in the buffer.

To simplify the exposition, we formalise the key server as a pair of nodes: a
key disposer kd, which executes Di, and a listener kl, which executes Li. Thus,

10

Table 4 The LiSP protocol
Key Server:

D0
def
= σ.D1 synchronise and move to D1

Di
def
= [ki ks+i `enc ti] for i ≥ 1, encrypt ks+i with ki

[UpdateKey ti `pair ui] build the UpdateKey packet ui

!〈ui〉.σ.σ.Di+1 broadcast ri, and move to Di+1

Li
def
= b?(r).Ii+1cσ.Li+1 wait for request packets

Ii
def
= [r `fst r1]I

1
i ; σ.σ.Li extract first component

I1
i

def
= [r1 = RequestKey]I2

i ; σ.σ.Li check if r1 is a RequestKey

I2
i

def
= [r `snd m] extract node name

[kks:m ks+i `enc wi] encrypt ks+i with kks:m

[ks+i `hash hi] calculate hash code for ks+i

[wi hi `pair ri] build a pair ri,
[InitKey ri `pair qi] build a InitKey packet qi,
σ.!〈qi〉.σ.Li broadcast qi, move to Li

Receiver at node m:

Z
def
= [RequestKey m `pair r] send a RequestKey packet

!〈r〉.σ.b?(q).T cZ wait for a reconfig. packet

T
def
= [q `fst q′]T 1; σ.Z extract fst component of q

T 1 def
= [q′ = InitKey]T 2; σ.Z check if q is a InitKey packet

T 2 def
= [q `snd q′′] extract snd component of q

[q′′ `fst w]T 3; σ.Z extract fst component of q′′

T 3 def
= [q′′ `snd h] extract snd component of q′′

[kks:m w `dec k]T 3; σ.Z extract the key

T 4 def
= [k `hash h′][h = h′]T 5; σ.Z verify hash codes

T 5 def
= σ.σ.R〈F s−1(k), k, s−1〉 synchronise and move to R

R(kc, kl, l)
def
= b?(u).EcF wait for incoming packets

E
def
= [u `fst u′]E1; σ.F extract fst component of u

E1 def
= [u′ = UpdateKey]E2; σ.F check UpdateKey packet

E2 def
= [u `snd u′′] extract snd component of u

[kc u′′ `dec k]E3; σ.F decrypt u′′ by using kc

E3 def
= [F s−l(k) = kl]E

4; σ.F authenticate k

E4 def
= σ.σ.R〈F s−1(k), k, s−1〉 synchronise and move to R

F
def
= [l = 0]Z; σ.R〈F l−1(kl), kl, l−1〉 check if buffer key is empty

the LiSP protocol, in its initial configuration, can be represented as:

LiSP def=
∏
j∈J

mj[σ.Z]νmj | ks[σ.D0]
νks | kl[σ.L0]

νkl

where for each node mj , with j ∈ J , mj ∈ νkd ∩ νkl and {kd,kl} ⊆ νmj
.

11

Security Analysis In LiSP, a node should authenticate only keys sent by the
key server in the previous ∆refresh time units. Otherwise, a node needing a re-
configuration would authenticate an obsolete temporal key and it would not be
synchronised with the rest of the network. Here, we show that key authentication
may take longer than ∆refresh time units, as a consequence of an attack.

For our analysis, without loss of generality, it suffices to focus on a part of the
protocol composed by the kl node of the key server and a single sensor node m.
Moreover, in order to make observable a successful reconfiguration, we replace
the process T 4 of Table 4 with the process

T 4′ def= σ.σ.[auth k `pair a]!〈a〉.R〈F s−1(k), k, s−1〉 .

Thus, the part of the protocol under examination can be defined as follows:

LiSP′ def= m[σ.Z ′]νm | kl[σ.L0]
νkl .

Our freshness requirement on authenticated keys can be expressed by the fol-
lowing abstraction of the protocol:

ρ(LiSP′) def= m[σ.Ẑ0]
obs | kl[σ.L̂0]

obs

where

– Ẑi
def= !〈r〉.σ.

⌊
τ.σ.σ.!〈authi+1〉.R(ki+1, ks+i, s− 1)

⌋
Ẑi+1,

with r = pair(RequestKey, m) and authi = pair(auth, ks+i) as in Table 4;
– L̂i

def=
⌊
τ.σ.!〈qi+1〉.σ.L̂i+1

⌋
σ.L̂i+1, and qi defined as in Table 4:

qi = pair(InitKey ri) with ri = pair(enc(kks:m, ks+i),hash(ks+i)).

It is easy to see that ρ(LiSP′) is a correct abstraction of key authentication
within the protocol, as the action authi occurs exactly ∆refresh time units (that
is, two σ-actions) after the disclosure of key ks+i through packet qi.

Proposition 3. ρ(LiSP′) Λ==⇒ !qiBobs−−−−−−−→ Ω==⇒ !authiBobs−−−−−−−−−→ implies #σ(Ω) = 2.

In order to show that LiSP′ satisfies our security analysis, we should prove that

LiSP′ ∈ tGNDC ρ(LiSP′)
φ0,O

for O = nds
(
LiSP′

)
and initial knowledge φ0 = ∅. However, this is not the case.

Theorem 4 (Replay attack to LiSP).

LiSP′ 6∈ tGNDC ρ(LiSP′)
∅,{kl,m} .

Proof Let us define the set of attacking nodes A = {a, b} for LiSP′. Let
us fix the initial knowledge of the attacker φ0 = ∅. We set νa = {m, b} and
νb = {kl, a}, and we assume that O = {kl,m}. We give an intuition of the
replay attack in Table 5. Basically, an attacker may prevent the node m to
receive the InitKey packet within ∆refresh time units. As a consequence, m may

12

Table 5 Replay attack to LiSP

m −→ kl : r m sends a RequestKey and kl correctly receives the packet
σ−−→ the system moves to the next time slot

kl −→ m : q1 kl replies with an InitKey which is lost by m and grasped by b
σ−−→ the system moves to the next time slot

b → a : q1 b sends q1 to a
m → kl : r m sends a new RequestKey which gets lost

σ−−→ the system moves to the next time slot
a → m : q1 a replays q1 to m

σ−−→ σ−−→ after ∆refresh time units
m → ∗ : auth1 m authenticates q1 and signals the end of the protocol

complete the protocol only after 2∆refresh time units (that is, four σ-actions),
so authenticating an old key. Formally, we define the attacker A ∈ Aφ0

A/{kl,m} as
A = a[σ.σ.σ.X]νa

∣∣ b[σ.σ.X]νb where X = b?(x).σ.!〈x〉.nilcnil. We then consider
the system (LiSP′)AO | A which admits the following execution trace:

σ . !rBobs . σ . !q1Bobs . σ . τ . !rBobs . σ . τ . σ . σ . !auth1Bobs

containing four σ-actions between the packets q1 and auth1. By Proposition 3,
this trace cannot be matched by ρ(LiSP′). So, (LiSP′)AO | A 6. ρ(LiSP′). �

4.1 LiSP with nonces

Replay attacks as those described above appears also in other key management
protocols, such as µTESLA [14] and LEAP+ [17]. These protocols have been
amended by adding nonces to guarantee freshness. We propose to do the same
in LiSP. For this purpose, we extend our inference system with a new deduction
rule to model a pseudo-random function: The application prf(m,wi) returns a
pseudo-random value wi+1 associated to a node m and the last generated value
wi. In our amended specification of LiSP, we add a nonce to the RequestKey
packet. The nonce is then included in the corresponding InitKey packet to guar-
antee the freshness of the reply. These changes affect only those processes which
model the key request at the node side and the reply at the server side. We mod-
ify these processes as shown in Table 6. The requesting nodes run the process
Zj , where j is the number associated to the current key request. At each request
j, the receiver generates a nonce nj which will be used to check the freshness
of the received key. The process L̄i, running at the key server, now includes the
received nonce in the InitKey packet. Notice that, as done before, the process T 7

j

signals a successful reconfiguration. Again, for our analysis, it suffices to analyse
the following fragment of the protocol:

LiSP′′ def= m[σ.Z1]
νm | kl[σ.L̄0]

νkl .

13

Table 6 LiSP with nonces
Key Server:

L̄i
def
= b?(r).Īi+1cσ.L̄i+1 wait for request packets

Īi
def
= [r `fst r1]Ī

1
i ; σ.σ.L̄i+1 extract first component

Ī1
i

def
= [r1 = RequestKey]Ī2

i ; σ.σ.L̄i+1 check if r1 is a RequestKey

Ī2
i

def
= [r `snd t] extract second component

[t `fst m]Ī3
i ; σ.σ.L̄i+1 extract node name

Ī3
i

def
= [t `snd n] extract nonce

[ks+i n `pair p] build a pair
[kks:m p `enc wi] encrypt p with kks:m

[ks+i `hash hi] calculate hash code for ks+i

[wi hi `pair ri] build a pair ri,
[InitKey ri `pair qi] build a InitKey packet qi,
σ.!〈qi〉.σ.L̄i+1 broadcast qi, move to L̄i+1

Receiver at node m:

Zj
def
= [m nj−1 `prf nj] build a random nonce nj

[m nj `pair t] build a pair t with name m and nonce nj

[RequestKey t `pair r] send a RequestKey packet
!〈r〉.σ.b?(q).TjcZj+1 wait for a reconfig. packet

Tj
def
= [q `fst q′]T 1

j ; σ.Zj+1 extract fst component of q

T 1
j

def
= [q′ = InitKey]T 2

j ; σ.Zj+1 check if q is a InitKey packet

T 2
j

def
= [q `snd q′′] extract snd component of q

[q′′ `fst w]T 3
j ; σ.Zj+1 extract fst component of q′′

T 3
j

def
= [q′′ `snd h] extract snd component of q′′

[kks:m w `dec p]T 4
j ; σ.Zj+1 decript w

T 4
j

def
= [p `fst k]T 5

j ; σ.Zj+1 extract the key

T 5
j

def
= [p `snd n][n = nj]T

6
j ; σ.Zj+1 verify nonces

T 6
j

def
= [k `hash h′][h = h′]T 7

j ; σ.Zj+1 verify hash codes

T 7
j

def
= σ.σ.[auth k `pair a]!〈a〉.nil reaching of synchronisation

According to Definition 8, the system LiSP′′ is time-dependent stable with re-
spect to the following sequence of knowledge:

φ0
def= ∅

φ1
def= {r1}

φi
def= φi−1 ∪ {qj} if j > 0 and i = 2j

φi
def= φi−1 ∪ {authj , rj+1} if j > 0 and i = 2j + 1

(1)

where

authj = pair(auth, ks+j)
rj = pair(RequestKey,pair(m,nj))
qj = pair(InitKey, pair(enc(kks:m,pair(ks+j , nj)), hash(ks+j))) .

14

Intuitively, φi consists of φi−1 together with the set of messages an intruder can
get by eavesdropping on a run of the protocol during the time slot i.

With the introduction of nonces, the abstraction expressing key authentica-
tion within ∆refresh time units becomes the following:

ρ(LiSP′′) def= m[σ.Ẑ ′
1]

obs | kl[σ.L̂′0]
obs

where

– Ẑ ′
i

def= [m ni−1 `prf ni][m ni `pair t][RequestKey t `pair r]!〈r〉.σ.
⌊
τ.σ.σ.!〈authi+1〉.nil

⌋
Ẑ ′

i+1

– L̂′i
def=

⌊ ∑
v∈D(φ2i+1)

τ.σ.!〈qv
i+1〉.σ.L̂′i+1

⌋
σ.L̂′i+1

with qv
i = pair(InitKey pair(enc(kks:m,pair(ks+i, v)),hash(ks+i))).

In ρ(LiSP′′) keys are authenticated after ∆refresh time units (two σ-actions).

Proposition 4. ρ(LiSP′′) Λ==⇒
!qv

i Bobs
−−−−−−−→ Ω==⇒ !authiBobs−−−−−−−−−→ M implies #σ(Ω)=2.

Now, everything is in place to prove the safety of the LiSP protocol with nonces.

Lemma 1. Given two attacking nodes a and b, for m and kl respectively, and
fixed the sequence of knowledge {φi}i≥0 as in (1), then

1. kl[σ.L̄0]
{b,obs} ∣∣ Topφ0

b/kl . kl[σ.L̂′0]
obs

2. m[σ.Z1]
{a,obs} ∣∣ Topφ0

a/m . m[σ.Ẑ ′
1]

obs .

Theorem 5 (Safety of LiSP with nonces). LiSP′′ ∈ tGNDC ρ(LiSP′′)
∅,nds(LiSP′′) .

Proof By an application of Lemma 1 and Theorem 3. �

References

1. Ballardin, F., Merro, M.: A calculus for the analysis of wireless network security
protocols. In: FAST. LCNS, vol. 6561, pp. 206–222. Springer (2010)

2. Ghassemi, F., Fokkink, W., Movaghar, A.: Equational Reasoning on Mobile Ad
Hoc Networks. Fundamentae Informaticae 105(4):375–415 (2010)

3. Godskesen, J.C.: A Calculus for Mobile Ad Hoc Networks. In: COORDINATION.
LNCS, vol. 4467, pp. 132–150. Springer (2007)

4. Godskesen, J.C., Nanz, S.: Mobility Models and Behavioural Equivalence for Wire-
less Networks. In:COORDINATION. LNCS, vol.5521, pp.106–122. Springer (2009)

5. Gorrieri, R., Martinelli, F.: A simple framework for real-time cryptographic proto-
col analysis with compositional proof rules. Sc. of Com. Prog. 50, 23–49 (2004)

6. Gorrieri, R., Martinelli, F., Petrocchi, M.: Formal models and analysis of secure
multicast in wired and wireless networks. J. Aut. Reasoning 41(3-4), 325–364 (2008)

7. Hennessy, M., Regan, T.: A Process Algebra for Timed Systems. Information and
Computation 117(2), 221–239 (1995)

8. Lanese, I., Sangiorgi, D.: An Operational Semantics for a Calculus for Wireless
Systems. Theoretical Computer Science 411, 1928–1948 (2010)

9. Merro, M.: An Observational Theory for Mobile Ad Hoc Networks (full paper).
Information and Computation 207(2), 194–208 (2009)

15

10. Merro, M., Ballardin, F., Sibilio, E.: A Timed Calculus for Wireless Systems. The-
oretical Computer Science 412(47), 6585–6611 (2011)

11. Misra, S., Woungag, I.: Guide to Wireless Ad Hoc Networks. Computer Commu-
nications and Networks, Springer (2009)

12. Nanz, S., Hankin, C.: A Framework for Security Analysis of Mobile Wireless Net-
works. Theoretical Computer Science 367(1-2), 203–227 (2006)

13. Park, T., Shin, K.G.: LiSP: A lightweight security protocol for wireless sensor
networks. ACM Trans. Embedded Comput. Syst. 3(3), 634–660 (2004)

14. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.: SPINS: Security Pro-
tocols for Sensor Networks. Wireless Networks 8(5), 521–534 (2002)

15. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A Process Calculus for Mobile Ad
Hoc Networks. In: COORDINATION. LNCS, vol. 5052, pp. 296–314. (2008)

16. Sundararaman, B., Buy, U., Kshemkalyani, A.D.: Clock synchronization for wire-
less sensor networks: a survey. Ad Hoc Networks 3(3), 281–323 (2005)

17. Zhu, S., Setia, S., Jajodia, S.: Leap+: Efficient security mechanisms for large-scale
distributed sensor networks. ACM Trans. on Sensor Networks 2(4), 500–528 (2006)

A Appendix

A.1 Proofs of Section 2
Proof of Proposition 1 We single out each item of the proposition.
Item 1. The forward direction is an instance of rule (RcvEnb), the converse is
proved by a straightforward rule induction.
Item 2. The forward direction follows by noticing that only rules (RcvEnb) and
(RcvPar) are suitable for deriving the action m?w from M1 | M2; in the case of
rule (RcvEnb) we just apply rule (RcvEnb) both on M1 and on M2, in the case of
rule (RcvPar) the premises require both M1 and M2 to perform an action m?w
and to move to N1 and N2 with N = N1 | N2. The converse is an instance of
rule (σ-Par).
Item 3. The result is a consequence of the combination of rules (Snd) and (Bcast)

and it is proved by a straightforward rule induction.
Item 4. Again, the proof is done by a straightforward rule induction.
Item 5. The forward direction follows by noticing that the only rule for deriving
the action σ from M1 | M2 is (σ-Par) which, in the premises, requires both M1

and M2 to perform an action σ. The converse is an instance of rule (σ-Par). �

Proof of Proposition 2 The property is a consequence of the fact that the
topology of networks is static. �

A.2 Time properties

Our calculus aTCWS enjoys some desirable time properties. Here, we outline the
most significant ones. Proposition 5 formalises the deterministic nature of time
passing: a network can reach at most one new state by executing a σ-action.

Proposition 5 (Time Determinism). If M is a well-formed network with
M

σ−−→ M ′ and M
σ−−→ M ′′, then M ′ and M ′′ are syntactically the same.

Proof By induction on the length of the proof of M
σ−−→ M ′. �

16

Patience guarantees that a process will wait indefinitely until it can commu-
nicate [7]. In our setting, this means that

Proposition 6 (Patience). Let M ≡
∏

i∈I mi[Pi]
νi be a well-formed network,

such that for all i ∈ I it holds that mi[Pi]
νi 6≡ mi[!〈w〉.Qi]

νi , then there is a
network N such that M

σ−−→ N .
Proof By induction on the structure of M . �

The maximal progress property says that processes communicate as soon as
a possibility of communication arises [7]. In other words, the passage of time
cannot block transmissions.

Proposition 7 (Maximal Progress). Let M be a well-formed network. If
M ≡ m[!〈w〉.P]ν | N then M

σ−−→ M ′ for no network M ′.

Proof By inspection on the rules that can be used to derive M
σ−−→ M ′,

because sender nodes cannot perform σ-actions. �

Basically, time cannot pass unless the specification itself explicitly asks for it.
This approach provides a lot of power to the specification, which can precisely
handle the flowing of time. Such an extra expressive power leads, as a drawback,
to the possibility of abuses. For instance, infinite loops of broadcast actions
or internal computations prevent time passing. The well-timedness (or finite
variability) property puts a limitation on the number of instantaneous actions
that can fire between two contiguous σ-actions. Intuitively, well-timedness says
that time passing never stops: Only a finite number of instantaneous actions can
fire between two subsequent σ-actions.

Definition 10 (Well-Timedness). A network M satisfies well-timedness if

there exists an upper bound k ∈ N such that whenever M
λ1−−−→ · · · λh−−−→ where λj

is not directly derived by an application of (RcvEnb) and λj 6= σ (for 1 ≤ j ≤ h)
then k ≤ h.

The above definition takes into account only transitions denoting an active in-
volvement of the network, that is why we have left out those transitions which
can be derived by applying rule (RcvEnb). However, as aTCWS is basically a speci-
fication language, there is no harm in allowing specifications which do not respect
well-timedness. Of course, when using our language to give a protocol implemen-
tation, then one must verify that the implementation satisfies well-timedness: No
real-world service (even a attackers) can stop the passage of time.

The following proposition provides a criterion to check well-timedness. We
recall that recursion is time-guarded if P contains only time-guarded occurrences
of the process identifiers. We write Prcwt for the set of processes in which sum-
mations are finite-indexed and recursive definitions are time-guarded.

Proposition 8. Let M =
∏

i∈I mi[Pi]
νi be a network. If for all i ∈ I we have

Pi ∈ Prcwt then M satisfies well-timedness.
Proof First notice that without an application of (RcvEnb) the network M
can perform only a finite number of transitions. Then proceed by induction on
the structure of M . �

17

Remark 1. By Proposition 8, the requirement Qi ∈ Prcwt in the definition of
Aφ0
A/P guarantees that our attackers respects well-timedness and hence cannot

prevent the passage of time.

Remark 2. Notice that the top attacker does not satisfy well-timedness (see Def-
inition 10), as the process identifiers involved in the recursive definition are not
time-guarded. However, this is not a problem as we are looking for a sufficient
condition which ensures tGNDC with respect to well-timed attackers.

A.3 Proofs of Section 2

Proposition 9. If M . N then nds (N) ⊆ nds (M).
Proof By contradiction. Assume there exists a node m such that m ∈ nds (N)

and m /∈ nds (M). Then, by rule (RcvEnb), M
m?w−−−−→ M . Since M . N there

must be N ′ such that N
m?w====⇒ N ′ with M ′ . N ′. However, since m ∈ nds (N),

by inspection on the transition rules, there is no way to deduce a weak transition
of the form N

m?w====⇒ N ′. �

Proof of Theorem 1 We prove that the relation

R =
{ (

M | O, N | O
)

s.t. M . N and M | O, N | O are well-formed
}

is a simulation. We proceed by case analysis on why M | O
α−−→ Z. The inter-

esting cases are when the transition is due to an interaction between M and O.
The remaining cases are more elementary.

Let M | O
!wBν−−−−−→ M ′ | O′ (ν 6= ∅) by an application of rule (Obs), because

M | O m!wBη−−−−−−→ M ′ | O′, by an application of rule (Bcast) with ν ⊆ η. There are
two possible ways to derive this transition, depending on where the sender node
is located in the network.

1. M
m!wBµ−−−−−−→ M ′ and O

m?w−−−−→ O′, with m ∈ nds (M) and η = µ\nds (O). By

an application of rule (Obs) we obtain that M
!wBµ−−−−−→ M ′. Since M . N ,

it follows that there is N ′ such that N
!wBµ

=====⇒ N ′ with M ′ . N ′. This

implies that there exists h ∈ nds (N) such that N
h!wBµ′

======⇒ N ′ with µ ⊆ µ′.
Moreover:
(a) h /∈ nds (O), as N | O is well-formed and it cannot contain two nodes

with the same name;
(b) µ′ ⊆ ngh(h, N), by Proposition 1(3);
(c) If k ∈ µ′ ∩ nds (O) then h ∈ ngh(k, O), as the neighbouring relation is

symmetric.

Now, in case O
m?w−−−−→ O′ exclusively by rule (RcvEnb) then also O

h?w−−−−→ O′

by rule (RcvEnb) and item (a). In case the derivation of O
m?w−−−−→ O′ involves

some applications of the rule (Rcv) then the concerned nodes have the form

18

k[b?(x).P cQ]π with k ∈ µ, hence h ∈ ngh(k, O) by item (c), and so we can

derive O
h?w−−−−→ O′ by applying the rules (RcvEnb) and (RcvPar).

Thus we have O
h?w−−−−→ O′ in any case. Then by an application of rule (Bcast)

and several applications of rule (TauPar) we have N | O
h!wBη′

======⇒ N ′ | O′

with η′ = µ′ \ nds (O). Now, since µ ⊆ µ′ we have µ \ nds (O) ⊆ µ′ \ nds (O)
hence ν ⊆ η ⊆ η′. As ν 6= ∅, by an application of rule (Obs) and several
applications of rule (TauPar) it follows that N | O

!wBν=====⇒ N ′ | O′. Since
M ′ . N ′, we obtain (M ′ | O′, N ′ | O′) ∈ R.

2. M
m?w−−−−→ M ′ and O

m!wBµ−−−−−−→ O′, with m ∈ nds (O) and η = µ \ nds (M).
Since M . N , it follows that there is N ′ such that N

m?w====⇒ N ′ with
M ′ . N ′. By an application of rule (Bcast) and several applications of rule

(TauPar) we have N | O
m!wBη′

=======⇒ N ′ | O′, with η′ = µ \ nds (N). Since
M . N , by Proposition 9 we have η ⊆ η′. Thus ν ⊆ η′ and by an application
of rule (Obs) and several applications of rule (TauPar) it follows that N |
O

!wBν=====⇒ N ′ | O′. Since M ′ . N ′, we obtain (M ′ | O′, N ′ | O′) ∈ R.

Let M | O
τ−−→ M ′ | O′ by an application of rule (Shh) because M |

O
m!wB∅−−−−−−→ M ′ | O′. This case is similar to the previous one.

Let M | O
m?w−−−−→ M ′ | O′ by an application of rule (RcvPar) because

M
m?w−−−−→ M ′ and O

m?w−−−−→ O′. Since M . N , it follows that there is N ′

such that N
m?w====⇒ N ′ with M ′ . N ′. By an application of rule (RcvPar)

and several applications of rule (TauPar) we have N | O
m?w====⇒ N ′ | O′. Since

M ′ . N ′, we obtain (M ′ | O′, N ′ | O′) ∈ R.
Let M | O σ−−→ M ′ | O′ by an application of rule (σ-Par) because M

σ−−→ M ′

and O
σ−−→ O′. This case is similar to the previous one. �

A.4 Proofs of Section 3

We define msg(P) as msg∅(P), where msgS : Prc → 2Msg , for S ⊆ PrcIds, is
defined in Table 7 along the lines of [5]. Intuitively, msgS is a function that visits
recursively the sub-terms of P and the body of the recursive definitions referred
by P . The index S is used to guarantee that the unwinding of every recursive
definition is performed exactly once. A generalisation of msg() to networks is
straightforward.

In the sequel, we will use the symbol] to denote disjoint union. Moreover, to
ease the notation, whenever O = nds (M) we will write MA instead of MA

nds(M).

Lemma 2. Let M1 | M2 be time-dependent stable with respect to a sequence of
knowledge {φj}j≥0. Let A1 and A2 be disjoint sets of attacking nodes for M1

19

Table 7 Function msgS

msgS(nil)
def
= ∅

msgS(!〈u〉.P)
def
= get(u) ∪msgS(P)

msgS(b?(x).P cQ)
def
= msgS(P) ∪msgS(Q)

msgS(
¨ P

i∈I τ.Pi

˝
Q)

def
=

S
i∈I msgS(Pi) ∪msgS(Q)

msgS(σ.P)
def
= msgS(P)

msgS([u1 = u2]P ; Q)
def
= get(u1) ∪ get(u2) ∪msgS(P) ∪msgS(Q)

msgS([u1 . . . un `r x]P ; Q)
def
=

Sn
i=1 get(ui) ∪msgS(P) ∪msgS(Q)

msgS(H〈u1 . . . ur〉)
def
=

(Sr
i=1 get(ui) ∪msgS∪{H}(P) if H(x̃)

def
= P and H 6∈SSr

i=1 get(ui) otherwise

where get : Val → 2Msg is defined as follows:

get(a)
def
= {a} (basic message)

get(x)
def
= ∅ (variable)

get(Fi(u1, . . . , uki))
def
=

(
{Fi(u1, . . . , uki)} ∪ {u1 . . . uki} if Fi(u1 . . . uki) ∈ Msg

get(u1) ∪ . . . ∪ get(uki) otherwise.

and M2, respectively. Let O1 ⊆ nds (M1) and O2 ⊆ nds (M2). Then

(M1 | M2)A1]A2
O1]O2

∣∣ Topφ0
A1]A2/nds(M) .

(M1)A1
O1

∣∣ (M2)A2
O2

∣∣ Topφ0
A1/nds(M1)

∣∣ Topφ0
A2/nds(M2)

.

Proof We first note that a straightforward consequence of Definition 9 is:

Topφ0
(A1]A2)/nds(M) = Topφ0

A1/nds(M1)
| Topφ0

A2/nds(M2)
.

Then, in order to prove the result, we just need to show that(
M1 | M2

)A1]A2

O1]O2

∣∣ Topφ0
A1]A2/nds(M) .

(
M1

)A1

O1

∣∣ (
M2

)A2

O2

∣∣ Topφ0
A1]A2/nds(M) .

To improve readability, we consider the most general case, that is O1 = nds (M1)
and O2 = nds (M2). Moreover, we assume M1 = m1[P1]

ν1 , M2 = m2[P2]
ν2 and

therefore A1 = {a1}, A2 = {a2}. The generalisation is straightforward. Then we
have:

–
(
M1 | M2

)A1]A2 = m1[P1]
ν′1 | m2[P2]

ν′2

with {a1, obs} ⊆ ν′1 ⊆ {a1,m2, obs} and {a2, obs} ⊆ ν′2 ⊆ {a2,m1, obs};
– MA1

1 = m1[P1]
ν′′1 with ν′′1 = {a1, obs};

– MA2
2 = m2[P2]

ν′′2 with ν′′2 = {a2, obs}.

20

We define P = {m1,m2} and A = {a1, a2}. We need to prove

m1[P1]
ν′1 | m2[P2]

ν′2 | Topφ0
A/P . m1[P1]

ν′′1 | m2[P2]
ν′′2 | Topφ0

A/P .

We prove that the following binary relation is a simulation:

R def=
⋃

j≥0

{ (
m1[Q1]

ν′1 | m2[Q2]
ν′2 | N , m1[Q1]

ν′′1 | m2[Q2]
ν′′2 | Top

φj

A/P
)

s.t.

m1[P1]
ν′1 | m2[P2]

ν′2 | Topφ0
A/P

Λ==⇒ m1[Q1]
ν′1 | m2[Q2]

ν′2 | N
for some Λ with #σ(Λ) = j

}
.

We consider (m1[Q1]
ν′1 | m2[Q2]

ν′2 | N , m1[Q1]
ν′′1 | m2[Q2]

ν′′2 | Top
φj

A/P) ∈ R
and we proceed by case analysis on why m1[Q1]

ν′1 | m2[Q2]
ν′2 | N α−−→ m1[Q̂1]

ν′1 |
m2[Q̂2]

ν′2 | N̂ .

α = m?w . This case is straightforward. In fact, the environment of the system
contains exclusively the node obs which cannot transmit; thus the rule (Rcv)

cannot be applied. We can consider just the rules (RcvEnb) and (RcvPar),
which do not modify the network.

α = σ. Then mi[Qi]
ν′i σ−−→ mi[Q̂i]

ν′i (for i = 1, 2) and N
σ−−→ N̂ . Now also

Top
φj

A/P
σ−−→ Top

φj+1

A/P , hence we have m1[Q1]
ν′′1 | m2[Q2]

ν′′2 | Top
φj

A/P
σ−−→

m1[Q̂1]
ν′′1 | m2[Q̂2]

ν′′2 | Top
φj+1

A/P .
α = !wBν. We observe: (i) the environment of the system contains just the node

obs and (ii) Env (N) = {m1,m2}. Thus there exists i ∈ {1, 2} such that the
transition has been derived just by rule (Obs) from the following premise

m1[Q1]
ν′1 | m2[Q2]

ν′2 | N mi!wBobs−−−−−−−−−→ m1[Q̂1]
ν′1 | m2[Q̂2]

ν′2 | N̂ .

Without loss of generality we assume i = 1, then we have m1[Q1]
ν′1

m1!wBν′1−−−−−−−−→
m1[Q̂1]

ν′1 , m2[Q2]
ν′2 m1?w−−−−−→ m2[Q̂2]

ν′2 and N
m1?w−−−−−→ N̂ . Now, to prove the

similarity, we need to simulate the m1?w-action at the node m2[Q2]
ν′′2 which

cannot actually receive packets from m1 /∈ ν′′2 . We first observe that the
message w can be eavesdropped by an attacker at the time interval j, thus
w ∈ D(φj) thanks to time-dependent stability. Then Top

φj

A/P
a2!wBm2========⇒

Top
φj

A/P . Since a2 ∈ ν′′2 we have m2[Q2]
ν′′2 a2?w−−−−−→ m2[Q̂2]

ν′′2 . Finally,

m1[Q1]
ν′′1 a2?w−−−−−→ m1[Q1]

ν′′1 by rule (RcvEnb). Thus, by applying rule (Bcast)

we obtain

m1[Q1]
ν′′1 | m2[Q2]

ν′′2 | Top
φj

A/P
a2!wB∅======⇒ m1[Q1]

ν′′1 | m2[Q̂2]
ν′′2 | Top

φj

A/P .

By rule (Shh) m1[Q1]
ν′′1 | m2[Q2]

ν′′2 | Top
φj

A/P
τ==⇒ m1[Q1]

ν′′1 | m2[Q̂2]
ν′′2 |

Top
φj

A/P . Now, m1[Q1]
ν′′1

m1!wBν′′1−−−−−−−−→ m1[Q̂1]
ν′′1 and by rule (RcvEnb) we

21

have both m2[Q̂2]
ν′′2 m1?w−−−−−→ m2[Q̂2]

ν′′2 and Top
φj

A/P
m1?w−−−−−→ Top

φj

A/P . Thus

m1[Q1]
ν′′1 | m2[Q̂2]

ν′′2 | Top
φj

A/P
m1!wBobs−−−−−−−−−→ m1[Q̂1]

ν′′1 | m2[Q̂2]
ν′′2 | Top

φj

A/P .

α = τ. The most significant case is an application of rule (Shh), from the premise

m1[Q1]
ν′1 | m2[Q2]

ν′2 | N
m1!wB∅−−−−−−−→ m1[Q̂1]

ν′1 | m2[Q̂2]
ν′2 | N̂ . Since obs ∈

ν′1 ∩ ν′2, the broadcast action must be performed by N ; thus there exists i ∈
{1, 2} such that N

ai!wBmi−−−−−−−−→ N̂ and ml[Ql]
ν′l ai?w−−−−−→ ml[Q̂l]

ν′l , for l = 1, 2.

Now also Top
φj

A/P
ai!wBmi========⇒ Top

φj

A/P and ml[Ql]
ν′′l ai?w−−−−−→ ml[Q̂l]

ν′′l , for

l = 1, 2. Thus m1[Q1]
ν′′1 | m2[Q2]

ν′′2 | Top
φj

A/P
τ−−→ m1[Q̂1]

ν′′1 | m2[Q̂2]
ν′′2 |

Top
φj

A/P . �

Lemma 3. If M is time-dependent stable with respect to a sequence of knowl-
edge {φj}j≥0, A is a set of attacking nodes for M and O ⊆ nds (M) then

MA
O

∣∣ A . MA
O

∣∣ Topφ0
A/nds(M) for every A ∈ Aφ0

A/nds(M) .

Proof We prove the lemma in the most general case, that is O = nds (M).
Then we fix an arbitrary A ∈ Aφ0

A/nds(M) and we define the proper simulation as
follows:

R def=
⋃

j≥0

{ (
M ′ | A′, M ′ | Top

φj

A/nds(M)

)
s.t. MA | A Λ==⇒ M ′ | A′

with nds (M ′) = nds
(
MA)

and #σ(Λ) = j
}

We let
(
M ′ | A′, M ′ | Top

φj

A/nds(M)

)
∈ R. We make a case analysis on why

M ′ | A′ α−−→ N .

α = m?w. As for Lemma 2, this case is straightforward.
α = σ. Then N = M ′′ | A′′ with M ′ σ−−→ M ′′ and A′ σ−−→ A′′. Now also

Top
φj

A/nds(M)

σ−−→ Top
φj+1

A/nds(M) by rule (σ-Sum), hence by rule (σ-Par) we

have M ′ | Top
φj

A/nds(M)

σ−−→ M ′′ | Top
φj+1

A/nds(M).
α = !wBν. Since the environment of the system contains just the node obs,

the transition has to be derived by the rule (Obs) whose premise is M ′ |
A′ m!wBobs−−−−−−−−→ N . Since obs /∈ Env (A′) then m ∈ nds (M ′) and N =

M ′′ | A′′ with M ′ m!wBν′−−−−−−−→ M ′′, {obs} = ν′ \ nds (A′) and A′ m?w−−−−→ A′′.

Now we have Top
φj

A/nds(M)

m?w−−−−→ Top
φj

A/nds(M) by rule (RcvEnb). Hence

M ′ | Top
φj

A/nds(M)

m!wBobs−−−−−−−−→ M ′′ | Top
φj

A/nds(M) by rule (Bcast) and the

fact that nds (A′) = A = nds
(
Top

φj

A/nds(M)

)
. Finally, by rule (Obs): M ′ |

Top
φj

A/nds(M)

!wBobs−−−−−−→ M ′′ | Top
φj

A/nds(M).

22

α = τ. The most significant case is when τ is derived by an application of

rule (Shh), then we have M ′ | A′ a!wB∅−−−−−−→ N and a ∈ nds (A′) = A
since the broadcast from any of the nodes in nds (M ′) = nds

(
MA)

can

be observed by the node obs. In this case we have M ′ a?w−−−−→ M ′′ and
A′ a!wBm−−−−−−→ A′′ where m is the single node of M attacked by a. Now also
Top

φj

A/nds(M)

τ−−→ a!wBm−−−−−−→ Top
φj

A/nds(M) by rules (Tau) and (Snd) since the
attacking node associated to m does not change and msg(A′) ⊆ D(φj).

Hence, by rule (Bcast): M ′ | Top
φj

A/nds(M)

a!wB∅======⇒ M ′′ | Top
φj

A/nds(M). Thus

M ′ | Top
φj

A/nds(M)

τ==⇒ M ′′ | Top
φj

A/nds(M) by rule (Shh). �

Proof of Theorem 2 By Lemma 3 we have MA
O | A . MAO | Topφ0

A/nds(M)

for every A ∈ Aφ0
A/nds(M). Then by transitivity of . we have MAO | A . N for

every A ∈ Aφ0
A/nds(M) and we conclude that M is tGNDCN

φ0,O. �

Proof of Theorem 3 By Theorem 1 we have

(M1)A1
O1

∣∣ . . .
∣∣ (Mk)Ak

Ok

∣∣ Topφ0
A1/nds(M1)

∣∣ . . .
∣∣ Topφ0

Ak/nds(Mk) . N1

∣∣ . . .
∣∣ Nk .

By applying Lemma 2 and Theorem 1 we obtain

(M1 | . . . | Mk)A1]...]Ak

O1]...]Ok

∣∣ Topφ0
A1]...]Ak/nds(M1|...|Mk) . N1

∣∣ . . .
∣∣ Nk .

Thus, by an application of Theorem 2 we can derive M ∈ tGNDC N1|...|Nk

φ0,O1]...]Ok
. �

A.5 Proofs of Section 4
Proof of Proposition 3 By induction on i we show that whenever kl[L̂0]

νkl Λ==⇒
kl[L̂i]

obs or m[Ẑ0]
obs Λ==⇒ m[Ẑi]

obs then #σ(Λ) = 2i. Moreover, for every i ≥ 1:

– action !qiBobs can be performed exclusively because

kl[L̂i−1]
obs τ−−→ σ−−→ !qiBobs−−−−−−−→

– action !authiBobs can be performed exclusively because

m[Ẑi−1]
obs Λ==⇒ !authiBobs−−−−−−−−−→

with #σΛ = 3.

Hence we deduce that:

1. if kl[L̂0]
obs Λ==⇒ !qiBobs−−−−−−−→ then #σ(Λ) = 2i + 1.

2. if m[Ẑ1]
obs Λ==⇒ !authiBobs−−−−−−−−−→ then #σ(Λ) = 2i + 3.

Now, the result is a straightforward consequence of these two properties. �

23

Proof of Theorem 4 Let ν′m = {kl, a, obs} and ν′kl = {m,a, obs}. The system
(LiSP′)A | A performs the following computation:

(LiSP′)A | A σ−−→
m[Z ′]ν

′
m | kl[L0]

ν′kl | a[σ.σ.X]νa
∣∣ b[σ.X]νb !rBobs−−−−−−→

m[σ.b?(q).T ′cZ ′]ν
′
m | kl[{r/r}I1]

ν′kl | a[σ.σ.X]νa
∣∣ b[σ.X]νb σ−−→

m[b?(q).T ′cZ ′]ν
′
m | kl[!〈q1〉.σ.L1]

ν′kl | a[σ.X]νa | b[X]νb
!q1Bobs−−−−−−−→

m[b?(q).T ′cZ ′]ν
′
m | kl[σ.L1]

ν′kl | a[σ.X]νa | b[σ.!〈q1〉.nil]νb σ−−→
m[Z ′]ν

′
m | kl[L1]

ν′kl | a[X]νa | b[!〈q1〉.nil]νb τ−−→
m[Z ′]ν

′
m | kl[{q1/r}I2]

ν′kl | a[σ.!〈q1〉.nil]νa | b[nil]νb !rBobs−−−−−−→
m[σ.b?(q).T ′cZ ′]ν

′
m | kl[{q1/r}I2]

ν′kl | a[σ.!〈q1〉.nil]νa | b[nil]νb σ−−→
m[b?(q).T ′cZ ′]ν

′
m | kl[σ.L2]

ν′kl | a[!〈q1〉.nil]νa | b[nil]νb τ−−→
m[{q1/q}T ′]ν

′
m | kl[σ.L2]

ν′kl | a[nil]νa | b[nil]νb σ−−→
m[σ.!〈auth1〉.R(k2, ks+1, s− 1)]ν

′
m | kl[L2]

ν′kl | a[nil]νa | b[nil]νb σ−−→
m[!〈auth1〉.R(k2, ks+1, s− 1)]ν

′
m | kl[σ.L3]

ν′kl | a[nil]νa | b[nil]νb !auth1Bobs−−−−−−−−−→

Then m signals the correct reconfiguration based on an old packet. Hence timed
integrity property does not hold. �

Proof of Proposition 4 Similar to the proof of Proposition 3. �

Proof of Lemma 1 We provide the proper simulation in both cases.
Case 1: Key Server. To show that kl[σ.L̄0]

{b,obs} ∣∣ Topφ0
b/kl . kl[σ.L̂′0]

obs

we define the relation Ri(v, n, w):{(
kl[L̄′i]

{b,obs} | Top
φ2i+1

b/kl , kl[L̂′i]
obs

)
,(

kl[L̄′i]
{b,obs} | b[!〈v〉.Tφ2i+1]

kl
, kl[L̂′i]

obs
)

,(
kl[{v/r}Ī ′i+1]

{b,obs} | Top
φ2i+1

b/kl , kl[L̂′i]
obs

)
,(

kl[L̄′i]
{b,obs} | b[!〈v〉.Tφ2i+1]

kl
, kl[L̂′i]

obs
)

,(
kl[!〈qn

i+1〉.σ.L̄′i+1]
{b,obs} | Top

φ2(i+1)

b/kl , kl[!〈qn
i+1〉.σ.L̂′i+1]

obs
)

,(
kl[!〈qn

i+1〉.σ.L̄′i+1]
{b,obs} | b[!〈w〉.Tφ2(i+1)]

kl
, kl[!〈qn

i+1〉.σ.L̂′i+1]
obs

)
,(

kl[σ.L̄′i+1]
{b,obs} | Top

φ2(i+1)

b/kl , kl[σ.L̂′i+1]
obs

)
,(

kl[σ.L̄′i+1]
{b,obs} | b[!〈w〉.Tφ2(i+1)]

kl
, kl[σ.L̂′i+1]

obs
)}

.

Then we define

R def=
⋃
i≥0

⋃
v, n ∈ D(φ2i+1)
w ∈ D(φ2(i+1))

Ri(v, n, w) .

24

It is now straightforward to check that the following relation is a simulation:

R ∪
{
kl[σ.L̄0]

{b,obs} ∣∣ Topφ0
b/kl, kl[σ.L̂′0]

obs }
.

We outline the two most significant cases. We omit input actions since the envi-
ronment contains exclusively the node obs which cannot transmit, thus all input
actions can be derived just by combining rules (RcvEnb) and (RcvPar). We also
omit internal choices of the attacker.

The pair
(
kl[L̄′i]

{b,obs} | b[!〈v〉.Tφ2i+1]
kl

, kl[L̂′i]
obs

)
has two significant actions:

– kl[L̄′i]
{b,obs} | b[!〈v〉.Tφ2i+1]

kl τ−−→ kl[{v/r}Ī ′i+1]
{b,obs} | Top

φ2i+1

b/kl , kl[L̂′i]
obs

where kl receives v. Then kl[L̂′i]
obs ==⇒ kl[L̂′i]

obs
.

– kl[L̄′i]
{b,obs} | b[!〈v〉.Tφ2i+1]

kl τ−−→ kl[L̄′i]
{b,obs} | Top

φ2i+1

b/kl where v gets

lost. Then the second network kl[L̂′i]
obs ==⇒ kl[L̂′i]

obs
.

The pair
(
kl[{v/r}Ī ′i+1]

{b,obs} | Top
φ2i+1

b/kl , kl[L̂′i]
obs

)
has two significant actions:

– kl[{v/r}Ī ′i+1]
{b,obs} | Top

φ2i+1

b/kl

σ−−→ kl[!〈qn
i+1〉.σ.L̄′i+1]

{b,obs} | Top
φ2(i+1)

b/kl

where kl checks that v represents a correct RequestKey packet and n is as a
possible nonce. Then kl[L̂′i]

obs σ==⇒ kl[!〈qn
i+1〉.σ.L̂′i+1]

obs
.

– kl[{v/r}Ī ′i+1]
{b,obs} | Top

φ2i+1

b/kl

σ−−→ kl[σ.L̄′i+1]
{b,obs} | Top

φ2(i+1)

b/kl when v is

not a correct RequestKey packet. Then kl[L̂′i]
obs σ==⇒ kl[σ.L̂′i+1]

obs
.

25

Case 2: Node. To show that m[σ.Z1]
{a,obs} ∣∣ Topφ0

a/m . m[σ.Ẑ ′
1]

obs we define
the relation Ri(v0, v1, v2, v3):{(

m[Zi]
{a,obs} | Top

φ2i−1

a/m , m[Ẑ ′
i]

obs
)

,(
m[Zi]

{a,obs} | a[!〈v0〉.Tφ2i−1]
m

, m[Ẑ ′
i]

obs
)

,(
m[σ.b?(q).TicZi+1]

{a,obs} | Top
φ2i−1

a/m , m[σ.
⌊
τ.σ.σ.!〈authi+1〉.nil

⌋
Ẑ ′

i+1]
obs

)
,(

m[σ.b?(q).TicZi+1]
{a,obs} | a[!〈v0〉.Tφ2i−1]

m
, m[σ.

⌊
τ.σ.σ.!〈authi+1〉.nil

⌋
Ẑ ′

i+1]
obs

)
,(

m[b?(q).TicZi+1]
{a,obs} | Topφ2i

a/m, m[
⌊
τ.σ.σ.!〈authi+1〉.nil

⌋
Ẑ ′

i+1]
obs

)
,(

m[b?(q).TicZi+1]
{a,obs} | a[!〈v1〉.Tφ2i

]m, m[
⌊
τ.σ.σ.!〈authi+1〉.nil

⌋
Ẑ ′

i+1]
obs

)
,(

m[{v1/q}Ti]
{a,obs} | Topφ2i

a/m, m[
⌊
τ.σ.σ.!〈authi+1〉.nil

⌋
Ẑ ′

i+1]
obs

)
,(

m[{v1/q}Ti]
{a,obs} | a[!〈v1〉.Tφ2i

]m, m[
⌊
τ.σ.σ.!〈authi+1〉.nil

⌋
Ẑ ′

i+1]
obs

)
,(

m[σ.!〈authi+1〉.nil]{a,obs} | Top
φ2i+1

a/m , m[σ.!〈authi+1〉.nil]obs
)

,(
m[σ.!〈authi+1〉.nil]{a,obs} | a[!〈v2〉.Tφ2i+1]

m
, m[σ.!〈authi+1〉.nil]obs

)
,(

m[!〈authi+1〉.nil]{a,obs} | Top
φ2i+2

a/m , m[!〈authi+1〉.nil]obs
)

,(
m[!〈authi+1〉.nil]{a,obs} | a[!〈v3〉.Tφ2i+2]

m
, m[!〈authi+1〉.nil]obs

)
,(

m[nil]{a,obs} | Top
φ2i+2

a/m , m[nil]obs
)

,(
m[nil]{a,obs} | a[!〈v3〉.Tφ2i+2]

m
, m[nil]obs

)}
.

Then we define

R def=
⋃
i≥0

⋃
vj ∈ D(φ(2i−1)+j)

0 ≤ j ≤ 3

Ri(v0, v1, v2, v3) .

It is now straightforward to check that the following relation is a simulation:

R ∪
{

m[σ.L̄0]
{b,obs} ∣∣ Topφ0

a/m, m[σ.L̂′0]
obs }

.

Again, we outline the most significant case.
The pair

(
m[{v1/q}Ti]

{a,obs} | Topφ2i

a/m, m[
⌊
τ.σ.σ.!〈authi+1〉.nil

⌋
Ẑ ′

i+1]
obs

)
has

two significant actions:

– m[{v1/q}Ti]
{a,obs} | Topφ2i

a/m

σ−−→ m[σ.!〈authi+1〉.nil]{a,obs} | Top
φ2i+1

a/m where
m checks that v is a correct InitKey packet and it contains the current nonce
ni. Since v is encrypted and contains ni it can only be generated by ks just
a σ action before, thus it contains the key ks+i+1. Then the second network
m[

⌊
τ.σ.σ.!〈authi+1〉.nil

⌋
Ẑ ′

i+1]
obs σ==⇒ m[σ.!〈authi+1〉.nil]obs .

– m[{v1/q}Ti]
{a,obs} | Topφ2i

a/m

σ−−→ m[Zi+1]
{b,obs} | Top

φ2i+1

a/m where m cannot

verify that v contains the current nonce. Then m[L̂′i]
obs σ==⇒ m[Ẑ ′

i+1]
obs

. �

26

