
A Bisimulation-based Semantic Theory of Safe
Ambients

MASSIMO MERRO

Dipartimento di Informatica, Università di Verona

and

MATTHEW HENNESSY

Department of Informatics, University of Sussex

We develop a semantics theory for SAP, a variant of Levi and Sangiorgi’s Safe Ambients, SA.

The dynamics of SA relies upon capabilities (and co-capabilities) exercised by mobile agents,

called ambients, to interact with each other. These capabilities contain references, the names of
ambients with which they wish to interact. In SAP we generalise the notion of capability: in

order to interact with an ambient n, an ambient m must exercise a capability indicating both n

and a password h to access n; the interaction between n and m takes place only if n is willing to
perform a corresponding co-capability with the same password h. The name h can also be looked

upon as a port to access ambient n via port h.
In SAP by managing passwords/ports, for example generating new ones and distributing them

selectively, an ambient may now program who may migrate into its computation space, and when.
Moreover in SAP an ambient may provide different services/resources depending on the port
accessed by the incoming clients. Then, we give an lts-based operational semantics for SAP and

a labelled bisimulation equivalence which is proved to coincide with reduction barbed congruence.
We use our notion of bisimulation to prove a set of algebraic laws which are subsequently

exploited to prove more significant examples.

Categories and Subject Descriptors: D.3.1 [Programming languages]: Formal Definition and
Theory—Synax ; Semantics; D.1.3 [Programming Techniques]: Concurrent Programming—
Distributed programming; F.3.2 [Meanings of Programs]: Semantics of Programming Lan-
guages—Operational semantics

General Terms: Languages, Theory

Additional Key Words and Phrases: Mobile agents, distributed systems, bisimulation

1. INTRODUCTION

The calculus of Mobile Ambients, abbreviated MA, has been introduced by Cardelli
and Gordon [2000] as a novel process calculus for describing mobile agents. The
term

n[P]

Research funded by EPSRC grant GR/M71169.

An extended abstract appeared in the Conference Record of the 29th Symposium on Principle of

Programming Languages, pages 71-80, 2002.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–41.

2 · M. Merro and M. Hennessy

represents an agent, or ambient, named n, executing the code P . Intuitively n[P]
represents a bounded and protected space in which the computation P can take
place. In turn P may contain other ambients, may effect communications, or may
exercise capabilities, which allow entry to or exit from named ambients. Thus
ambient names, such as n, are used to control access to the ambient’s computation
space and may be dynamically created as in the π-calculus, [Milner et al. 1992],
using the construct νnP ; here knowledge of n is restricted to P . For example the
system

k[in〈n〉.R1 | R2]
∣∣ n[open〈k〉.P | m[out〈n〉.Q1 | Q2]]

contains two ambients, k and n, running concurrently. The first, k, has, at least,
the capability to migrate into n, by virtue of its capability in〈n〉. The second, n,
contains a sub-ambient m[. . .], in addition to the the capability open〈k〉, which
allows the opening of any ambient named k which migrates into the computation
space of n. If k exercises its capability to enter n then the system will have the
structure

n[k[. . .] | open〈k〉.P | m[. . .]]

in which, now, n may exercise its capability to dissolve the boundary k[. . .], giving
rise to

n[R1 | R2 | P | m[. . .].]

Alternatively the sub-ambient m may exercise its capability to move outside n,
out〈n〉, in which case the system will have three concurrent ambients:

k[. . .] | n[open〈k〉.P] | m[Q1 | Q2].

Papers such as [Cardelli and Gordon 2000; 1999] demonstrate that this calculus
is very effective in formally describing the run-time behaviour of mobile agents.
However we believe that the development of semantic theories for Ambients has
had more limited success. This paper aims to provide a semantics theory for a
significant variant of MA.

Before developing any algebraic theory for a process calculus at least two ques-
tions arise:

—What is the appropriate notion of semantic equivalence ≈ for that calculus?
—What proof methods exist for establishing such equivalences?

Bisimulation relations, in their various forms, have proved to be very popular
as a basis for semantic equivalences for a variety of process calculi, such as CCS,
[Milner 1989], and the π-calculus, [Milner et al. 1992]. Essentially the behaviour
of processes is characterised using co-inductive relations defined over a labelled
transition system, or lts, a collection of relations of the form

P
α−−→ Q.

Intuitively this means that the system P may perform the action α, typically by
interacting with its environment or context, and be thereby transformed into the
system Q. The co-inductive nature of these equivalences ensures that there are pow-
erful proof techniques available for establishing identities, [Sangiorgi 1992; Sangiorgi
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 3

and Milner 1992; Sangiorgi 1994], addressing the second question above. Arguing
for their appropriateness, the first question, is usually carried out by contextual
reasoning. Intuitively the actions α in the judgement P

α−−→ Q represent some
small context with which P can interact; more importantly it is shown that this
collection of small contexts, codified as actions, are sufficient to capture all pos-
sible interactions which processes can have with arbitrary contexts. In short the
bisimulation relation over the lts characterises some naturally defined contextually
defined behavioural equivalence, [Sangiorgi 1992; Amadio et al. 1998]. This is the
topic of the current paper:

Can we define an lts based operational semantics for an ambient-like cal-
culus, and an associated bisimulation equivalence, which can be justified
contextually?

Levi and Sangiorgi [2000] argue that the calculus MA, as given in, for example
[Cardelli and Gordon 2000], is qualitatively different from more standard process
calculi such as the π-calculus. It is difficult for ambients to control potential inter-
ferences from other ambients. For example ambients are always under the threat of
being entered by an arbitrary ambient located in the environment, and they have
no means to forbid such actions if they so wish. To armour ambients with the
means to protect themselves, if necessary, from the influence of their environment
Levi and Sangiorgi add co-capabilities, for each of the standard ambient capabilities;
this idea of every action having a co-action is borrowed from process calculi such
as CCS or the π-calculus. Thus, for example, an ambient may now only exercise
the capability in〈n〉, if the ambient n is also willing to exercise the corresponding
co-capability in〈n〉. In

m[in〈n〉.Q1 | Q2]
∣∣ n[P]

the ambient m can migrate inside n if P has the form in〈n〉.P1 | P2, in which case
the system evolves to

n[m[Q1 | Q2] | P1 | P2].

That is m may only enter n if n allows it. The resulting calculus, called Safe
Ambients, has a much more satisfactory equational theory, and numerous equations,
often type dependent, may be found in [Levi and Sangiorgi 2000]. Nevertheless these
equations are expressed relative to a contextually defined equivalence. Establishing
them requires, for the most part, reasoning about the effect arbitrary contexts may
have on ambients.

In the current paper we extend the syntax of ambients even further, by allow-
ing capabilities to be defined relative to passwords. Co-capabilities give a certain
amount of control to ambients over the ability of others to exercise capabilities on
them; in〈n〉 can only be exercised if n is also willing to perform in〈n〉. However n
has no control over who obtains the capability in〈n〉. But if we generalise capabili-
ties (and co-capabilities) to contain an extra component then this extra component
may be used by n to exercise control over, and differentiate between, different am-
bients who may wish to exercise a capability. Now an ambient wishing to migrate
inside n must exercise a capability of the form in〈n, h〉, for some password h; but
the capability will only have an effect if n exercises the corresponding co-capability,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · M. Merro and M. Hennessy

with the same password, in〈n, h〉. Actually, passwords can be looked upon as ports;
for instance, the capability in〈n, h〉 can be read as “access ambient n via port h”.
By managing passwords/ports, for example generating new ones and distributing
them selectively, n may now program who may migrate into its computation space,
and when. Moreover an ambient may provide different services/resources depend-
ing on the passwords (respectively, ports) exhibited (respectively, accessed) by its
clients.

Notice that the in〈n, h〉 co-capability represents an entry point for mobile ambi-
ents coming from outside n. This co-capability is exercised by the target compu-
tation space, i.e. ambient n. In our calculus, unlike Levi and Sangiorgi’s SA, the
co-capability out〈n, h〉 has a similar semantics: it models an entry point for mobile
ambients coming from inside n. As a consequence, the co-capability out〈n, h〉 is
exercised by the target computation space of the out-move, which is not n, but the
current parent of n.

We call our calculus Safe Ambients with Passwords, abbreviated SAP. It is for-
mally defined, with a reduction semantics in Section 2. It should be clear that
SAP is basically a generalisation/extension of SA, as capabilities of the form in〈n〉
can be seen as shorthand for in〈n, n〉, where the name of an ambient is used as a
password to access the ambient itself. However, the two main differences between
SAP and SA, i.e. passwords and the semantics of out, turn out to be crucial in
the development of the semantics theory, and will be carefully discussed in the
Conclusion.

Following the ideas of [Honda and Yoshida 1995; Milner and Sangiorgi 1992] it is
straightforward to define a contextual equivalence between terms in SAP, or indeed
any of the many other variants of ambients. We call reduction barbed congruence,
∼=, the largest equivalence relation between terms which

—is a congruence for the language, that is is preserved by all constructs of the
language

—preserves, in some sense, the reduction semantics of the language
—preserves barbs, that is preserves some simple observational property of terms.

A formal definition of reduction barbed congruence is given in Definition 2.5; the
only real parameter here is in the precise definition of the allowed barbs. As we shall
see, in our setting the resulting equivalence is invariant with respect to a wide variety
of possible barbs. This emphasises our opinion that the resulting equivalence ∼= is a
reasonable semantic equivalence for SAP. It has all of the extensional properties we
require of such a relation although it is very difficult to reason about; see for example
the proof of the equational laws in [Levi and Sangiorgi 2000]. However bisimulation
relations, because of their co-inductive nature, provide powerful proof techniques
for establishing equivalences, [Sangiorgi 1992; Sangiorgi and Milner 1992; Sangiorgi
1994].

The main result of the paper is

—an lts based operational semantics for SAP
—a bisimulation based equivalence over this lts, denoted ≈, which coincides with
∼=

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 5

—a set of algebraic laws proved using our bisimilarity.

The lts, on which the operational semantics is based, contains actions for all of
the capabilities and co-capabilities in the language (here, as in much of the paper,
we will ignore passwords unless they play a central role in the discussion). The
most simple actions are those induced by the capabilities, as for instance in

in〈n〉.P
in〈n〉
−−−−−→ P .

These actions do not prescribe any direct behaviour to individual ambients although
they indirectly induce behaviour for particular ambients. For example, the ambient

m[in〈n〉.P]

now has the ability to enter an ambient named n, because its body has the capa-
bility to perform the action in〈n〉. When such an ambient movement happens we
must prescribe

—which ambient enters n

—what residual code remains behind.

For example, in the system

m[in〈n〉.P] | Q

ambient m[P] may migrate into an ambient n, and Q is the residual code; in general
the migrating ambient and the residual code may share private names.

We represent the possibility to exercise a capability via pre-actions, whereas
(visible) actions model interactions with the environment. In order to understand
the difference between pre-actions and actions, consider the system

ν r̃
(
m[in〈n〉.P] | Q

) ∣∣ n[in〈n〉.R] .

Here ambient m may choose either to enter the ambient n, giving rise to a τ -action,
or to enter another ambient n, provided by the environment. We model these two
possibilities using the following pre-action:

ν r̃
(
m[in〈n〉.P] | Q

) pre enter〈n〉
−−−−−−−−−−→ ν r̃〈m[P]〉Q .

where ν r̃〈m[P]〉Q is a concretion, [Milner 1991; Sangiorgi 1996; Levi and Sangiorgi
2000]. Here m[P] is the migrating ambient, n the target, Q the residual code, and
r̃, with n 6∈ r̃, the shared names. This pre-action may interact with the sibling
ambient n (which may perform a pre enter〈n〉 action) giving rise to the following
τ -action

ν r̃
(
m[in〈n〉.P] | Q

) ∣∣ n[in〈n〉.R]
τ−−→ ν r̃

(
Q | n[m[P] | R]

)
.

Alternatively, ambient m may decide to enter an ambient n provided by the en-
vironment. In this case, we will use the above pre enter〈n〉 action to derive the
following higher-order enter〈n〉 action

ν r̃
(
m[in〈n〉.P] | Q

) ∣∣ n[in〈n〉.R]
enter〈n〉
−−−−−−−→ ν r̃

(
n[◦ | m[P]] | Q

)
| n[in〈n〉.R]

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · M. Merro and M. Hennessy

where ◦ is a placeholder, added to the calculus, to remind us that the ambient n
provided by the environment must be instantiated, at “bisimulation-time”, with a
process (also provided by the environment). As the instantiation of the derivatives
is postponed, the lts is in a late style. The details are given in Section 3.

As we are interested in weak bisimilarities in Section 4 we give a notion of weak
action. This is easy to achieve as the placeholder ◦ in a derivative does not per-
form any action. The weak moves α==⇒ are defined in the standard manner as

τ−−→
∗ α−−→ τ−−→

∗
. We use our lts to define a form of (weak) bisimilarity, denoted by

≈, where the derivatives, when containing a placeholder, are instantiated with an
arbitrary process before being tested again. In addition to being higher-order, the
resulting bisimilarity is in early style as the universal quantification over the pro-
cesses provided by the environment precedes the existential one on the derivatives.

The main result, Theorem 4.11, shows that the bisimilarity coincides, and there-
fore completely characterises, reduction barbed congruence in SAP.

Most of the paper uses a pure form of ambients, without any communication.
In Section 5 we show that our results extend to a calculus in which messages can
be sent and received within ambients, similarly to [Cardelli and Gordon 2000; Levi
and Sangiorgi 2000]. In Section 6 we apply our bisimilarity to prove a collection of
useful algebraic laws. We want to stress that those laws have very simple proofs.
Essentially, it is sufficient to show that the relation composed of the single pair
of the processes under consideration is a bisimulation. By no means the proofs
based on contextual reasoning developed in [Levi and Sangiorgi 2000; Gordon and
Cardelli 2002], are that simple. In the same section we give some examples and
prove the correctness of the protocol, introduced in [Cardelli and Gordon 2000], for
controlling access through a firewall. The paper ends with Section 7, containing a
discussion of our results, and a comparison with related work.

2. THE CALCULUS SAP

In Table I we give the syntax of processes. This is basically the same as that in
[Cardelli and Gordon 2000], except that each of the original capabilities has a co-
capability, as in [Levi and Sangiorgi 2000], and that now each capability has an
extra argument h denoting a password.

The constructs for inactivity, parallel composition, restriction and replicated
prefixing are inherited from mainstream concurrent calculi, most notably the π-
calculus [Milner et al. 1992]. The inactive process, 0, does nothing. Parallel compo-
sition is denoted by a binary operator, P | Q, that is commutative and associative.
The restriction operator, νnP , creates a new (unique) name n within a scope P .
We have replicated prefixing, !C.P , (rather than full replication) to create as many
parallel replicas as needed. As in the π-calculus replicated prefixing allows us to
derive a simpler labelled transition system; however, the theory and results in this
paper could be easily adapted for a calculus with full replication. We also recall
that in the π-calculus (i) replicated input has the same expressive power as full
replication [Honda and Yoshida 1994] and recursion [Milner 1991; Sangiorgi and
Walker 2001a]; (ii) replicated input has a simpler semantics and is convenient for
implementations.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 7

Names: n, h, . . . ∈ N

Capabilities:
C ::= in〈n, h〉 may enter into n∣∣ out〈n, h〉 may exit out of n∣∣ open〈n, h〉 may open n∣∣ in〈n, h〉 allow enter∣∣ out〈n, h〉 allow exit∣∣ open〈n, h〉 allow open

Processes:

P, Q, R ::= 0 nil process∣∣ P1 | P2 parallel composition∣∣ νnP restriction∣∣ C.P prefixing∣∣ n[P] ambient∣∣ !C.P replication

Table I. The Calculus SAP

Specific to the ambient calculus are the ambient construct, n[P], and the prefix
via capabilities, C.P . In n[P], n is the name of the ambient and P is the process
running inside the ambient. The process C.P executes an action regulated by the
capability C, and then continues as the process P . Capabilities are obtained from
names; given a name n, the capability in〈n, h〉 allows entry into n with password
h, the capability out〈n, h〉 allows exit out of n with password h, and the capability
open〈n, h〉 allows the destruction of the boundary of ambient n using the password
h. For the sake of simplicity, at this stage, we omit communication; it will be added
in Section 5.

We use a number of notational conventions. Parallel composition has the lowest
precedence among the operators.

∏
i∈I Pi means the parallel composition of all

processes Pi, for i ∈ I. ñ denotes a tuple n1, . . . , nk of names. The process C.C ′.P
is read as C.(C ′.P). We omit trailing dead processes, writing C for C.0, and n[]
for n[0]. We will also frequently write in〈n〉 to denote in〈n, n〉 and similarly for
the other capabilities; in other words we will often use the name of an ambient as
a password. The operator νn is a binder for names, leading to the usual notions
of free and bound occurrences of names, fn(·) and bn(·), and α-conversion, ≡α.
We write νñP as an abbreviation for νn1 . . .νnkP . We will identify processes up
to α-conversion. More formally we will view process terms as representatives of
their equivalence class with respect to ≡α, and these representatives will always be
chosen so that bound names are distinct from free names.

A (monadic) context C[·] is a process with a hole inside, denoted by [·]. A static
context S[·] is a (monadic) context where the hole does not appear under prefix
or replication. The contexts exhibited in the paper will always be monadic, unless
otherwise specified.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · M. Merro and M. Hennessy

P | Q ≡ Q | P (Struct Par Comm)

(P | Q) | R ≡ P | (Q | R) (Struct Par Assoc)

P | 0 ≡ P (Struct Zero Par)

νn0 ≡ 0 (Struct Zero Res)

!C.P ≡ C.P | !C.P (Struct Repl Par)

νnνmP ≡ νmνnP (Struct Res Res)

n 6∈ fn(P) implies νn(P | Q) ≡ P | νnQ (Struct Res Par)

n 6= m implies νn(m[P]) ≡ m[νnP] (Struct Res Amb)

Table II. Structural Congruence

Reduction Semantics

The dynamics of the calculus is given in the form of a reduction relation. As cus-
tomary in process calculi, the reduction semantics is based on an auxiliary relation,
called structural congruence, which brings the participants of a potential interaction
to contiguous positions. Let us formalise these two concepts.

Definition 2.1. A relation R over processes is said to be contextual, if it is
preserved by all the operators in the language. Formally this means it must satisfy
the rules:

P RQ implies νnP R νnQ (Res)
P RQ implies P | R R Q | R and R | P R R | Q (Par)
P RQ implies n[P] R n[Q] (Amb)
P RQ implies C.P R C.Q (Prefix)
P RQ implies !P R !Q (Repl)

A relation R is said to be p-contextual, or partially contextual, if it is preserved by
the structural operators, that is it satisfies all but the last two of these rules.

Structural congruence, ≡, is a p-contextual equivalence between processes, relating
terms which we believe no reasonable semantics should distinguish. We define it to
be the least p-contextual equivalence relation which satisfies the axioms and rules
in Table II.

The reduction semantics is given in terms of a binary relation over processes,
P → Q, which intuitively means that P can evolve to Q in one computation step.
It is defined to be the least p-contextual relation which satisfies the axioms and
rules in Table III.

The axiom (Red In) describes how an ambient n may migrate into an ambient m.
It must exercise the capability in〈m,h〉 for some password h, and at the same time
m, the target computation space, must be willing to allow immigration, exercising
the co-capability, in〈m,h〉; note that the password must be the same.

Emigration from an ambient is described in the rule (Red Out), and is similar.
The ambient n may attempt to emigrate from ambient m by exercising the capa-
bility out〈m,h〉; but the target computation space must allow entry, by exercising
the corresponding co-capability with the same password, out〈m,h〉.

Remark 2.2. Note that in [Levi and Sangiorgi 2000] this co-capability is exer-
cised by m rather than the target computation space; we feel that with our definition
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 9

n[in〈m, h〉.P | Q]
∣∣ m[in〈m, h〉.R | S] → m[n[P | Q] | R | S] (Red In)

m[n[out〈m, h〉.P | Q] | R]
∣∣ out〈m, h〉.S → m[R] | n[P | Q] | S (Red Out)

open〈n, h〉.P
∣∣ n[open〈n, h〉.Q | R] → P | Q | R (Red Open)

P ≡ Q Q → R R ≡ S implies P → S (Red Str)

Table III. Reduction Rules

there is a clearer distinction between the role of an ambient in a reduction and the
corresponding role of its environment.

Finally the axiom (Red Open) describes the circumstances under which the ambient
n can be opened unleashing its content. Again it requires the co-operation of n,
exercising the co-capability open〈n, h〉, for some password h, before the capability
open〈n, h〉 has an effect. The single rule (Red Str) merely states that reductions
are made modulo structural congruence which is used to bring the participants of
a potential interaction into contiguous positions.

In the sequel we will use →∗ to denote the reflexive and transitive closure of →.

Behavioural semantics

We end this section with a definition of what we believe to be an appropriate notion
of behavioural equivalence in ambient calculi, based on a notion of observation: re-
duction barbed congruence, [Honda and Yoshida 1995; Sangiorgi and Walker 2001b].
Following [Honda and Yoshida 1995; Sangiorgi and Walker 2001b] we define reduc-
tion barbed congruence, ∼=, as the largest symmetric relation over processes which
satisfies the following criteria:

—it is contextual, to aid in compositional verification,
—it is invariant, in some sense, with respect to the reduction relation →; formally,

we say a relation R is reduction closed if PRQ and P → P ′ implies the existence
of some Q′ such that Q ⇒ Q′ and P ′ RQ′;

—it preserves some intuitive observation predicate, P↓n.

When dealing with ambients there are many ways of formulating observation pred-
icates. In [Cardelli and Gordon 2000] the predicate P ↓n is used to denote the
possibility of process P of interacting with the environment via the ambient n; it
is true whenever P ≡ νm̃(n[P1] | P2), where n 6∈ {m̃}. This is a reasonable defi-
nition of observation for MA as no authorisation is required to cross a boundary.
As a consequence, the presence of an ambient n at top level denotes a potential
interaction between the process and the environment via n. However in SA and our
language SAP, the process νm̃(n[P1] | P2) only represents a potential interaction
if P1 can exercise an appropriate co-capability. For example in SA, P↓n is defined
to be true whenever P ≡ νm̃(n[C.P1 | P2] | P3) where C ∈ {in〈n〉, open〈n〉} and
n 6∈ {m̃}. We use a slight simplification of this definition.

Definition Barbs. We write P↓n if and only if there exist h, m̃, P1, P2, and
P3 such that

P ≡ νm̃(n[open〈n, h〉.P1 | P2] | P3)
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · M. Merro and M. Hennessy

where n, h 6∈ m̃. We write P⇓n if P ⇒ P ′ and P ′↓n.

Our choice of observation here may seem arbitrary. However, Theorem 3.7 shows
that our contextual equality remains invariant under a large choice of possible
observation predicates. Note also that our barbs only mention the ambient n and
not the password used to open it; we could of course define a more detailed barb
P↓n,h but as we will see (again in Theorem 3.7) this is unnecessary.

Definition 2.4. A relation R over processes is said to be barb preserving if
P RQ and P↓n implies Q⇓n.

Definition Reduction barbed congruence. Reduction barbed congruence,
written ∼=, is the largest symmetric relation over processes which is

—contextual
—reduction closed
—barb preserving.

It is easy to prove that reduction barbed congruence is an equivalence relation.

The aim of the paper is to give a co-inductive characterisation of ∼= in SAP using
an lts-based operational semantics.

3. A LABELLED TRANSITION SEMANTICS

In Tables V, VI, and VII, we propose a labelled transition system, lts, for a slight
extension of our calculus. This extension allows us (i) to define the lts in a late
style, in which the instantiation of the derivatives is postponed, and (ii) to adopt
the standard definition for weak actions. The lts is obviously higher-order as it
models agent mobility.

The capabilities or prefixes C in our language give rise, in the standard manner,
[Milner 1989], to actions of the form P

C−−→ Q; for example we have

in〈n, h〉.P1 | P2
in〈n,h〉
−−−−−−→ P1 | P2.

These actions could be used to define a version of weak bisimulation equivalence
over processes, ≈bad, again in the standard manner, [Milner 1989]. However it
should be obvious that ≈bad is unsatisfactory as a notion of equivalence for SAP.
For example these actions cannot be performed by ambients and therefore we would
have the wrong identity

n[P] ≈bad 0

regardless of P .
Nevertheless, the capabilities above can be considered the basis of further actions.

For example, the system

n[in〈m〉.P] | Q

has the capability to enter ambient m. Exercising this capability has a dual effect;
on the one hand the ambient n[P] will move into the ambient m, on the other the
process Q will remain executing at the point at which the capability is exercised.
In general each of the simple prefixes C will induce more complicated actions in
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 11

Pre-Actions: µ ::= pre enter〈n, h〉
∣∣ pre exit〈n, h〉∣∣ pre enter〈n, h〉

Actions: α ::= τ∣∣ in〈n, h〉
∣∣ out〈n, h〉

∣∣ open〈n, h〉∣∣ in〈n, h〉
∣∣ out〈n, h〉

∣∣ open〈n, h〉∣∣ enter〈n, h〉
∣∣ exit〈n, h〉∣∣ enter〈n, h〉
∣∣ free〈n, h〉∣∣ pop〈n, h〉

Labels: λ ::= µ
∣∣ α

Extended processes: E, F ::= ◦ placeholder∣∣ 0 nil process∣∣ E1 | E2 parallel composition∣∣ νnE restriction∣∣ C.E prefixing∣∣ n[E] ambient∣∣ !C.E replication

Concretions: K ::= νm̃〈E〉F

Outcomes: O ::= E
∣∣ K

Table IV. Actions, Extended processes, Concretions and Outcomes

ambients, and more generally in processes. These will be formulated as transitions
of the form

E
λ−−→ O

where λ denotes a label and E and O range over extended processes and outcomes,
respectively, as defined in Table IV.

Essentially, we extend the syntax of processes with a special process ◦ to pinpoint
those ambients whose content will be instantiated later, with a process provided by
the environment. The special process ◦ does not reduce and does not interact with
anyone: it is simply a placeholder. The generalisation of structural congruence to
extended processes is straightforward, supposing fn(◦) = ∅. We call pure processes
those processes which do not contain ◦. Obviously, the lts also applies to pure
processes.

We make a distinction between pre-actions, of the form E
µ−−→ K, where K

ranges over concretions (Table IV), and actions, of the form E
α−−→ E′. Pre-

actions denote the possibility to exercise a move capability while actions model the
interaction of a process with its environment. As usual, we also have τ -actions to
model internal computations. As pre-actions express the possibility to exercise a
capability, only actions model the evolution of a process at run-time.

Pre-actions are generated via the rules (Pre-Enter), (Pre-Co-Enter), and (Pre-
Exit) of Table V. Their general form is

E
µ−−→ νm̃〈E1〉E2

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · M. Merro and M. Hennessy

(Act)
−

C.E
C−−→ E

(Repl Act)
−

!C.E
C−−→ E | !C.E

(Pre-Enter)
E

in〈n,h〉
−−−−−−→ E′

m[E]
pre enter〈n,h〉
−−−−−−−−−−−→ 〈m[E′]〉0

(Pre-Co-Enter)
E

in〈n,h〉
−−−−−−→ E′

n[E]
pre enter〈n,h〉
−−−−−−−−−−−→ 〈E′〉0

(τ Enter)

E
pre enter〈n,h〉
−−−−−−−−−−−→ νp̃〈E1〉E2 F

pre enter〈n,h〉
−−−−−−−−−−−→ ν q̃〈F1〉F2

E | F τ−−→ νp̃ν q̃(n[E1 | F1] | E2 | F2)

F | E τ−−→ νp̃ν q̃(n[F1 | E1] | F2 | E2)

if ((fn(E1) ∪ fn(E2)) ∩ {q̃}) = ((fn(F1) ∪ fn(F2)) ∩ {p̃}) = ∅

(Pre-Exit)
E

out〈n,h〉
−−−−−−−→ E′

m[E]
pre exit〈n,h〉
−−−−−−−−−−→ 〈m[E′]〉0

(Pop)
E

pre exit〈n,h〉
−−−−−−−−−−→ νm̃〈E1〉E2

n[E]
pop〈n,h〉
−−−−−−−→ νm̃(n[E2] | E1)

(τ Exit)

E
pop〈n,h〉
−−−−−−−→ E′ F

out〈n,h〉
−−−−−−−→ F ′

E | F τ−−→ E′ | F ′

F | E τ−−→ F ′ | E′

(Free)
E

open〈n,h〉
−−−−−−−−→ E′

n[E]
free〈n,h〉
−−−−−−−−→ E′

(τ Open)

E
open〈n,h〉
−−−−−−−−→ E′ F

free〈n,h〉
−−−−−−−−→ F ′

E | F τ−−→ E′ | F ′

F | E τ−−→ F ′ | E′

Table V. Labelled Transition System - Enter, Exit, and Open

where E1 represents the code that may enter to, reside at, or exit from an ambient,
while E2 represents the derivative which is not affected by the move, and m̃ is the
set of private names shared by E1 and E2. We adopt the convention that if K is the
concretion νm̃〈E〉F , then νrK is a shorthand for νm̃〈E〉νrF , if r 6∈ fn(E), and
the concretion νrm̃〈E〉F otherwise. We have a similar convention for the rule (π
Par): K | E′ is defined to be the concretion νm̃〈E〉(F | E′), where m̃ are chosen,
using α-conversion if necessary, so that fn(E′) ∩ m̃ = ∅; similarly E′ | K is the
concretion νm̃〈E〉(E′ | F). Occasionally, we omit dead processes when they are in
parallel with processes, writing E for E | 0.

Pre-actions are used to construct the internal actions for entering and exiting
ambients of Table V. The rule (τ Enter) models an ambient moving into a sibling
ambient. The rule (Pop) models an ambient exiting from another one. This action
is not yet internal as it requires the presence of the corresponding out co-capability,
as described in rule (τ Exit). The rules for opening ambients are straightforward.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 13

(Enter)
E

pre enter〈n,h〉
−−−−−−−−−−−→ νm̃〈E1〉E2

E
enter〈n,h〉
−−−−−−−−→ νm̃(n[◦ | E1] | E2)

(Co-Enter)
E

pre enter〈n,h〉
−−−−−−−−−−−→ νm̃〈E1〉E2

E
enter〈n,h〉
−−−−−−−−→ νm̃(n[◦ | E1] | E2)

(Exit)
E

pre exit〈n,h〉
−−−−−−−−−−→ νm̃〈E1〉E2

E
exit〈n,h〉
−−−−−−−−→ νm̃(n[◦ | E2] | E1)

Table VI. Labelled Transition System - Higher-order rules for ambient mobility

(τ Amb)
E

τ−−→ E′

n[E]
τ−−→ n[E′]

(Par)

E
λ−−→ O λ 6∈ {enter〈n, h〉, exit〈n, h〉, enter〈n, h〉}

E | F λ−−→ O | F

F | E λ−−→ F | O

(Res)
E

λ−−→ O λ 6∈ {enter〈n, h〉, exit〈n, h〉, enter〈n, h〉} n 6∈ fn(λ)

νnE
λ−−→ νnO

Table VII. Labelled Transition System - Structural Rules

The higher-order rules (Enter) and (Exit) of Table VI turn concretions into sys-
tems by explicitly introducing the ambient entered or exited by the process in
question. The higher-order rule (Co-Enter) models an ambient n accepting an in-
coming ambient. All the derivatives of higher-order rules contain an ambient n
with a placeholder inside. This placeholder reminds us that the content of n must
be instantiated later, in the bisimilarity, with an arbitrary process provided by the
environment.

The structural rules (τ Amb), (Par), and (Res) of Table VII are straightforward;
just notice that higher-order actions enter, enter, and exit do not have structural
rules as they model “final” higher-order interactions with the environment.

Now, let us explain our lts with an example. Let us first examine those rules
induced by the prefix in, the immigration of ambients. Here we will ignore the
use of passwords as they play no role in our explanations. A typical example of an
ambient m migrating into an ambient n is as follows:

P2 | m[in〈n〉.P1] | Q2 | n[in〈n〉.Q1] −→ P2 | Q2 | n[m[P1] | Q1] .

The driving force behind the migration is the activation of the prefix in〈n〉, within
the ambient m. It induces a capability in the ambient m to migrate into n, which
we formalise as a new action pre enter〈n〉. Thus an application of the rule (Pre-
Enter) gives

m[in〈n〉.P]
pre enter〈n〉
−−−−−−−−−−→ 〈m[P]〉0 .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · M. Merro and M. Hennessy

More generally, using the structural rule (Par) we have:

P2 | m[in〈n〉.P1]
pre enter〈n〉
−−−−−−−−−−→ 〈m[P1]〉P2 .

This means that the system P2 | m[in〈n〉.P1] has the capability to enter an ambient
n; if the capability is exercised, the ambient m[P1] will enter n while P2 will be
the residual at the point of execution. The above pre-action can interact with an
action enter〈n〉 performed by n. The rule (Co-Enter) allows these to be derived.
So for example, using again (Par), we have

Q2 | n[in〈n〉.Q1]
pre enter〈n〉
−−−−−−−−−−→ 〈Q1〉Q2 .

Here, after the co-action, Q1 remains inside n, while Q2 is outside, and the place-
holder ◦ models the entry point for the ambient moving into n. Now, the commu-
nication rule (τ Enter) allows these two complementary actions to occur simulta-
neously, effecting the migration of the ambient m[P1] from its current computation
space into the ambient n, giving rise to the original move above:

P2 | m[in〈n〉.P1] | Q2 | n[in〈n〉.Q1]
τ−−→ n[m[P1] | Q1] | P2 | Q2

≡ P2 | Q2 | n[m[P1] | Q1]

Note that this is a higher-order interaction, as the ambient m[P1] is transferred
between two computation spaces.

The structural rule (Res) allows the migrating ambient to share private names
with its point of origin, in the same manner as in the π-calculus. So, for example
if k occurs free in both P1 and P2 of the above τ -action, then we have the action

νk(P2 | m[in〈n〉.P1])
pre enter〈n〉
−−−−−−−−−−→ νk〈m[P1]〉P2

and the rule (τ Enter) now gives

νk(P2 | m[in〈n〉.P1]) | Q2 | n[in〈n〉.Q1]
τ−−→≡ νk(P2 | Q2 | n[m[P1] | Q1])

where it is assumed that k is chosen to be fresh to n, Q1 and Q2. Note that the
scope of k has now extended to include the ambient n.

The rules of emigration are organised in a similar manner, although they are
slightly more complicated. A typical example of ambient m emigrating from ambi-
ent n is as follows:

n[m[out〈n〉.P1] | P2] | out〈n〉.Q −→ n[P2] | m[P1] | Q .

The driving force behind the emigration is the activation of the prefix out〈n〉 within
the ambient m; however its effect is even more indirect than that of the prefix in〈n〉.
It induces a capability in the ambient m to emigrate from n, which we formalise as
a new action pre exit〈n〉. Thus an application of the rule (Pre-Exit), followed by
(Par) gives

m[out〈n〉.P1] | P2
pre exit〈n〉
−−−−−−−−−→ 〈m[P1]〉P2 .

Here when this capability is exercised the code P2 will remain inside the ambient
n while the ambient m[P1] will move outside. If the system under consideration
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 15

already contains the ambient n to exit from, then we have another action, called
pop〈n〉, with the associated rule (Pop); an application of which gives:

n[m[out〈n〉.P1] | P2]
pop〈n〉
−−−−−−→ n[P2] | m[P1] .

The action pop〈n〉 can interact with the co-action out〈n〉 as codified in the rule
(τ Exit); an application of which gives the original move above:

n[m[out〈n〉.P1] | P2] | out〈n〉.Q τ−−→ n[P2] | m[P1] | Q .

Finally let us consider the rules which control the opening of ambients, which are
considerably more straightforward. The opening of an ambient n is activated by
the prefix open〈n〉 but it is controlled by ambient n via the prefix open〈n〉. Thus
an application of the rule (Free) gives

n[open〈n〉.P]
free〈n〉
−−−−−−→ P

and an application of the rule (τ Open) gives

n[open〈n〉.P] | open〈n〉.Q τ−−→ P | Q .

As in other concurrent calculi, for any transition P
λ−−→ O, the structure of P

and O can be determined up to structural congruence.

Lemma 3.1.

(1) If P
C−−→ P ′, with C ∈ {in〈n, h〉, out〈n, h〉, open〈n, h〉, in〈n, h〉, out〈n, h〉,

open〈n, h〉}, then there exist p̃, P1, P2, with n, h 6∈ p̃, such that

P ≡ νp̃(C.P1 | P2) and P ′ ≡ νp̃(P1 | P2)

(2) if P
pre enter〈n,h〉
−−−−−−−−−−−−→ νp̃〈P ′〉P ′′ then there exist k, P1, P2, with n, h 6∈ p̃, such

that

P ≡ νp̃(k[in〈n, h〉.P1 | P2] | P ′′) and P ′ ≡ k[P1 | P2]

(3) if P
pre exit〈n,h〉
−−−−−−−−−−−→ νp̃〈P ′〉P ′′ then there exist k, P1, P2, with n, h 6∈ p̃, such

that

P ≡ νp̃(k[out〈n, h〉.P1 | P2] | P ′′) and P ′ ≡ k[P1 | P2]

(4) if P
pre enter〈n,h〉
−−−−−−−−−−−−→ νp̃〈P ′〉P ′′ then there exist P1, P2, with n, h 6∈ p̃, such

that

P ≡ νp̃(n[in〈n, h〉.P1 | P2] | P ′′) and P ′ ≡ P1 | P2

(5) if P
free〈n,h〉
−−−−−−−−→ P ′ then there exist P1, P2, P3, with n, h 6∈ p̃, such that

P ≡ νp̃(n[open〈n, h〉.P1 | P2] | P3) and P ′ ≡ νp̃(P1 | P2 | P3)

(6) if P
pop〈n,h〉
−−−−−−−→ P ′ then there exist k, P1, P2, P3, P4, with n, h 6∈ p̃, such that

P ≡ νp̃(n[k[out〈n, h〉.P1 | P2] | P3] | P4) and P ′ ≡ νp̃(n[P3] | k[P1 | P2] | P4) .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · M. Merro and M. Hennessy

Proof. By induction on the transition rules of Tables V, VI, and VII.

By part 2 and 3 of Lemma 3.1 only ambients, rather than general code, can migrate.
We end this section showing that, on pure processes, the lts-based semantics

coincides with the reduction semantics of Section 2.

Theorem 3.2.

(1) If P
τ−−→ P ′ then P → P ′.

(2) If P → P ′ then P
τ−−→≡ P ′.

Proof. By transition induction. Part 1 is the most difficult. We recall that
τ -transitions can only be generated by the rules in Tables V and VII. Let’s prove
the most significant cases.

(τ Enter) In this case P = P1 | P2, and the silent move is due to the following

visible actions: P1
pre enter〈n,h〉
−−−−−−−−−−−→ νp̃〈Q1〉R1, P2

pre enter〈n,h〉
−−−−−−−−−−−→ ν q̃〈Q2〉R2. Thus,

P1 | P2
τ−−→ νp̃ν q̃(n[Q1 | Q2] | R1 | R2) .

By Lemma 3.1(2) we deduce that P1 ≡ νp̃(k[in〈n, h〉.P ′
1 | P ′′

1] | R1), Q1 ≡ k[P ′
1 |

P ′′
1], for some P ′

1 and P ′′
1 . Lemma 3.1(4) guarantees that P2 ≡ ν q̃(n[in〈n, h〉.P ′

2 |
P ′′

2] | R2) and Q2 ≡ P ′
2 | P ′′

2 , for some P ′
2 and P ′′

2 . Then,

P1 | P2 ≡ νp̃(k[in〈n, h〉.P ′
1 | P ′′

1] | R1) | ν q̃(n[in〈n, h〉.P ′
2 | P ′′

2] | R2)
≡ νp̃ν q̃(k[in〈n, h〉.P ′

1 | P ′′
1] | n[in〈n, h〉.P ′

2 | P ′′
2] | R1 | R2)

→ νp̃ν q̃(n[k[P ′
1 | P ′′

1] | P ′
2 | P ′′

2] | R1 | R2)
≡ νp̃ν q̃(n[Q1 | Q2] | R1 | R2) .

By applying the rule (Red Str) we obtain P → νp̃ν q̃(n[Q1 | Q2] | R1 | R2), as
desired.

(τ Exit) In this case P = P1 | P2, P1
pop〈n,h〉
−−−−−−−→ Q1, P2

out〈n,h〉
−−−−−−−→ Q2, and

P1 | P2
τ−−→ Q1 | Q2 .

By Lemma 3.1(6) we deduce that P1 ≡ νp̃(n[k[out〈n, h〉.P ′
1 | P ′′

1] | P ′′′
1] | P ′′′′

1) and
Q1 ≡ νp̃(n[P ′′′

1] | k[P ′
1 | P ′′

1] | P ′′′′
1), for some p̃, k, P ′

1, P ′′
1 , P ′′′

1 , P ′′′′
1 . Lemma 3.1(1)

guarantees that P2 ≡ ν q̃(out〈n, h〉.P ′
2 | P ′′

2) and Q2 ≡ ν q̃(P ′
2 | P ′′

2), for some q̃, P ′
2,

and P ′′
2 . Then,

P1 | P2 ≡ νp̃ν q̃(n[k[out〈n, h〉.P ′
1 | P ′′

1] | P ′′′
1] | out〈n, h〉.P ′

2 | P ′′′′
1 | P ′′

2)
→ νp̃ν q̃(n[P ′′′

1] | k[P ′
1 | P ′′

1] | P ′
2 | P ′′′′

1 | P ′′
2)

≡ Q1 | Q2 .

By applying the rule (Red Str) we obtain P → Q1 | Q2, as desired.

3.1 Barbs and actions

Here we re-examine our definition of reduction barbed congruence, ∼=, showing that
it is very robust under changes to the precise definition of barbs.

As already mentioned in Section 2, according to [Cardelli and Gordon 2000;
Levi and Sangiorgi 2000], the predicate P↓n detects the ability of a process P to
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 17

interact with its environment via the ambient n. However, in other process calculi,
like the π-calculus, barbs are defined using (visible) actions. So, one may wonder
how our definition of reduction barbed congruence would be affected by inheriting
the notion of barb from the lts. In fact we can show that our definition of barb
coincides with the choice of a particular action:

Lemma 3.3. P↓n iff P
free〈n,h〉
−−−−−−−−→ P ′ for some h and P ′.

Proof. Straightforward.

Now we prove that for all possible actions (different from τ) the resulting defini-
tions of reduction barbed congruence collapse and coincide with ∼=. We recall that
α ranges over the actions defined in Table IV.

Definition 3.4. We write P↓α if P
α−−→. We write P⇓α if P

τ−−→
∗ α−−→.

Definition 3.5. Let A = {in, out, open, in, out, open, enter, enter, exit,
pop, free}. For any ρ ∈ A, let ∼=ρ be the largest symmetric relation over pure
processes which

—is contextual
—is reduction closed
—if P ∼=ρ Q and P ↓ρ〈n,h〉 then Q ⇓ρ〈n,h〉.

The next lemma is a well-known result for barbed bisimilarities which follows from
Theorem 3.2.

Lemma 3.6. If P ∼=ρ Q then

(1) P⇓n iff Q⇓n

(2) P
τ−−→

∗
P ′ implies Q

τ−−→
∗

Q′ for some Q′ such that P ′ ∼=ρ Q′.

Now we are ready to prove that our definition of reduction barbed congruence
remains invariant under changes of ρ-barb.

Theorem 3.7. Let P and Q be two processes, then

∀ ρ ∈ A P ∼= Q iff P ∼=ρ Q.

Proof. Since the definitions of ∼= and ∼=ρ differ only in the notion of barb it
suffices to show that the two forms of barbs imply each other. We examine two
examples of ρ; the other cases are similar.

(1) ρ = pop.
Let us consider first the implication from left to right. Let P ∼= Q and
P↓pop〈n,h〉; we want to conclude that Q⇓pop〈n,h〉.
Consider the context

S1[·]
def= [·]

∣∣ out〈n, h〉.f [open〈f〉]

It is easy to prove that whenever f is fresh to R,

R⇓pop〈n,h〉 iff S1[R]⇓f .

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · M. Merro and M. Hennessy

This is sufficient to establish the result. For P ∼= Q implies S1[P] ∼= S1[Q]
which in turn implies S1[Q]⇓f , from which we have the required Q⇓pop〈n,h〉.
As to the implication from right to left, let P ∼=pop Q and P↓n, then we want
to conclude that Q⇓n. Again this involves using a context. By Lemma 3.3 if

P↓n then there exists h such that P
free〈n,h〉
−−−−−−−−→. Thus, we define a context:

Sh
2 [·] def= [·] | open〈n, h〉.k[r[out〈k〉]].

This context is constructed so that whenever r and k are fresh to R then:
(a) Sh

2 [R]⇓pop〈k〉 implies R⇓n

(b) R⇓n implies ∃h. Sh
2 [R]⇓pop〈k〉.

This is sufficient to establish Q⇓n.

(2) ρ = enter.
Again this is a question of defining two appropriate contexts. Let

S1[·]
def= [·] | f [in〈n, h〉.out〈n, k〉] | out〈n, k〉.g[open〈g〉]

This context has the property that

R⇓enter〈n,h〉 iff S1[R]⇓g

whenever f, g and k are fresh to R. For the reverse direction we let

Sh
2 [·] def= [·] | open〈n, h〉.g[in〈g〉].

This context has the required property that:
(a) Sh

2 [R]⇓enter〈g〉 implies R⇓n

(b) R⇓n implies ∃h. Sh
2 [R]⇓enter〈g〉.

provided that g is fresh to R.

Remark 3.8. Note that the use of passwords is fundamental to the above re-
sult. In particular, in the case ρ = enter the use of the fresh password k in the
definition of S1[·] is essential. Note also that this case, ρ = enter, shows that Levi
and Sangiorgi’s definition of barb, [Levi and Sangiorgi 2000], can be simplified, to
coincide with our original definition.

4. THE CHARACTERISATION

Since we are interested in weak bisimilarities we have to provide a notion of weak
action. In our setting, weak actions can be defined in the standard manner.

Definition Weak actions.

(1) α==⇒ denotes
τ−−→

∗ α−−→ τ−−→
∗

(2) α̂==⇒ denotes
τ−−→

∗
if α = τ and α==⇒ otherwise.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 19

Notice that the τ -moves following a visible action α may cause the placeholder ◦
to move into other ambients. For instance:

k[out〈n〉.in〈k〉.open〈n〉.P]
∣∣ in〈k〉.open〈n〉.Q

exit〈n〉
−−−−−−→

n[◦ | in〈k〉.open〈n〉.Q]
∣∣ k[in〈k〉.open〈n〉.P]

τ−−→
k[n[◦ | open〈n〉.Q] | open〈n〉.P]

τ−−→
k[◦ | Q | P]

where the placeholder has moved from ambient n into ambient k.
Notice also that the derivative E of a weak action P

α==⇒ E may contain at most
one placeholder ◦, although arbitrary nested.

Proposition 4.2. If P
α==⇒ E then E contains at most one occurrence of ◦.

Proof. As τ -actions never introduces placeholders ◦.

Our labelled bisimilarity will compare pure processes; however, rules (Enter),
(Co-Enter), and (Exit) result in extended processes. This means that we need a
method of comparing extended processes. This will be carried out implicitly by
applying them to pure processes.

Definition 4.3. Let E,E1, E2 be extended processes and R be a pure process.
Then,

0�R
def= 0 (E1 | E2)�R

def= (E1 �R) | (E2 �R)
n[E]�R

def= n[E �R] νnE �R
def= νn(E �R) if n 6∈ fn(R)

◦ �R
def= R C.E �R

def= C.(E �R)
!C.E �R

def= !C.(E �R) .

Definition Bisimilarity. A symmetric relation S over pure processes is a
bisimulation if P S Q implies:

(1) If P
α−−→ P ′ then there exists Q′ such that Q

α̂==⇒ Q′ and P ′ S Q′.

(2) If P
α−−→ E1, α ∈ {enter〈n, h〉, exit〈n, h〉}, then for all R there exists E2 such

that Q
α==⇒ E2 and E1 �R S E2 �R.

(3) If P
enter〈n,h〉
−−−−−−−−−→ E1 then for all m and R there exists E2 such that Q

enter〈n,h〉
=========⇒

E2 and E1 �m[R] S E2 �m[R].

P and Q are bisimilar, written P ≈ Q, if P S Q for some bisimulation S.

The bisimilarity is defined in early style as the universal quantification precedes the
existential one. Notice that only actions (and not pre-actions) are taken into ac-
count; moreover, in clause 1 the action α cannot belong to {enter〈n, h〉, exit〈n, h〉,
enter〈n, h〉} as the derivative is a process. Note also that the definition is such
that the standard proof technique can not be used to prove that it is a transitive
relation. However the proof of our characterisation result does not rely on ≈ be-
ing transitive; but it will follow trivially from the characterisation, namely that ≈
coincides with the equivalence relation ∼=.

Theorem 4.5. The bisimilarity is contextual.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · M. Merro and M. Hennessy

Proof. It is straightforward to prove that ≈ is preserved by prefixing and iter-
ation. We treat the other three constructs simultaneously.

Let S be the least symmetric relation such that:

(1) ≈⊆ S
(2) P S Q implies P | R S Q | R and R | P S R | Q for all processes R

(3) P S Q implies n[P] S n[Q]
(4) P S Q implies νnP S νnQ.

We prove that S is a bisimilarity up to ≡1, by induction on why two processes P
and Q are in S. The case when P ≈ Q follows by definition.

(1) P | R S Q | R because P S Q. We now do induction on the derivation
P | R α−−→ E. Most cases are straightforward. We focus on the most interesting
ones, when α = τ and hence E is a pure process U .

(a) P | R
τ−−→ U because P

pre enter〈n,h〉
−−−−−−−−−−−→ νp̃〈P1〉P2 and R

pre enter〈n,h〉
−−−−−−−−−−−→

ν r̃〈R1〉R2, with U = νp̃ν r̃(n[P1 | R1] | P2 | R2). By applying rule (Enter)
we have

P
enter〈n,h〉
−−−−−−−−−→ E1 = νp̃(n[◦ | P1] | P2)

and U ≡ ν r̃((E1�R1) | R2). By the inductive hypothesis, P S Q and for

any process T there is a E2 such that Q
enter〈n,h〉

=========⇒ E2 and E1�T ≡ S ≡
E2 � T . Thus
i. P | R τ−−→ U ≡ ν r̃

(
(E1 �R1) | R2

)
and

ii. Q | R τ−−→
∗

Z ≡ ν r̃
(
(E2 �R1) | R2

)
.

If we choose T = R1 then we get E1�R1 ≡ S ≡ E2�R1. As S and ≡ are
preserved by parallel composition and restriction, we obtain U ≡ S ≡ Z,
as required.

(b) P | R
τ−−→ U because P

pre enter〈n,h〉
−−−−−−−−−−−→ νp̃〈P1〉P2, R

pre enter〈n,h〉
−−−−−−−−−−−→

ν r̃〈m[R1]〉R2, with U = νp̃ν q̃(n[P1 | m[R1]] | P2 | R2). By applying
rule (Co-Enter) we have

P
enter〈n,h〉
−−−−−−−−−→ E1 = νp̃(n[◦ | P1] | P2)

and U ≡ ν r̃
(
(E1�m[R1]) | R2

)
(we recall that by Lemma 3.1 only ambients

can migrate). By the inductive hypothesis, P S Q and for any m and T

there is a E2 such that Q
enter〈n,h〉

=========⇒ E2 and E1�m[T] ≡ S ≡ E2�m[T].
Thus
i. P | R τ−−→ U ≡ ν r̃

(
(E1 �m[R1]) | R2

)
and

ii. Q | R τ−−→
∗

Z ≡ ν r̃
(
(E2 �m[R1]) | R2

)
.

If we choose T = R1 then we get E1 � m[R1] ≡ S ≡ E2 � m[R1]. As
S and ≡ are preserved by parallel composition and restriction, we obtain

U ≡ S ≡ Z, as required.

1The soundness of the up to ≡ proof technique is completely straightforward.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 21

(c) The other cases are either similar or straightforward and are left to the
reader.

(2) n[P] S n[Q] because P S Q. We do induction on why n[P]
α−−→ E. We

give details only in the cases when α is enter〈m,h〉, or pop〈n, h〉, and for the
base cases of the corresponding inductions. The remaining cases, when α is τ ,
enter〈n, h〉, exit〈m,h〉, or free〈n, h〉, are similar.

(a) Let n[P]
enter〈m,h〉
−−−−−−−−−→ E1 = m[◦ | n[P ′]] because P

in〈m,h〉
−−−−−−−→ P ′. For an

arbitrary process Z we are required to find a move n[Q]
enter〈m,h〉
−−−−−−−−−→ E2

such that E1 � Z ≡ S ≡ E2 � Z. As P S Q, we may use induction to

find a Q′ such that Q
in〈m,h〉

=======⇒ Q′ and P ′ ≡ S ≡ Q′. We may now let

E2 = m[◦ | n[Q′]] as n[Q]
enter〈m,h〉

=========⇒ E2 and since S and ≡ are preserved
by parallel composition and ambient constructor, we get E1 � Z ≡ m[Z |
n[P ′]] ≡ S ≡ m[Z | n[Q′]] ≡ E2 � Z, as required.

(b) Let n[P]
pop〈n,h〉
−−−−−−−→ νp̃(n[P1] | P2) because P

pre exit〈n,h〉
−−−−−−−−−−−→ νp̃〈P1〉P2. By

applying rule (Exit)

P
exit〈n,h〉
−−−−−−−−→ E1 = νp̃(n[◦ | P1] | P2)) .

As P S Q, by induction it holds that for all processes Z there exists

E2 = ν q̃(n[◦ | Q1] | Q2) such that Q
exit〈n,h〉

========⇒ E2 and E1�Z ≡ S ≡ E2�
Z. So, choosing the particular case when Z is 0 we have n[Q]

pop〈n,h〉
−−−−−−−→

ν q̃(n[Q1] | Q2) and νp̃(n[P1] | P2) ≡ E1 � 0 ≡ S ≡ E2 � 0 ≡ ν q̃(n[Q1] |
Q2), as required.

(3) The remaining case, when νnP S νnQ because P S Q, is straightforward
and left to the reader.

Theorem Soundness. For any (pure) processes P and Q, if P ≈ Q then P ∼=
Q.

Proof. The relation ≈ is: (i) reduction closed, by Theorem 3.2; (ii) barb pre-
serving, by Lemma 3.3; (iii) contextual, by Theorem 4.5.

As a consequence, the bisimilarity represents a proof technique for reduction
barbed congruence.

The next step is to prove that the bisimilarity completely characterises reduction
barbed congruence. To this end we use a special context SPYα〈n, h1, h2, [·]〉, param-
eterised on actions α, for α ∈ {enter〈n, h〉, exit〈n, h〉, enter〈n, h〉}, which allows
us to spy on any process R plugged into the hole. This context is necessary when
proving completeness to guarantee that the processes R and m[R], appearing in
the universal quantification of the definition of the bisimilarity, do not reduce. The
context is defined so that for any process R, if α ∈ {enter〈n, h〉, exit〈n, h〉}, then

SPYα〈n, h1, h2, R〉 ⇓pop〈n,hi〉

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · M. Merro and M. Hennessy

and similarly, for any name m, if α = enter〈n, h〉, then

m[SPYα〈n, h1, h2, R〉] ⇓pop〈n,hi〉

for i ∈ {1, 2}. The ability to spy on R derives from the fact that one of the two
barbs is lost when process R performs any action.

We define our spying contexts using a straightforward form of internal choice.

Definition 4.7. Given any (pure) processes P and Q we define

P ⊕Q
def= νr(open〈r〉.P | open〈r〉.Q | r[open〈r〉])

with r 6∈ fn(P,Q).

Note that, up to structural congruence

P ⊕Q
τ−−→ P | νr(open〈r〉.Q)

P ⊕Q
τ−−→ Q | νr(open〈r〉.P)

and for virtually any behavioural equivalence and any process R, νr(open〈r〉.R) =
0.

Definition Spy cages.

(1) If α ∈ {enter〈n, h〉, exit〈n, h〉} then

SPYα〈n, h1, h2, [·]〉
def= νz

(
(z[out〈n, h1〉] | [·])⊕ (z[out〈n, h2〉] | [·])

)
(2) If α = enter〈n, h〉 then

SPYα〈n, h1, h2, [·]〉
def= (out〈n, h1〉 | [·])⊕ (out〈n, h2〉 | [·]).

The above spy cages are formally multi-hole contexts [Sangiorgi and Walker 2001a]
as the same hole occurs more than once (in this case, twice). The following result
formally states the above mentioned property of the spy cages.

Lemma 4.9. Let C[·] be a static context, R a process, n a name, and h1, h2 fresh
names. Then:

(1) If C[SPYα〈n, h1, h2, R〉]
τ−−→ P , with α ∈ {enter〈n, h〉, exit〈n, h〉}, and

P ⇓pop〈n,hi〉, for i ∈ {1, 2}, then there is a static context C ′[·] such that
P = C ′[SPYα〈n, h1, h2, R〉].

(2) If C[m[SPYα〈n, h1, h2, R〉]]
τ−−→P , α=enter〈n, h〉, P ⇓pop〈n,hi〉, and i ∈ {1, 2},

then there is a static context C ′[·] such that P=C ′[m[SPYα〈n, h1, h2, R〉]].

Proof. We prove the first the part; the second part is similar. The construction
of SPYα〈n, h1, h2, R〉 assures that if C[SPYα〈n, h1, h2, R〉]

τ−−→ P , then either there
is an arbitrary context C ′ such that P = C ′[SPYα〈n, h1, h2, R〉], or P = C[P ′]
where

SPYα〈n, h1, h2, R〉
τ−−→ P ′.

But if SPYα〈n, h1, h2, R〉
τ−−→ P ′, then either P 6⇓pop〈n,h1〉 or P 6⇓pop〈n,h2〉, against

the hypotheses.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 23

When proving the completeness of ≈ with respect to ∼=, the notion of pop barb,
i.e. the ability of a process to perform a pop action, will be very useful. Actu-
ally, by virtue of Theorem 3.7, our completeness result will prove that ≈ contains
∼=pop. To this end we need a last lemma which allows us to remove the spy cages
SPYα〈n, h1, h2, ·〉, up to ∼=pop.

Lemma Cutting lemma. Let C1[·] and C2[·] be static contexts, P,Q and R
processes, and h1 and h2 fresh names.

(1) If C1[SPYα〈n, h1, h2, R〉] ∼=pop C2[SPYα〈n, h1, h2, R〉] then C1[R] ∼=pop C2[R].
(2) If P | R ∼=pop Q | R, with fn(R) ∩ fn(P,Q) = ∅, then P ∼=pop Q.

Proof. To prove Part 1 note that since ∼=pop is closed under restriction, we have
that:

ν(h1h2)(C1[SPYα〈n, h1, h2, R〉]) ∼=pop ν(h1h2)(C2[SPYα〈n, h1, h2, R〉]) .

As h1 and h2 are fresh,

ν(h1h2)Ci[SPYα〈n, h1, h2, R〉] ≡ Ci[ν(h1h2)SPYα〈n, h1, h2, R〉]

for i ∈ {1, 2}. By exhibiting an appropriate bisimulation it is easy to prove that

ν(h1h2)SPYα〈n, h1, h2, R〉 ≈ R.

By Theorem 4.6, ≈ implies ∼=; by Theorem 3.7, ∼= and ∼=pop coincide. These
results imply that

Ci[ν(h1h2)SPYα〈n, h1, h2, R〉] ∼=pop Ci[R]

for i ∈ {1, 2}, and hence, by transitivity, C1[R] ∼=pop C2[R], as required.
To prove Part 2 we set r̃ = fn(R); it is straightforward to prove ν r̃R ≈ 0, from

which ν r̃R ∼=pop 0 follows. Finally, since fn(R)∩ fn(P,Q) = ∅ and ∼=pop is preserved
by restriction we get:

P ∼=pop P | ν r̃R ∼=pop ν r̃(P | R) ∼=pop ν r̃(Q | R) ∼=pop Q | ν r̃R ∼=pop Q

as required.

Now, everything is in place to prove our main result.

Theorem Characterisation. The bisimilarity and the reduction barbed con-
gruence coincide.

Proof. By Theorem 4.6 the bisimilarity is contained in the reduction barbed
congruence. As to the completeness part, by Theorem 3.7, it suffices to prove that
the relation

S = {(P,Q) : P ∼=pop Q}
is a bisimilarity. We recall that

P ⊕Q
τ−−→ νr(P | open〈r〉.Q | 0)

P ⊕Q
τ−−→ νr(open〈r〉.P | Q | 0) .

As r 6∈ fn(P,Q) and νr(open〈r〉.R) ∼=pop 0 (the two processes are trivially bisimilar),
it follows that P ⊕ Q

τ−−→∼=pop P and P ⊕ Q
τ−−→∼=pop Q. In the remainder of the

proof we use Lemma 3.6 without comment.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · M. Merro and M. Hennessy

Let us first consider the three possible higher-order actions P
α−−→ E1:

(1) Let P
α−−→ E1 = νp̃(n[◦ | P1] | P2), with α = enter〈n, h〉. We want to

conclude that for all processes R there is a matching move Q
enter〈n,h〉

=========⇒ E2

such that E1 �R S E2 �R. Given a process R we define:

CαR[·] def= [·]
∣∣ n[in〈n, h〉.(SPYα〈n, h1, h2, R〉 ⊕ a[out〈n, h3〉])]

with a, hi fresh. As P ∼=pop Q, it follows that CαR[P] ∼=pop CαR[Q]. So, if we
define C1[·] = νp̃(n[[·] | P1] | P2), then

CαR[P]
τ−−→ νp̃(n[P1 | (SPYα〈n, h1, h2, R〉 ⊕ a[out〈n, h3〉])] | P2)
τ−−→ νp̃(n[P1 | νp(SPYα〈n, h1, h2, R〉 | open〈p〉.a[out〈n, h3〉] | 0)] | P2)

≡ νp̃(n[P1 | SPYα〈n, h1, h2, R〉 | νp(open〈p〉.a[out〈n, h3〉])] | P2)
∼=pop νp̃(n[SPYα〈n, h1, h2, R〉 | P1] | P2)
= C1[SPYα〈n, h1, h2, R〉]

then there is a process Z such that

CαR[Q]
τ−−→

∗
Z and C1[SPYα〈n, h1, h2, R〉] ∼=pop Z.

As a consequence, Z⇓pop〈n,h1〉, Z⇓pop〈n,h2〉, and Z 6⇓pop〈n,h3〉. This implies that

in the reductions sequence CαR[Q]
τ−−→

∗
Z the prefix in〈n, h〉 is consumed.

More precisely, by Lemma 4.9(1) there exist static contexts C ′[·], C ′′[·] and
C2[·], where names a, h1, h2, and h3 do not occur free, such that:

CαR[Q] = Q | n[in〈n, h〉.(SPYα〈n, h1, h2, R〉 ⊕ a[out〈n, h3〉])]
τ−−→

∗ τ−−→ C ′[SPYα〈n, h1, h2, R〉 ⊕ a[out〈n, h3〉]]
τ−−→

∗ τ−−→ C ′′[νp(SPYα〈n, h1, h2, R〉 | open〈p〉.a[out〈n, h3〉] | 0)]
τ−−→

∗
C2[νp(SPYα〈n, h1, h2, R〉 | open〈p〉.a[out〈n, h3〉] | 0)]

= Z
≡ C2[SPYα〈n, h1, h2, R〉 | νp(open〈p〉.a[out〈n, h3〉])]
∼=pop C2[SPYα〈n, h1, h2, R〉]

Let E2
def= C2[◦]. By Lemma 4.10(1), we have E1 � R = C1[R] ∼=pop C2[R] =

E2 �R. It remains to show that Q
enter〈n,h〉

=========⇒ E2.
Examining the above reductions sequence from CαR[Q] we derive that

Q
τ−−→

∗ enter〈n,h〉
−−−−−−−−−→ C ′[◦] τ−−→

∗
C2[◦],

and therefore we have the required corresponding action Q
enter〈n,h〉

=========⇒ E2.

(2) Let P
α−−→ E1 = νp̃(n[◦ | P1] | P2), with α = exit〈n, h〉. Again we want to

conclude that for all processes R there is a a matching move Q
exit〈n,h〉

========⇒ E2

such that E1 � R S E2 � R. The proof strategy is the same as in the first
case except that here, given R, we use the context CαR[·] defined as

n[[·] | SPYα〈n, h1, h2, R〉]
∣∣ out〈n, h〉.(a[b[out〈a, h3〉]]⊕ a[b[out〈a, h4〉]])

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 25

with a, b, hi fresh. Again we have CαR[P] ∼=pop CαR[Q]. So, if we define C1[·] =
νp̃(n[[·] | P1] | P2), then

CαR[P]
τ−−→ τ−−→∼=pop C1[SPYα〈n, h1, h2, R〉] | a[b[out〈a, h3〉]]

then there is a process Z such that

CαR[Q]
τ−−→

∗
Z and C1[SPYα〈n, h1, h2, R〉] | a[b[out〈a, h3〉]] ∼=pop Z.

As a consequence, Z⇓pop〈n,h1〉, Z⇓pop〈n,h2〉, Z⇓pop〈a,h3〉, and Z 6⇓pop〈a,h4〉. This

implies that in the reductions sequence CαR[Q]
τ−−→

∗
Z the prefix out〈n, h〉

is consumed. More precisely, by Lemma 4.9(1) there exist static contexts
C ′[·], C ′′[·] and C2[·] where names a, b, hi do not occur free, such that:

CαR[Q] = n[Q | SPYα〈n, h1, h2, R〉] | out〈n, h〉.(a[b[out〈a, h3〉]]⊕ a[b[out〈a, h4〉]])
τ−−→

∗ τ−−→ C′[SPYα〈n, h1, h2, R〉] | (a[b[out〈a, h3〉]]⊕ a[b[out〈a, h4〉]])
τ−−→

∗ τ−−→ C′′[SPYα〈n, h1, h2, R〉] | νp(a[b[out〈a, h3〉] | open〈p〉.a[b[out〈a, h4〉]] | 0)]
τ−−→

∗
C2[SPYα〈n, h1, h2, R〉] | νp(a[b[out〈a, h3〉] | open〈p〉.a[b[out〈a, h4〉]] | 0)]

= Z
∼=pop C2[SPYα〈n, h1, h2, R〉] | a[b[out〈a, h3〉]].

Let E2
def= C2[◦]. By Lemmas 4.10(1) and 4.10(2), we obtain

E1 �R = C1[R] ∼=pop C2[R] = E2 �R.

Thus, from CαR[Q] we can derive Q
exit〈n,h〉

========⇒ E2, as required.

(3) Let P
α−−→ E1 = νp̃(n[◦ | P1] | P2), with α = enter〈n, h〉. Again we need to

find some E2 such that Q
enter〈n,h〉

=========⇒ E2 and E1�m[R] S E2�m[R]. Given
R, this time we use the context

Cαm[R][·]
def= [·]

∣∣ m[in〈n, h〉.(SPYα〈n, h1, h2, R〉 ⊕ out〈n, h3〉)]

with hi fresh. Arguing as usual from Cαm[R][P] ∼=pop Cαm[R][Q], if we define
C1[·] = νp̃(n[[·] | P1] | P2), we know that since

Cαm[R][P]
τ−−→ τ−−→∼=pop C1[m[SPYα〈n, h1, h2, R〉]]

there is a process Z such that

Cαm[R][Q]
τ−−→

∗
Z and C1[m[SPYα〈n, h1, h2, R〉]] ∼=pop Z.

As a consequence, Z⇓pop〈n,h1〉, Z⇓pop〈n,h2〉, and Z 6⇓pop〈n,h3〉. This implies that

in the reductions sequence Cαm[R][Q]
τ−−→

∗
Z the prefix in〈n, h〉 is consumed.

More precisely, this time by Lemma 4.9(2), there exist static contexts C ′[·], C ′′[·]
and C2[·], where names hi do not occur free, such that:

Cαm[R][Q] = Q | m[in〈n, h〉.(SPYα〈n, h1, h2, R〉 ⊕ out〈n, h3〉)]
τ−−→

∗ τ−−→ C ′[m[SPYα〈n, h1, h2, R〉 ⊕ out〈n, h3〉]]
τ−−→

∗ τ−−→ C ′′[m[νp(SPYα〈n, h1, h2, R〉 | open〈p〉.out〈n, h3〉 | 0)]]
τ−−→

∗
C2[m[νp(SPYα〈n, h1, h2, R〉 | open〈p〉.out〈n, h3〉 | 0)]]

= Z
∼=pop C2[m[SPYα〈n, h1, h2, R〉]]

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · M. Merro and M. Hennessy

Let E2
def= C2[◦]. By Lemma 4.10(1) we have

E1 �m[R] = C1[m[R]] ∼=pop C2[m[R]] = E2 �m[R].

An analysis of the above reductions gives

Q
τ−−→

∗ enter〈n,h〉
−−−−−−−−−→ C ′[◦] τ−−→

∗
C2[◦] = E2,

as required.

The remaining cases concern the simpler first-order actions; there are eight
cases in all. Here it will be useful to write h ⊕ h′ as an abbreviation for
f [νz(z[out〈f, h〉])]⊕f [νz(z[out〈f, h′〉])] where f is always assumed to be fresh.

(4) Let P
α−−→ P ′, with α = in〈n, h〉. We want to conclude that there is Q′ such

that Q
in〈n,h〉

======⇒ Q′ and P ′ S Q′. We define:

Cα[·] def= a[[·] | out〈n, h1〉.open〈a〉]
∣∣ n[in〈n, h〉]

∣∣ out〈n, h1〉.open〈a〉.(h2⊕h3)

with a, hi fresh. From P ∼=pop Q we know that Cα[P] ∼=pop Cα[Q]. So, if

Cα[P]
τ−−→ n[a[P ′ | out〈n, h1〉.open〈a〉]]

∣∣ out〈n, h1〉.open〈a〉.(h2 ⊕ h3)
τ−−→ n[]

∣∣ a[P ′ | open〈a〉]
∣∣ open〈a〉.(h2 ⊕ h3)

τ−−→ n[]
∣∣ P ′

∣∣ 0
∣∣ (h2 ⊕ h3)

τ−−→∼=pop P ′
∣∣ f [νz(z[out〈f, h2〉])]

(notice that n[] ∼=pop 0, see Section 6) then there is a process Z such that

Cα[Q]
τ−−→

∗
Z and P ′ | f [νz(z[out〈f, h2〉])] ∼=pop Z.

As a consequence, Z ⇓pop〈f,h2〉 and Z 6⇓pop〈f,h3〉. This implies that in the reduc-

tions sequence Cα[Q]
τ−−→

∗
Z the whole context Cα[·] is consumed (up to ∼=pop)

except for f [νz(z[out〈f, h2〉])]. More precisely, as n[] ∼=pop 0, there exist Q1,
Q2, Q3, Q

′ such that:

Cα[Q] = a[Q | out〈n, h1〉.open〈a〉]
∣∣ n[in〈n, h〉]

∣∣ out〈n, h1〉.open〈a〉.(h2 ⊕ h3)
τ−−→

∗ τ−−→ n[a[Q1 | out〈n, h1〉.open〈a〉]]
∣∣ out〈n, h1〉.open〈a〉.(h2 ⊕ h3)

τ−−→
∗ τ−−→ n[]

∣∣ a[Q2 | open〈a〉]
∣∣ open〈a〉.(h2 ⊕ h3)

τ−−→
∗ τ−−→ n[] | Q3 | (h2 ⊕ h3)

τ−−→
∗

n[] | Q′ | νp(f [νz z[out〈f, h2〉]] | open〈p〉.f [νzz[out〈f, h3〉]] | 0)
= Z

∼=pop Q′ | f [νz(z[out〈f, h2〉])]

where Q
τ−−→

∗ in〈n,h〉
−−−−−−→ Q1

τ−−→
∗

Q2
τ−−→

∗
Q3

τ−−→
∗

Q′. By Lemma 4.10(2) we
obtain P ′ ∼=pop Q′, as required.

(5) Let P
α−−→ P ′, with α = in〈n, h〉. Again we need to find some Q′ such that

Q
in〈n,h〉

======⇒ Q′ and P ′ S Q′. The argument is the same as in the previous
case, this time using the context Cα[·] defined as

n[[·] | open〈n, h1〉.(h2 ⊕ h3)]
∣∣ a[in〈n, h〉.out〈n, h4〉]

∣∣ | out〈n, h4〉.open〈n, h1〉
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 27

with a, hi fresh. Again, Cα[P] ∼=pop Cα[Q]. So, if

Cα[P]
τ−−→ n[a[out〈n, h4〉] | P ′ | open〈n, h1〉.(h2 ⊕ h3)]∣∣ out〈n, h4〉.open〈n, h1〉
τ−−→ n[P ′ | open〈n, h1〉.(h2 ⊕ h3)]

∣∣ a[]
∣∣ open〈n, h1〉

τ−−→ P ′ | (h2 ⊕ h3)
∣∣ a[]

τ−−→ P ′
∣∣ f [νz(z[out〈f, h2〉])]

∣∣ a[]
∼=pop P ′

∣∣ f [νz(z[out〈f, h2〉])]

we know that there is a process Z such that

Cα[Q]
τ−−→

∗
Q′ and P ′ | f [νz(z[out〈f, h2〉])] ∼=pop Z.

As a consequence, Z ⇓pop〈f,h2〉 whereas Z 6⇓pop〈f,h3〉. This implies that in the

reduction sequence Cα[Q]
τ−−→

∗
Z the whole context Cα[·] is consumed (up to

∼=pop) except for f [νz(z[out〈f, h2〉])]. More precisely, as a[] ∼=pop 0, there exist
Q1, Q2, and Q3 such that:

Cα[Q] = n[Q | open〈n, h1〉.(h2 ⊕ h3)]
∣∣ a[in〈n, h〉.out〈n, h4〉]

∣∣
out〈n, h4〉.open〈n, h1〉

τ−−→
∗ τ−−→ n[Q1 | open〈n, h1〉.(h2 ⊕ h3)

∣∣ a[out〈n, h4〉]]
∣∣ out〈n, h4〉.open〈n, h1〉

τ−−→
∗ τ−−→ n[Q2 | open〈n, h1〉.(h2 ⊕ h3)] | a[] | open〈n, h1〉

τ−−→
∗ τ−−→ Q3 | (h2 ⊕ h3) | a[]

τ−−→
∗ τ−−→ Q′ | νp(f [νz z[out〈f, h2〉] | open〈p〉.f [νz z[out〈f, h3〉]]] | 0) | a[]

= Z
∼=pop Q′ | f [νz(z[out〈f, h2〉])]

where Q
τ−−→

∗ in〈n,h〉
−−−−−−→ Q1

τ−−→
∗

Q2
τ−−→

∗
Q3

τ−−→
∗

Q′. By Lemma 4.10(2) we
can conclude that P ′ ∼=pop Q′, as required.

(6) The six remaining cases are similar, except that we need an appropriate context.
These are detailed as follows:
(a) for α = pop〈n, h〉 use

Cα[·] def= [·]
∣∣ out〈n, h〉.(h1 ⊕ h2)

with h1 and h2 fresh.
(b) for α = out〈n, h〉 use

Cα[·] def= [·]
∣∣ n[a[out〈n, h〉.open〈a〉]]

∣∣ open〈a〉.(h1 ⊕ h2)

with a, h1 and h2 fresh.
(c) for α = out〈n, h〉 use

Cα[·] def= n[a[[·] | open〈a〉]]
∣∣ out〈n, h〉.open〈a〉.(h1 ⊕ h2)

with a, h1 and h2 fresh.
(d) for α = open〈n, h〉 use

Cα[·] def= [·]
∣∣ n[open〈n, h〉.(h1 ⊕ h2)]

with h1 and h2 fresh.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · M. Merro and M. Hennessy

(e) for α = open〈n, h〉 use

Cα[·] def= n[[·]]
∣∣ open〈n, h〉.(h1 ⊕ h2)

with h1 and h2 fresh.
(f) for α = free〈n, h〉 use

Cα[·] def= [·]
∣∣ open〈n, h〉.(h1 ⊕ h2)

with h1 and h2 fresh.

Remark The role of passwords. The distinguishing contexts in the proof
above can be defined without the use of passwords, except when α is a enter action.
In this case however the use of fresh passwords is essential. In order to test that a
process can allow entry to an ambient we must send it an ambient which contains
a fresh password. Probing for this fresh password ensures that the ambient we have
sent has indeed been received at its destination. Without fresh passwords, and the
new semantics for out, there would be no distinguishing feature of the ambient sent
which could be used in the probe to ensure that that ambient has indeed been received.

Remark The role of out. Note also that our rules for out, different from
those in [Levi and Sangiorgi 2000], have played a crucial role in the distinguishing
contexts for both enter and in. The alternative semantics for out〈n〉 given in [Levi
and Sangiorgi 2000] uses an auxiliary action ?n for which it is difficult to conceive
of a distinguishing context.

Remark 4.14. The proof that the bisimilarity coincides with reduction barbed
congruence relies on the fact that ≡ is transitive; this is necessary to conclude
that a bisimulation up to ≡ is actually a bisimulation. But we did not require the
transitivity of ≈.

Corollary 4.15. The bisimilarity is an equivalence relation.

Proof. Because the bisimilarity coincides with reduction barbed congruence
which is an equivalence relation.

5. ADDING COMMUNICATION

Both Mobile Ambients, [Cardelli and Gordon 2000], and Safe Ambients, [Levi and
Sangiorgi 2000], allow local communication inside ambients. The basic idea is to
have an output process such as 〈W 〉, which outputs the message W , and an input
process such as (x).Q, which on receiving a message binds it to x in Q which then
executes. The basic reduction rule therefore takes the form

(x).Q
∣∣ 〈W 〉 −→ Q{W/x}

∣∣ P.

where {W / x} denotes standard substitution of variable x with W , avoiding name
and variable captures. In this section we show that our results can be extended to
a message-passing setting.

The syntax of the message-passing SAP is given in Table VIII. The prefixing
operator C.P of Section 2 is generalised to G.P , where G is a syntactic category of
guards. This may take the form:
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 29

Names: n, h, . . . ∈ N

Variables: x, y, . . . ∈ X

Values:
W ::= x variable∣∣ C capability∣∣ W1.W2 path∣∣ ε empty path

Guards:
G ::= W expression∣∣ (x) input∣∣ 〈W 〉 output

Message-passing processes:
P, Q, R ::= 0 nil process∣∣ P1 | P2 parallel composition∣∣ νnP restriction∣∣ G.P prefixing∣∣ n[P] ambient∣∣ !G.P replication

Concretions:

K ::= νp̃〈E〉F movement concretion∣∣ νp̃〈W 〉E buffer concretion

Extended message-passing processes:

E, F ::= ◦ placeholder∣∣ {W} buffer containing W∣∣ 0 nil process∣∣ E1 | E2 parallel composition∣∣ νnE restriction∣∣ G.E prefixing∣∣ n[E] ambient∣∣ !G.E replication

Table VIII. The Message-passing Calculus SAP

—W.P , a direct generalisation of C.P . Here W is any path, or sequence, of capa-
bilities. These paths will be the messages allowed in our systems.

—〈W 〉.P , representing the synchronous output of the message W ; the process P
can not be executed until the message W has been consumed. As discussed in
[Castagna and Zappa Nardelli 2002; Bugliesi et al. 2001] this is not unrealistic
because communication is always local.

—(x).Q, representing input of a message to be bound to x in Q.

We now have variables in our language, with the construct (x).Q binding x
in Q. This gives rise in the standard manner to the notions of free and bound

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · M. Merro and M. Hennessy

(Pre-Output)
−

〈W 〉.E
〈−〉
−−−−→ 〈W 〉E

(Input)
−

(x).E
(W)
−−−−→ E{W/x}

(Path)
W1.(W2.E)

α−−→ F

(W1.W2).E
α−−→ F

(τ Eps)
−

ε.E
τ−−→ E

(τ Comm)
E

〈−〉
−−−−→ νp̃〈W 〉E′ F

(W)
−−−−→ F ′ fn(F) ∩ {p̃} = ∅

E | F
τ−−→ νp̃(E′ | F ′)

F | E
τ−−→ νp̃(F ′ | E′)

(Output)
E

〈−〉
−−−−→ νp̃〈W 〉E′

E
〈output〉
−−−−−−−→ νp̃({W} | E′)

Table IX. Labelled Transition System - Communication

variables, fv(·) and bv(·), α-equivalence and substitutions in which free occurrences
of variables are not captured; we avoid spelling out the details. A process E is said
closed if fv(E) = ∅; otherwise is said open.

The labelled transition system is enriched by introducing new rules for input and
output transitions, and enlarging the extended processes with a new construct {W}
to denote a buffer containing the value W (see Table VIII):

—E
(W)
−−−−→ F means that the process E may receive the message W and continue

as F

—E
〈−〉
−−−−→ νp̃〈W 〉F means that E may send the message W which shares the

bound names p̃ with the residual F

—E
〈output〉
−−−−−−−→ νp̃({W} | F) means that E sends the message W which shares the

bound names p̃ with the residual F .

In Table IX we give the defining rules for the operational semantics of these
constructs, which should be added to those of Tables V to obtain the lts E

α−−→ F
for closed processes. The rules are straightforward and require no comment except
for action 〈output〉 which does not have structural rules, as for enter, enter, and
exit.

In order to generalise our labelled bisimilarity to the message-passing calculus,
we extend Definition 4.3 to buffers. Let R be any open pure process such that
fv(R) = {x}; intuitively here x represents the variable for receiving the message W

emitted via an output action E
〈output〉
−−−−−−−→ νp̃({W} | F). Then, we define

{W}�R
def= R{W/x}.

The definition of bisimilarity ≈ must be extended by adding the following clause
for outputs (the input case is included in the first-order clause of the bisimilarity):

4 If P
〈output〉
−−−−−−−→ E1 then for any open process R such that fv(R)={x} there is a

extended closed process E2 such that Q
〈output〉

=======⇒ E2 and E1 �R S E2 �R.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 31

We now outline how to extend Theorem 4.11 to this setting, relating the bisim-
ilarity to the reduction barbed congruence. First let us be quite precise as to how
Definition 2.5 extends to our message-passing language.

Definition Reduction barbed congruence. Reduction barbed congruence,
written ∼=o is the largest symmetric relation over message-passing pure processes
which

—is contextual
—when restricted to closed processes is reduction closed
—when restricted to closed processes is barb preserving.

Defined in this manner there is an immediate mismatch between ∼=o and the
bisimilarity ≈; the former is also defined for open terms while the latter only applies
to closed terms. However we can rectify this by generalising ≈ to open terms in
the standard manner.

Definition 5.2. For any two pure processes P, Q in the message-passing SAP
we write P ≈o Q if for all closing substitutions σ, mappings from variables to
names, we have Pσ ≈ Qσ.

Theorem 5.3. The relation ≈o is contextual in the message-passing SAP.

Proof. A straightforward extension of Theorem 4.5 considering each operator
in turn. For example to show that it is preserved by input prefixing it is sufficient
to show that

P ≈o Q implies (x).P ≈ (x).Q

for all processes such that fv(P) ∪ fv(Q) ⊆ {x}. However the hypothesis says that
P{W/x} ≈ Q{W/x} for arbitrary messages W which is all that is required to prove

the conclusion; the only possible moves from (x).P are of the form (x).P
(W)
−−−−→

P{W/x}.
For all other operators it is sufficient to consider only closed terms and so the

reasoning is very similar to that in Theorem 4.5. The main novelty consists in
using the communication rule (τ Comm) to prove that ≈o is preserved by parallel
composition.

This, together with the straightforward extension of Lemma 3.3 to the message-
passing calculus, immediately establishes that ≈o is contained in ∼=o. In fact the
converse is also true.

Theorem 5.4. Relations ∼=o and ≈o coincide in the message-passing SAP.

Proof. For closed processes the proof that ∼=o is contained in ≈o follows from
a straightforward extension of Theorem 3.7 to the message-passing calculus. It
suffices to prove that the relation

S = {(P,Q) : P ∼=pop Q, P, Q processes}

is a bisimilarity, where ∼=pop is defined over open terms. The main difference with
respect to the proof of Theorem 4.11 is that we have to consider the cases for input
and output actions.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · M. Merro and M. Hennessy

(1) Let P
(M)
−−−−→ P ′; we want to conclude that there is Q′ such that Q

(M)
====⇒ Q′

and P ′ S Q′. As a distinguishing context take:

Cα[·] def= [·] | 〈M〉.(h1 ⊕ h2)

with h1 and h2 fresh.

(2) Let P
〈output〉
−−−−−−−→ E1; we want to conclude that for any open term R such that

fv(R)={x} there is E2 such that Q
〈output〉

=======⇒ E2 and E1 � R S E2 � R. As
a distinguishing context take:

CαR[·] def= [·] | (x).(SPYβ〈a, h1, h2, R〉 ⊕ a[b[out〈a, h3〉]]))

with a, b, hi fresh, and β ∈ {enter〈n, h〉, exit〈n, h〉}.

So we can conclude that for closed processes P ∼=o Q implies P ≈o Q.
Now consider two arbitrary open processes P,Q such that P ∼=o Q. We need to

show that Pσ ≈ Qσ for any closing substitution σ. Let x1, x2, . . . , xn be all the
variables free in both P and Q. From P ∼=o Q we know that (x1).(x2).(xn).P ∼=o

(x1).(x2).(xn).Q and since these are closed terms we can conclude that

(x1).(x2).(xn).P ≈ (x1).(x2).(xn).Q .

But now examining the behaviour of these processes with respect to the input
actions (σ(x1)), (σ(x2)), . . . we can conclude that Pσ ≈ Qσ

We end this section with two comments.

Notice that we have a more restricted form of message than in [Cardelli and
Gordon 2000; Levi and Sangiorgi 2000]. In particular we do not allow ambient
names to be transmitted. This has been a deliberate choice as, apriori, when
the name is transmitted the recipient gets considerable control over that ambient.
Moreover, much of the power of name transmission can still be captured in our
language.

The second comment regards the formalisation of output actions using νñ〈M〉E.
As these actions are higher-order, the reader might think of avoiding the universal
quantification over R by using a simpler rule for output actions such as

(Wrong Output)
−

〈W 〉.E
〈W 〉
−−−−→ E

.

Notice that with the rule above we would be obliged to introduce bound output

actions of the form
νn〈in〈n,h〉〉
−−−−−−−−−−→. However, such actions would not be observable

as there is no context which is capable of recognising whether or not a process can

perform them. Intuitively, this is because in the action
νn〈in〈n,h〉〉
−−−−−−−−−−→ the name n

is private and no context may use n as an ambient name to recognise the action.
This would make a serious problem when proving that the bisimilarity is contained
in reduction barbed congruence.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 33

6. EXAMPLES

SAP is an expressive language. Roughly speaking, we can consider Levi and San-
giorgi’s Safe Ambients as a sub-language of SAP, up to the different operational
semantics for out. However, due to this difference there is no obvious encoding
of MA (or SA) into SAP. To better understand this statement, consider Levi and
Sangiorgi’s encoding of MA into SA. Basically, every MA-process n[P] is translated
into a SA-process n̂[P], where ambient n contains the encoding of P , i.e. P̂ , in par-
allel with the replicated co-capabilities !in〈n〉, !out〈n〉, and !open〈n〉. Notice that
all co-capabilities are within the ambient n, and migrate with it. Now, it should be
evident that in a similar encoding of MA into SAP the !out〈n〉 capability should
not be (statically) placed inside n, but rather in any ambient to which n can mi-
grate. This makes the encoding quite difficult, especially when dealing with private
ambients.

In the sequel we will outline how our results could form the basis for reasoning
techniques for ambients. Some examples programmed in [Levi and Sangiorgi 2000]
will be analysed using our bisimulations. We will also give two examples, similar
to those given in [Cardelli and Gordon 2000; Levi and Sangiorgi 2000], which show
that the existence of passwords can be of help when designing ambients. Although,
we do not claim that passwords add extra expressive power, they are a very useful
programming feature.

Routable packets. In [Cardelli and Gordon 2000], Cardelli and Gordon present a
protocol to route a packet to various destinations. The content P and the desti-
nation W are contained in an ambient route. The act of sending P to destination
W is realised by the following steps. Ambient route enters inside the packet and
is opened. This liberates a message 〈W 〉, which is then consumed so that the path
W can be executed. At the end, the packet, which contains P , has reached the
destination. Here is the program in Mobile Ambients:

PKT
def= pkt[!(x).x | !open〈route〉] (the packet)

〈P,W 〉 def= route[in〈pkt〉.〈W 〉 | P] (P is routed to destination W)

As already pointed out in [Levi and Sangiorgi 2000], the protocol above works
only under severe constraints on both process P and on the environment. Possible
dangers are:

(1) process P may interfere with the path to follow;
(2) two routers might enter pkt and interfere with the path to follow;
(3) pkt and route might be opened by the environment.

These three problems are addressed in [Levi and Sangiorgi 2000] by providing a new
protocol along the lines of the taxi protocol in [Cardelli and Gordon 1999]. Below
we adapt Levi and Sangiorgi’s protocol making use of passwords. We replace 〈P,W 〉
with 〈P,W, k〉 where k represents the password that must be used by the target
ambient to open, and therefore access, the desired packet. Passwords allows the
target ambient to distinguish between different packets addressed to it. For the
sake of simplicity we rename ambients pkt and route with p and r, respectively.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · M. Merro and M. Hennessy

Moreover, as in [Cardelli and Gordon 2000], to avoid interferences from P on the
path to follow, we enclose P in an ambient d.

PKT
def= !p[in〈p〉.open〈r〉.(x).x]

〈P,W, k〉 def= (νd)r[in〈p〉.open〈r〉.〈W.open〈d〉〉.d[open〈d〉.open〈p, k〉.P]]

Notice that in our protocol, unlike [Cardelli and Gordon 2000; Levi and Sangiorgi
2000], the ambient p is replicated to increase the parallelism. Now, an ambient p
represents a one-time “envelope” to deliver a package P at destination W . The
“envelope” p is opened by the recipient by means of the password k. Notice that
this example uses full replication but it can be easily rewritten in terms of replicated
prefixing.

Crossing a Firewall. A protocol is discussed in [Cardelli and Gordon 2000] for
controlling accesses through a firewall. Again our version is inspired by that in
[Levi and Sangiorgi 2000] but now passwords are used. Ambient f represents the
firewall and hf is the password to cross it; ambient a represents a trusted agent
inside which is a process Q that is supposed to cross the firewall. ha is the password
to access a. The firewall sends into the agent a pilot ambient k with the ability
in〈f, hf 〉 to enter the firewall. The agent acquires the capability by opening k and
then enters f . The process Q carried by the agent is finally liberated inside the
firewall by the opening of ambient a. Here is the protocol:

FW
def= νhf

(
f [in〈f, hf 〉.open〈a〉.P | k[out〈f, hf 〉.in〈a, ha〉.open〈k〉.〈in〈f, hf 〉〉]]∣∣ out〈f, hf 〉

)
AG

def= a[in〈a, ha〉.open〈k〉.(x).x.open〈a〉.Q]

Note that here, unlike [Levi and Sangiorgi 2000], the names f an a, of the firewall
and agent respectively, can be considered public information; the security of the
system resides in keeping the passwords hf and ha private.

Algebraic Laws. We now turn our attention to some algebraic laws which we
can justify straightforwardly using bisimulations. In [Levi and Sangiorgi 2000] it is
shown that by establishing a set of basic set of such laws between ambients non-
trivial reasoning can be carried out. Indeed most of our laws are taken directly
from that paper, or are simple modifications thereof. Here we show how they can
be established using bisimulations, rather than the more complicated contextual
reasoning in [Levi and Sangiorgi 2000]. The simplest example is

n[] = 0.

These two processes are bisimilar because the relation

{(n[0],0) , (0, n[0])}

is a trivial bisimulation; neither side can perform any action. Notice that this law
is not true in MA. On the contrary, an important law of MA, the perfect firewall
equation

(νn)n[P] ∼= 0

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 35

where n 6∈ fn(P), is not true in our setting, nor does it hold for the Safe Ambients
of [Levi and Sangiorgi 2000]. In fact, consider the case when P is given by

P = in〈k〉.P ′

with k 6= n and n 6∈ fn(P ′). Then the context

C[·] = [·] | k[in〈k〉.r[out〈k〉]] | out〈k〉
is capable of distinguishing the two processes. Indeed, when r 6∈ fn(P), we have
C[(νn)n[P]]⇓r whereas C[0]6⇓r. Roughly, this means that movements of secret
ambients are not visible in Mobile Ambients while they are in the presence of co-
capabilities.

However in our setting we can prove a more restrictive law:

n1[n2[P]] ≈ 0 with n1 6∈ fn(P)

Again, it suffices to prove that

{(n1[n2[P]] , 0) | n1 6∈ fn(P)} ∪ {(0 , n1[n2[P]]) | n1 6∈ fn(P)}
is a bisimulation since neither side can perform any external action.

Here are a collection of laws, most of which are taken from [Levi and Sangiorgi
2000].

Theorem 6.1.

(1) νh(m[in〈n, h〉.P] | n[in〈n, h〉.Q]) ≈ νh(n[Q | m[P]])
(2) k[m[in〈n, h〉.P] | n[in〈n, h〉.Q])] ≈ k[n[Q | m[P]]]
(3) νh(open〈m,h〉.P | m[open〈m,h〉.Q]) ≈ νh(P | Q)
(4) k[open〈m,h〉.P | m[open〈m,h〉.Q]] ≈ k[P | Q]
(5) νh(n[m[out〈n, h〉.Q]] | out〈n, h〉.P) ≈ νh(m[Q] | P)
(6) k[n[m[out〈n, h〉.Q]] | out〈n, h〉.P] ≈ k[m[Q] | P]
(7) n[

∏
i Gi.Pi] ≈ 0 if Gi ∈ {〈W̃ 〉, open〈n, h〉, out〈n, h〉}, for all i

(8) n[
∏

i Gi.Pi] ≈ 0 if Gi ∈ {(x̃), open〈n, h〉, out〈n, h〉}, for all i

(9) n[〈W 〉.P | (x).Q] ≈ n[P | Q{W/x}].
Proof. By exhibiting the appropriate bisimulation. In all cases the bisimulation

has a similar form:

S = {(LHS, RHS) , (RHS,LHS)}∪ ≈
where LHS, RHS denote the left hand side, right hand side respectively of the
identity. In the proof of parts 5 and 6 we require the law n[] ≈ 0.

These laws may now be used to prove our version of crossing a firewall:

Theorem 6.2. If ha 6∈ fn(P) and hf 6∈ fn(Q), then:

νha(AG | FW) ≈ ν(hahf)f [P | Q]

Proof. Similar to the proof of Equation (15) of [Levi and Sangiorgi 2000], but
now applying Laws 5, 1, 4, 9, 1, 4 of Theorem 6.1.

Note that because of the security of the system is only maintained by keeping the
passwords secret, in this law we have to restrict on these, rather than on the names
f and a.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · M. Merro and M. Hennessy

7. CONCLUSION AND RELATED WORK

In this paper we have developed a semantic theory of SAP, a variant of Levi and
Sangiorgi’s Safe Ambients where each capability may contain two components: the
target ambient name, and a second name which can be looked upon as either a
password or a port. This second component enhances the access protocol with a
form of validation for the credentials of incoming ambients as a preliminary step to
a registration protocol. An example of the practical relevance and the strong intu-
ition behind this mechanism is the negotiation of credentials that takes place when
connecting to a (wireless) LAN using DHCP, or to an ISP using PPP. Distributed
calculi that use an extra component to access administrative domains are quite com-
mon in the literature. For instance, in SafeDpi [Hennessy et al. 2003] parametrised
code may be sent between sites using ports, which are essentially higher-order
channels. A similar idea has already been used in the Seal Calculus [Castagna and
Zappa Nardelli 2002]. In NBA [Bugliesi et al. 2005], a disciplined version of Boxed
Ambients [Bugliesi et al. 2001], passwords play a central role in the definition of a
type system; essentially, the type of a passwords records information about those
ambients using that password. Finally, the notion of port in distributed calculi has
also been investigated in the Channel Boxed Ambients [Phillips 2005] for which
there already exists a distributed implementation [Phillips et al. 2004].

The paper focuses on bisimulation-based behavioural equivalences and more pre-
cisely on reduction barbed congruence, a slight variant of Milner and Sangiorgi’s
barbed congruence [Milner and Sangiorgi 1992] also called open barbed bisimilarity
[Sangiorgi and Walker 2001b]. Reduction barbed congruence, although formulated
with an equational approach, was first studied by Honda and Yoshida [1995] for
the π-calculus under the name of maximum sound theory .

The main results of the paper are

—an lts-based operational semantics for SAP
—a labelled bisimilarity which coincides with reduction barbed congruence
—a set of algebraic laws proved using our notion of bisimilarity.

A theory of Morris-style contextual equivalence for Mobile Ambients has been
already developed by Gordon and Cardelli in [Gordon and Cardelli 2002]. However,
although the theory is equipped with a context lemma which allows to consider only
contexts of a particular form, we believe that the verification of algebraic laws still
remain quite complicated. As an example the proof of the perfect firewall equation
in [Gordon and Cardelli 2002] is quite involved. In the same manner, the proofs in
[Levi and Sangiorgi 2000] of the algebraic laws for Safe Ambients using contextual
reasonings are definitely more complicated than our single-pair bisimulation proofs.

Higher-order labelled transition systems for Mobile Ambients can be found in
[Cardelli and Gordon 1996; Gordon and Cardelli 2002; Vigliotti 1999; Ferrari et al.
2001; Merro and Zappa Nardelli 2003]. A simple first-order lts for MA without
restriction is proposed by Sangiorgi in [Sangiorgi 2001]. Using this lts the author
defines an intensional bisimilarity for MA that separates terms on the basis of their
internal structure.

Our labelled transition system is inspired by that of [Levi and Sangiorgi 2000] for
Safe Ambients. The main difference is the treatment of the co-capability out; here
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 37

is exercised by the target computation space and not by the surrounding ambient;
this allows us

(1) to avoid the action ?n of [Levi and Sangiorgi 2000] for which it is difficult to
conceive of a distinguishing context;

(2) to have simpler proof of the contextuality of the bisimilarity (Theorem 4.5);
(3) to prevent Trojan horses given by migrating secret ambients unleashing inner

ambients without permission.

Somehow, both co-actions in〈n, h〉 and out〈n, h〉 represent entry point for ambients
coming from outside and inside n, respectively.

Our labelled transition system can be smoothly adapted to SA2 by removing pass-
words. The resulting bisimilarity is a sound proof techniques for reduction barbed
congruence in SA. However, completeness results for SA, similar to Theorem 4.11,
are very difficult to prove. The technical problem is due to the difficulty in con-
ceiving a distinguishing context for actions like enter〈n〉. Intuitively, in order to
test that a process can allow entry to an ambient n a context has to move some
ambient m into n. In SAP probing for this using fresh passwords ensures that
ambient m has indeed been accepted at n. Without fresh passwords there would be
no distinguishing feature of the particular ambient m which could be used in the
probe. Alternatively, instead of using passwords, one may think of equipping SA
with guarded choice à la CCS. We believe that in SA with guarded choice bisimilar-
ity coincides with reduction barbed congruence. The proof that bisimilarity implies
reduction barbed congruence is basically the same as here. The interesting part
is the converse where guarded choice plays a crucial role by allowing simple dis-
tinguishing contexts. As seen in Theorem 4.11 the only case where passwords are
essential is when dealing with the action enter〈n〉. In the presence of summation
an easy distinguishing context for enter〈n〉 is

[·]
∣∣ m[in〈n〉.SPYα〈n, h1, h2, R〉+ in〈a〉]

∣∣ a[in〈a〉.wrong[out〈a〉]]

where names a and wrong are fresh. However, a general implementation of guarded
choice is problematic as it involves non-local consensus decisions. For this reason we
prefer our calculus SAP, which we believe is a good basis for developing interesting
typing disciplines for mobile code using passwords, along the lines of [Bugliesi et al.
2005]. Even more, we think we can derive a labelled characterisation of typed
barbed congruence along the lines of [Hennessy et al. 2003].

The type systems of Levi and Sangiorgi [Levi and Sangiorgi 2000] to ensure
immobility and single-threadness can be easily adapted to SAP. However, due to
the different of semantics of out, , the notion of single-threadness à la Levi and
Sangiorgi does not necessarily guarantee the absence of grave interferences. For
instance, according to Levi and Sangiorgi, the SAP system

c[b[a[out〈b〉] | in〈k〉] | out〈b〉 | k[in〈k〉]]

should be considered single-thread, as every ambient has at most one firing ca-
pability. However, this system contains what can be considered a form of grave

2More precisely, SA with our operational semantics for out.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · M. Merro and M. Hennessy

interference, because the ambient b is shared by two different redexes which can
give rise to logically different interactions. The interference is due to the ambient
b which can engage two logically different interactions at the same time. Indeed,
either a will exit b, ending up in c, or b will move into k, with a inside. So, a type
system for single-threadness in SAP should be able to rule out similar situations.
As a first attempt, one could require that any ambient should only contain (i) either
an arbitrary number of parallel sub-ambients, possibly restricted; (ii) or a prefix
α.P , for some α and P . However, a type system of this kind would reject too
many single-thread processes. Thus, the definition of an appropriate type system
capturing single-threadness in SAP seems to be quite difficult.

The lts described in the current paper is a late version of that presented in the
extended abstract [Merro and Hennessy 2002], where arbitrary processes provided
by the environment were included in the lts as part of the label, and the definition
of bisimilarity was standard. The two formulations are equivalent. However, a late
lts allows the definition of both early and late bisimilarity. As already shown in
[Merro and Zappa Nardelli 2003] for MA, we can prove early and late bisimilarity
coincide also in our setting.

More recently, Jensen and Milner [Jensen and Milner 2004], based on previous
work by Leifer and Milner [Leifer and Milner 2000], developed a meta-theory for
distributed calculi to derive a minimal lts in such a way that the induced labelled
bisimilarity is a congruence by construction. We conjecture that the application of
those techniques to SAP will results in our early lts of [Merro and Hennessy 2002].

Taking inspiration from the current paper the first author, together with Francesco
Zappa Nardelli, developed a semantic theory for MA [Merro and Zappa Nardelli
2003; 2004]. The main differences with respect to [Merro and Zappa Nardelli 2003;
2004] are the following:

—SAP differs from MA in that the former has co-capabilities and passwords, both
features are essential to prove the characterisation result in SAP.

—In MA, unlike SAP, ambient mobility is asynchronous; no permission is required
to migrate into an ambient. As noticed in [Sangiorgi 2001], this may cause
a stuttering phenomenon in MA originated by ambients that may repeatedly
enter and exit another ambient. As stuttering cannot be observed in MA, any
successful characterisation of reduction barbed congruence in MA should not
observe stuttering [Sangiorgi 2001].

—As co-capabilities allow the observation of the movements of a private ambient,
the perfect firewall equation of MA does not hold in SAP, nor in SA. As a
consequence, any bisimilarity in MA that wants to capture this law must not
observe those movements.

—Higher-order actions in MA, unlike those in SAP, report the name of the mi-
grating ambient. For instance, in MA the action k.enter n says that ambient
k enters n. In MA, the knowledge of k is necessary to make the action observ-
able for the environment. This is not needed in SAP, because movements can be
observed by means of co-capabilities.

Apart from [Merro and Zappa Nardelli 2003; 2004], the bisimulation theory of
the current paper has inspired several labelled bisimilarity for different distributed
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 39

calculi such as Distributed π-calculus [Hennessy and Riely 1998], Seal [Vitek and
Castagna 1999], a Calculus for Mobile Resources [Godskesen et al. 2002], NBA
[Bugliesi et al. 2005], SafeDpi [Hennessy et al. 2003], and the Kell calculus [Schmitt
and Stefani 2004]. The corresponding bisimilarities can be found in [Hennessy et al.
2003; Castagna and Zappa Nardelli 2002; Godskesen et al. 2002; Bugliesi et al.
2005; Hennessy et al. 2003; Schmitt and Stefani 2004], respectively, although only
[Hennessy et al. 2003; Godskesen et al. 2002; Bugliesi et al. 2005; Hennessy et al.
2003; Schmitt and Stefani 2004] prove a characterisation result for a contextually
defined notion of equivalence.

Unyapoth and Sewell [Unyapoth and Sewell 2001] takes a different, more in-
tensional approach to define an equivalence for Nomadic Pict in that, in order to
establish correctness of a particular protocol, a novel notion of equivalence based on
coupled simulation tailored to accommodate code migration is identified. Although
having many interesting properties, such as being a congruence, this equivalence is
not shown to coincide with any independent contextually defined notion of equiva-
lence.

Finally, more recently, Safe Ambients have been equipped with an equation based
maximum sound theory à la Honda and Yoshida [Vigliotti and Phillips 2002].

ACKNOWLEDGMENT

We thank Julian Rathke, Davide Sangiorgi, and Francesco Zappa Nardelli for in-
sightful discussions on higher-order process calculi and ambient-calculi. We also
thank the anonymous referees for their very valuable remarks.

REFERENCES

Amadio, R., Castellani, I., and Sangiorgi, D. 1998. On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science 195, 291–324.

Bugliesi, M., Castagna, G., and Crafa, S. 2001. Boxed ambients. In Proc. 4th TACS. LNCS,

vol. 2215. Springer Verlag.

Bugliesi, M., Crafa, S., Merro, M., and Sassone, V. 2005. Communication interference in
mobile boxed ambients. To appear in the journal of Information and Computation. An extended

abstract appeared in Proc. FSTTCS’02, LNCS, Springer Verlag.

Cardelli, L. and Gordon, A. 1996. A commitment relation for the ambient calculus. Unpub-

lished notes.

Cardelli, L. and Gordon, A. 2000. Mobile ambients. Theoretical Computer Science 240, 1,
177–213. An extended abstract appeared in Proc. of FoSSaCS ’98.

Cardelli, L. and Gordon, A. D. 1999. Types for mobile ambients. In Proc. of the 26th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 79–92.

Castagna, G. and Zappa Nardelli, F. 2002. The seal calculus revisited: Contextual equivalence

and bisimilarity. In Proc. 22nd FSTTCS ’02. LNCS, vol. 2556. Springer Verlag.

Ferrari, G., Montanari, U., and Tuosto, E. 2001. A LTS semantics of ambients via graph
synchronization with mobility. In Proc. ICTCS. LNCS, vol. 2202. Springer Verlag.

Godskesen, J., Hildebrandt, T., and Sassone, V. 2002. A calculus of mobile resources. In

Proc. 10th CONCUR ’02. LNCS, vol. 2421. Springer Verlag.

Gordon, A. D. and Cardelli, L. 2002. Equational properties of mobile ambients. Journal of
Mathematical Structures in Computer Science 12, 1–38. An extended abstract appeared in

Proc. FoSSaCs ’99.

Hennessy, M., Merro, M., and Rathke, J. 2003. Towards a behavioural theory of access and

mobility control in distributed system. In Proc. 5th FoSSaCS ’03. LNCS. Springer Verlag.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · M. Merro and M. Hennessy

Hennessy, M., Rathke, J., and Yoshida, N. 2003. Safedpi: A language for controlling mobile

code. Computer Science Report 2003:02, University of Sussex. An extended abstract appeared
in the Proc. FOSSACS’04, volume 2987, Lecture Notes in Computer Science. Springer-Verlag

2004.

Hennessy, M. and Riely, J. 1998. A typed language for distributed mobile processes. In Proc.

25th POPL. ACM Press.

Honda, K. and Yoshida, N. 1994. Replication in Concurrent Combinators. In Proc. TACS’94.
LNCS, vol. 789. Springer Verlag.

Honda, K. and Yoshida, N. 1995. On reduction-based process semantics. Theoretical Computer
Science 152, 2, 437–486.

Jensen, O. H. and Milner, R. 2004. Bigraphs and mobile processes (revised). Tech. Rep. 580,
LFCS, Dept. of Comp. Sci., Edinburgh Univ. Feb. An extended abstract appeared in Conference

Record of 30th Symposium on Principles of Programming Languages, ACM Press, 2003.

Leifer, J. J. and Milner, R. 2000. Deriving bisimulation congruences for reactive systems. In
CONCUR 2000 - Concurrency Theory, 11th International Conference, University Park, PA,
USA, August 22–25, 2000, Proceedings. LNCS, vol. 1877. Springer-Verlag, 243–258.

Levi, F. and Sangiorgi, D. 2000. Controlling interference in ambients. An extended abstract
appeared in Proc. 27th Symposium on Principles of Programming Languages, ACM Press.

Merro, M. and Hennessy, M. 2002. Bisimulation congruences in safe ambients. In Proc. 29th
POPL ’02. ACM Press.

Merro, M. and Zappa Nardelli, F. 2003. Bisimulation proof methods for mobile ambients. In

Proc. ICALP. LNCS, vol. 2719. Springer Verlag.

Merro, M. and Zappa Nardelli, F. 2004. Behavioural theory for mobile ambients. In IFIP
TCS. Kluwer, 549–562.

Milner, R. 1989. Communication and Concurrency. Prentice Hall.

Milner, R. 1991. The polyadic π-calculus: a tutorial. Tech. Rep. ECS–LFCS–91–180, LFCS,

Dept. of Comp. Sci., Edinburgh Univ. Oct. Also in Logic and Algebra of Specification, ed. F.L.
Bauer, W. Brauer and H. Schwichtenberg, Springer Verlag, 1993.

Milner, R., Parrow, J., and Walker, D. 1992. A calculus of mobile processes, (Parts I and II).

Information and Computation 100, 1–77.

Milner, R. and Sangiorgi, D. 1992. Barbed bisimulation. In Proc. 19th ICALP. LNCS, vol.
623. Springer Verlag, 685–695.

Phillips, A. 2005. The channel ambient calculus: From process algebra to mobile code. Ph.D.

thesis, Imperial College London.

Phillips, A., Yoshida, N., and Eisenbach, S. 2004. A distributed abstract machine for boxed

ambient calculi. In Proc. ESOP. LNCS, vol. 2987. Springer Verlag.

Sangiorgi, D. 1992. Expressing mobility in process algebras: First-order and higher-order

paradigms. Ph.D. thesis, Department of Computer Science, University of Edinburgh.

Sangiorgi, D. 1994. The lazy lambda calculus in a concurrency scenario. Information and

Computation 111, 1, 120–153.

Sangiorgi, D. 1996. Bisimulation for Higher-Order Process Calculi. Information and Computa-
tion 131, 2, 141–178.

Sangiorgi, D. 2001. Extensionality and intensionality of the ambient logic. In Proc. 28th POPL.

ACM Press.

Sangiorgi, D. and Milner, R. 1992. The problem of “Weak Bisimulation up to”. In Proc.
CONCUR ’92. LNCS, vol. 630. Springer Verlag, 32–46.

Sangiorgi, D. and Walker, D. 2001a. The π-calculus: a Theory of Mobile Processes. Cambridge

University Press.

Sangiorgi, D. and Walker, D. 2001b. Some results on barbed equivalences in pi-calculus. In
Proc. CONCUR ’01. LNCS, vol. 2154. Springer Verlag.

Schmitt, A. and Stefani, J. 2004. The kell calculus: A family of higher-order distributed process

calculi. In LNCS. Springer-Verlag. Workshop of Global Computing 2004.

Unyapoth, A. and Sewell, P. 2001. Nomadic Pict: Correct communication infrastructures for
mobile computation. In Proc. 28th POPL. ACM Press.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Bisimulation-based Semantic Theory of Safe Ambients · 41

Vigliotti, M. G. September 1999. Transition systems for the ambient calculus. Master thesis,

Imperial College of Science, Technology and Medicine (University of London).

Vigliotti, M. G. and Phillips, A. 2002. Barbs and congruences for safe mobile ambients. In
Electronic Notes in Theoretical Computer Science. Vol. 66. Elsevier.

Vitek, J. and Castagna, G. 1999. Seal: A framework for secure mobile computations. In Internet
Programming Languages. Number 1686 in LNCS. Springer Verlag, 47–77.

Received October 16 2003; July 27 2004; Accepted February 20 2005

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

