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Abstract

We propose a process calculus to study the behavioural theory of Mo-
bile Ad Hoc Networks. The operational semantics of our calculus is given
both in terms of a Reduction Semantics and in terms of a Labelled Tran-
sition Semantics. We prove that the two semantics coincide. The labelled
transition system is then used to derive the notions of (weak) simulation
and bisimulation for ad hoc networks. The labelled bisimilarity completely
characterises reduction barbed congruence, a standard branching-time and
contextually-defined program equivalence. We then use our (bi)simulation
proof method to formally prove a number of non-trivial properties of ad
hoc networks.

1 Introduction

Wireless technology has exploded in popularity in the last years. Its applications
span from user applications such as personal area networks, ambient intelligence,
and wireless local area networks, to real-time applications, such as cellular and
ad hoc networks.

Ad hoc networking is a new area in wireless communications that is attract-
ing the attention of many researchers, for its potential to provide ubiquitous
connectivity without the assistance of any fixed infrastructure. A Mobile Ad Hoc
Network (MANET) is an autonomous system composed of both stationary and
mobile devices communicating with each other via radio transceivers. Mobile

∗An extended abstract appeared in the proceedings of the 23rd Conference on the Mathe-
matical Foundations of Programming Semantics (MFPS’07).
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devices are free to move randomly and organise themselves arbitrarily; thus, the
network’s wireless topology may change rapidly and unpredictably. Stationary
devices cannot move i.e. their physical location does not vary with time.

Ad hoc networks may operate in a standalone fashion, or may be connected
to the larger Internet. They can be used wherever a wired backbone is infeasible
and/or economically inconvenient, for example, to provide communications dur-
ing emergencies, special events (expos, concerts, etc.), or in hostile environments.

Wireless devices use radio frequency channels to broadcast messages to the
other devices. However, this form of broadcast is quite different from the more
conventional wired-based broadcast that we find in networks with Ethernet and
that, from a semantic point of view, is well-understood [19, 20, 7]. In Ethernet-
like systems broadcasting has a logical scope, i.e broadcast messages reach all
devices belonging to some logically defined network. By contrast, in wireless
systems broadcasting has a physical scope; this is because a radio transmission
spans over a limited area, called transmission cell, and reaches only a -possibly
empty- subset of the devices in the network. Actually, even the devices within
the range of the transmitter might not receive the broadcast message due to
environmental conditions such as walls, temporary obstacles, etc.

In wireless networks channels are half-duplex : on a given channel, a device
can either transmit or receive, but cannot do both at the same time. Hence,
an interference between two transmissions is only possibly detected by receivers
located in the intersection of the cells of the two transmitters. Interference is
thus a delicate aspect of wireless systems that is handled by means of specific
protocols (e.g., CSMA/CA).

Contribution We propose a value-passing process calculus to model Mobile
Ad Hoc Networks. Our calculus is called Calculus of Mobile Ad Hoc Networks
(CMN). In CMN, an ad hoc network is modelled as a collection of nodes (which
represent devices), running in parallel, and using channels to broadcast messages.
Channels can be either public or private to a set of nodes. To keep focus on the
peculiarities of wireless networks, channels in CMN are in CCS style [11]: they
cannot be used to transmit channel names. The theory developed in this article
can be generalised to a name-passing variant of CMN.

We write n[P ]µl,r to denote a node with network address n, located at the
physical location l, with transmission radius r, mobility tag µ, and executing the
sequential process P which models the behaviour of the device. The location l
and the transmission radius r define the cell over which a node can broadcast
values using channels; a node is not able to derive its current physical location
l (it does not support a GPS) or its transmission radius r. The mobility tag µ
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serves to distinguish between mobile nodes and stationary nodes.
We assume the presence of appropriate protocols to avoid transmission colli-

sions.
The operational semantics of our calculus is given both in terms of a Reduction

Semantics and in terms of a Labelled Transition Semantics, in the SOS style of
Plotkin [17]. We prove that the two semantics coincide. Our Labelled Transition
System (LTS) captures all the possible interactions of a term with its environ-
ment without using any auxiliary discard relation. We then define an appropriate
notion of simulation and hence of bisimulation for MANETs. The concepts of
simulation and bisimulation are widely used in the literature for verification pur-
poses: they represent the basis of many verification tools.

The main goal of the paper is to propose an adequate behavioural theory to
formally prove properties of ad hoc networks. To give an idea of what kind of
properties we have in mind we just sketch here a couple of them. More properties
with full details can be found in Section 6.

Ubiquity of mobile nodes Node mobility is unpredictable and it cannot
be directly observed by the environment. This means that we cannot distinguish
two mobile nodes that differ only for their physical current location. Formally,
for any process P , physical locations k and l, and transmission radius r, it holds
that

n[P ]mk,r is bisimilar to n[P ]ml,r

where the tag m denotes mobile nodes. Even more, a mobile node with transmis-
sion radius r can always simulate a mobile node with the same code but with a
smaller transmission radius r′. Formally, if r′ ≤ r then

n[P ]mk,r simulates n[P ]ml,r′ .

Note that the simulation is only in one direction as, in general, if r′ ≤ r then
n[P ]ml,r′ cannot simulate a broadcast transmission by n[P ]mk,r: an observer located
at a distance r′′, with r′ < r′′ < r, might be able to distinguish the two nodes.

Range repeaters The next property is about range repeaters (or range
extenders), and involves stationary nodes, like access points. In a wireless network
a range repeater receives radio signals from an access point, end user device, or
another repeater and retransmits the frames. This makes it possible for a repeater
located in between an access point and a distant stationary user to act as a relay
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for frames travelling back and forth between the user and the access point. In this
manner, using a range repeater, a distant user can get connected to the network.

In our calculus, a range repeater can be modelled as a node rr[c ↪→ c]sl,r′ , where
the process c ↪→ c is a forwarder process that receives messages at channel c and
retransmits them on the same channel; the tag s says that this is a stationary
node. Now, suppose we want to extend the range of an access point n[P ]sk,r to
cover the cell with center at l and radius r′. In this case, if the distance between
k and l is smaller than r and r′, respectively, then we could place at l a range
repeater with transmission radius r′ that simply repeats the signal back and forth.
In such a scenario, if node n uses only channel c, then the system composed by
the access point at k together with the range repeater at l simulates the presence
of the access point at l, with transmission radius r′. More formally,

n[P ]sk,r

∣∣ rr[c ↪→ c]sl,r′ simulates n[P ]sl,r′

where
∣∣ denotes the parallel composition of nodes.

These examples, together with the others appearing in Section 6, show that
our notions of simulation and bisimulation are adequate to prove non-trivial prop-
erties of MANETS. However, the experience with other process calculi tells us
that there are several different ways to define a bisimilarity. So, the question is:
Can we consider our bisimilarity as the natural behavioural equivalence for our
calculus? To answer this question we prove that our labelled bisimilarity is a
complete characterisation of reduction barbed congruence, a standard branching-
time and contextually-defined program equality. Reduction barbed congruence is
defined as the largest symmetric relation that:

• is preserved by all the constructs of the language;

• is preserved (in a sense we will make precise later) by the reduction seman-
tics of the language;

• preserves the observables of the language.

Reduction barbed congruence was first studied by Honda and Yoshida [8] under
the name of maximum sound theory, and it is also known as open barbed bisimi-
larity [23], a slight variant of Milner and Sangiorgi’s barbed congruence [13].

2 The Calculus

In Table 1, we define the syntax of CMN in a two-level structure, a lower one for
processes and an upper one for networks.
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Table 1 The Syntax

Names: a, b, . . . , k, l, m, n, . . . ∈ N

Networks:
M, N ::= 0 empty network∣∣ M1 | M2 parallel composition∣∣ (νc)M channel restriction∣∣ n[P ]µl,r node (or device)

Processes:
P, Q, R ::= 0 inactive process∣∣ c(x).P input∣∣ c〈w〉.P output∣∣ [w1 = w2]P, Q matching∣∣ A〈w̃〉 recursion

Mobility tags:
µ ::= m mobile∣∣ s stationary

We use letters m and n for nodes/devices ; c and d for channels ; k and l
for (physical) locations ; r for transmission radii ; x, y, z for variables. Closed
values contain nodes, locations, transmission radii and in general, any basic value
(booleans, integers, etc.). Values include also variables. We use u and v for closed
values and w for (open) values. We write ã to denote a tuple a1, . . . , ak of names.

Networks are collections of nodes (which represent devices), running in paral-
lel, using channels to broadcast messages. Network 0 denotes the empty network.
M1 | M2 represents the parallel composition of two networks. In (νc)M the chan-
nel c is private to the nodes of M . The restriction operator (νc)M models channel
restriction but not channel creation.

Processes are sequential and live within the nodes. Process 0 denotes the
inactive processes. The input process c(x).P can receive any (closed) value v via
channel c and continue as P , with v substituted for x. We write {v/x}P for the
substitution of x with v in P . The output process c〈v〉.P can send the (closed)
value v via channel c and continue as P . Process [w1 = w2]P, Q is the standard
“if then else”: it behaves as P if w1 = w2, and as Q otherwise. We write A〈w̃〉
to denote a process defined via a (possibly recursive) definition A(x̃)

def
= P , with

| x̃ |=| w̃ |, where x̃ contains all channels and variables that appear free in P .
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Each node has a location and a transmission radius. Nodes cannot be created
or destroyed. We write n[P ]µl,r for a node named n, located at l, with transmission
radius r, mobility tag µ, and executing process P . The node identifier n represents
a logical location –the device network address. By contrast, l represents a physical
location and, together with the radius r, is employed for deriving information
about the network connectivity. The mobility tag µ is m for mobile nodes, and s

for stationary nodes, i.e. nodes that never change their physical location.
We do not indicate how locations should be specified; for instance, they could

be given by means of a coordinate system. In the definition of the operational se-
mantics, we assume the possibility of comparing locations so to determine whether
a node lies or not within the transmission cell of another node. We do so by means
of a function d(·, ·) which takes two locations and returns their distance. In Sec-
tion 6, we also assume some intuitive meta-operators on locations.

In the process c〈w〉.P value w appears in output position; the function op(·)
returns the set of values appearing in output position in a process. In the process
c(x).P variable x is bound in P , giving rise to the standard notions of α-conversion
and free and bound variables, denoted with fv(·) and bv(·), respectively. Similarly,
in a network of the form (νc)M the channel name c is bound in M and the
notions of α-conversion and free and bound channels, fc(·) and bc(·), are defined
accordingly.

We will identify processes and networks up to α-conversion. More formally,
we will view terms as representatives of their equivalence class with respect to
≡α, and these representatives will always be chosen so that bound names are
distinct from free names.

A (monadic) context C[·] is a network term with a hole, denoted by [·]. Con-
texts are generated by the following grammar:

C[·] ::= [·]
∣∣ [·] | M

∣∣ M | [·]
∣∣ (νc)[·] .

We use a number of notational conventions. Parallel composition of networks
has lower precedence with respect to restriction.

∏
i∈I Mi means the parallel

composition of all networks Mi, for i ∈ I. We write (ν c̃)M as an abbreviation for
(νc1) . . . (νck)M . We write c〈w〉 for c〈w〉.0, and 0 for n[0]µl,r. Finally, we write
[w1 = w2]P for [w1 = w2]P,0.

We assume that there are no free variables in a network (while there can be
free channels). The absence of free variables is trivially maintained as the network
evolves. Moreover, as node identifiers denote device network addresses we assume
that in any network each node identifier is unique.
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Table 2 Structural Congruence

n[[v = v]P, Q]µl,r ≡ n[P ]µl,r (Struct Then)
n[[v1 = v2]P, Q]µl,r ≡ n[Q]µl,r if v1 6= v2 (Struct Else)

n[A〈ṽ〉]µl,r ≡ n[{ṽ/̃x}P ]
µ

l,r if A(x̃)
def
= P ∧ | x̃ | = | ṽ | (Struct Rec)

M | N ≡ N | M (Struct Par Comm)
(M | N) | M ′ ≡ M | (N | M ′) (Struct Par Assoc)
M | 0 ≡ M (Struct Zero Par)
(νc)0 ≡ 0 (Struct Zero Res)
(νc)(νd)M ≡ (νd)(νc)M (Struct Res Res)
c 6∈ fc(M) implies (νc)(M | N) ≡ M | (νc)N (Struct Res Par)
M ≡ M (Struct Refl)
M ≡ N implies N ≡ M (Struct Symm)
M ≡ M ′ ∧ M ′ ≡ M ′′ implies M ≡ M ′′ (Struct Trans)
M ≡ N implies M | M ′ ≡ N | M ′, for all M ′ (Struct Cxt Par)
M ≡ N implies (νc)M ≡ (νc)N, for all c (Struct Cxt Res)

2.1 Reduction Semantics

The dynamics of the calculus is specified by the reduction relation over networks,
_, described in Table 3. As usual in process calculi, the reduction semantics
relies on an auxiliary relation, called structural congruence, ≡, defined in Table 2.
Basically, structural congruence brings the participants of a potential interaction
into contiguous positions.

Rule (R-Bcast) models the broadcast of a message v using a channel c. Com-
munication is one-to-many and transmission proceeds even if there is no other
process listening for a message: transmission is a non-blocking action. Moreover,
as with most process calculi, this communication is deemed to occur instanta-
neously. Note that when a transmission occurs, some receivers within the range
of the transmitter might not receive the message. This may be due to several rea-
sons such as the presence of obstacles or the asynchrony of nodes. In particular,
when I=∅ the rule models message loss. In terms of observation this corresponds
to a local activity on the network which an observer is not party to. Movement
is assumed to be an atomic action: while moving a node cannot do anything else.
Rule (R-Move) models arbitrary and unpredictable movements of mobile nodes;
δ denotes the maximum distance that a node can cover in a computational step.
Notice that stationary nodes cannot move. The remaining rules are standard in
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Table 3 Reduction Semantics

(R-Bcast)
∀i ∈ I. d(l, li) ≤ r

n[c〈v〉.P ]µl,r |
∏

i∈I ni[c(xi).Pi]
µi

li,ri
_ n[P ]µl,r |

∏
i∈I ni[{v/xi}Pi]

µi

li,ri

(R-Move)
d(k, l) ≤ δ

n[P ]mk,r _ n[P ]ml,r
(R-Par)

M _ M ′

M | N _ M ′ | N

(R-Struct)
M ≡ N N _ N ′ N ′ ≡ M ′

M _ M ′ (R-Res)
M _ M ′

(νc)M _ (νc)M ′

process calculi.
The symbol _∗ denotes the reflexive and transitive closure of _.

2.2 Behavioural Semantics

In operational semantics two terms are deemed equivalent if they have the same
observable behaviour in all possible contexts. So, the question is: What are
the “right” observables in our calculus? As in CCS [11] and in π-calculus [12],
we have both transmission and reception of messages. However, unlike those
calculi, only the transmission of messages (over unrestricted channels) can be
observed. In fact, in a broadcasting calculus an observer cannot see whether
a given process actually receives a particular broadcast value. In particular, if
the node n[c〈v〉.P ]µl,r evolves into n[P ]µl,r we cannot be sure that some recipient
received message v at channel c. On the other hand, if a node n[c(x).P ]µl,r evolves
into n[{v/x}P ]µl,r, then n can be sure that some node has transmitted message v on
channel c: the network never invents messages! As a consequence, in our calculus
the notion of observability is represented by the transmission of messages that
can be detected by a pervasive observer i.e. an observer that can listen anywhere,
at any channel. Following Milner and Sangiorgi [13] we use the term “barb” as
synonymous of observable.

Definition 2.1 (Barb) Let K be a set of physical locations. We write M ↓c@K

if M ≡ (νd̃)(n[c〈v〉.P ]µl,r | M ′), with c 6∈ d̃ and d(l, k) ≤ r, for all k ∈ K. We
write M ⇓c@K if M _∗ M ′ ↓c@K.

We also write M ↓c@k (respectively, M ⇓c@k) instead of M ↓c@{k} (respectively,
M ⇓c@{k}).
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Table 4 Labelled Transition System - Processes

(Input)
−

c(x).P
cv−−→ {v/x}P

(Output)
−

c〈v〉.P cv−−→ P

(Then)
P

η−−→ P ′

[v = v]P, Q
η−−→ P ′

(Else)
Q

η−−→ Q′ v1 6= v2

[v1 = v2]P, Q
η−−→ Q′

(Rec)
{ṽ/̃x}P η−−→ P ′ A(x̃)

def
= P

A〈ṽ〉 η−−→ P ′

Definition 2.2 A relation R is barb preserving if M R N and M ↓c@K implies
N ⇓c@K.

Definition 2.3 A relation R is reduction closed if M R N and M _ M ′ imply
the existence of some N ′ such that N _∗ N ′ and M ′ R N ′.

Definition 2.4 A relation R is contextual if M R N implies C[M ] R C[N ] for
all contexts C[−] .

Finally, everything is in place to define reduction barbed congruence.

Definition 2.5 (Reduction barbed congruence) Reduction barbed congruence,
written ∼=, is the largest symmetric relation over networks, which is reduction
closed, barb preserving, and contextual.

3 A Labelled Transition Semantics

Reflecting the language syntax, the Labelled Transition System has two sets of
rules: one for processes and one for networks.

Table 4 presents the LTS for processes. Transitions are of the form P
η−−→ P ′,

where η ranges over input and output actions. More precisely, cv and cv denote,
respectively, input and output of a closed value v at channel c. The rules in
Table 4 are self-explanatory.

Table 5 contains the LTS for networks. Transitions are of the form M
λ−−→ M ′,

where the grammar for λ is:

λ ::= c?v@l
∣∣ c!v[l, r]

∣∣ c!v@K
∣∣ τ .
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Table 5 Labelled Transition System - Networks

(Rcv)
P

cv−−→ P ′

n[P ]µl,r
c?v@l−−−−−→ n[P ′]µl,r

(Snd)
P

cv−−→ P ′

n[P ]µl,r
c!v[l,r]
−−−−−→ n[P ′]µl,r

(Bcast)

M
c!v[l,r]
−−−−−→ M ′ N

c?v@l′−−−−−→ N ′ d(l, l′) ≤ r

M | N
c!v[l,r]
−−−−−→ M ′ | N ′

N | M
c!v[l,r]
−−−−−→ N ′ | M ′

(Obs)
M

c!v[l,r]
−−−−−→ M ′ K({k : d(l, k)≤r} K 6=∅

M
c!v@K−−−−−→ M ′

(Lose) M
c!v[l,r]
−−−−−→ M ′

M
τ−−→ M ′

(Move)
d(k, l) ≤ δ

n[P ]mk,r

τ−−→ n[P ]ml,r

(Par)

M
λ−−→ M ′

M | N λ−−→ M ′ | N
N | M λ−−→ N | M ′

(Res)
M

λ−−→ M ′ c 6∈ fc(λ)

(νc)M
λ−−→ (νc)M ′

Rule (Rcv) models the reception at l of message v via channel c. Rule (Snd)
models the broadcast, with transmission radius r, of message v via channel c,
from a node located at l. Rule (Bcast) models the propagation of broadcast. The
requirement d(l, l′) ≤ r guarantees that only nodes within the transmission cell
of the transmitter may hear the communication. Rule (Obs) models the fact that
every action c!v[l, r] may be detected (and hence observed) by any node located
in the transmission cell at l with radius r. The action c!v@K represents the
transmission of message v via channel c to a set of recipients whose locations
are in K. This is an observable action corresponding to the barb ↓c@K (see
Theorem 3.3(1)): one can imagine a distributed observer seated at each location
of K, listening on channel c, and receiving the same value v at each location.
Rule (Lose) models both message loss and a local activity on the network which
an observer is not party to. We use τ -actions, as usual in process calculi, to
denote non-observable actions, i.e. actions that are not detected by the observer.
Rule (Move) models the migration of a mobile node from a location k to a new
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location l; again δ represents the maximum distance that a node can cover in a
single computational step. Rule (Par) and (Res) are standard in process calculi.
Note that for λ 6= τ rule (Par) can also model the situation where potential
receivers do not receive broadcast messages. Note that since we do not transmit
channels there is no scope extrusion.

We end this section proving that the LTS-based semantics coincides with the
reduction semantics and the notion of observability (barb) given in the previous

section. With this objective, we first prove that if M
λ−−→ N , then the structure

of M and N can be determined up to structural congruence.

Lemma 3.1

1. If M
c?v@l−−−−−→ M ′ then there are n, P , µ, l, r, M1, and d̃, with c 6∈ d̃, such

that M ≡ (νd̃)
(
n[c(x).P ]µl,r | M1

)
and M ′ ≡ (νd̃)

(
n[{v/x}P ]µl,r | M1

)
.

2. If M
c!v[l,r]
−−−−−→ M ′ then there are n, P , µ, l, r, M1, I (possibly empty) and

d̃, with c 6∈ d̃, and ni, Pi, µi, ri, li, with d(l, li) ≤ r, for all i ∈ I, such that

M ≡ (νd̃)
(
n[c〈v〉.P ]µl,r |

∏
i∈I

ni[c(xi).Pi]
µi

li,ri
| M1

)
and

M ′ ≡ (νd̃)
(
n[P ]µl,r |

∏
i∈I

ni[{v/xi}Pi]
µi

li,ri
| M1

)
.

Proof By induction on the transition rules of Table 5. �

We also need to show that structural congruence respects the transitions of
Table 5.

Lemma 3.2 (≡ respects transitions) If M
λ−−→ M ′ and M ≡ N then there

exists N ′ such that N
λ−−→ N ′ and M ′ ≡ N ′.

Proof We outline the proof, which proceeds by induction on the depth of the

inference M
λ−−→ M ′.

It is clearly enough to prove the result in the special case that M ≡ N is due
to a single application of a structural rule from Table 2; the general case follows
just by iterating the special case.

The full proof must treat all possible cases for the final step of the inference

M
λ−−→ M ′. Here we consider just one case; suppose that it is inferred by rule

(Par), where M is M1 | M2 and M ′ is M ′
1 | M2. with M1

λ−−→ M ′
1 inferred by

a shorter inference. Now there are many ways in which M1 | M2 ≡ Q may be
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due to a single use of a structural congruence rule; we will confine ourselves to
considering just two cases.

Case 1. Suppose that the commutativity rule of Table 2 is used, so that N

is M2 | M1. In this case we use the rule (Par) to deduce that N
λ−−→ M2 | M ′

1.
Now, take N ′ to be M2 | M ′

1; we have M ′ ≡ N ′, as required.
Case 2. Suppose that a single rule of structural congruence is used within

M1, so that M1 ≡ N1 and N is N1 | M2. Then, since M1
λ−−→ M ′

1 is inferred by

a shorter inference, by appeal to induction we have N1
λ−−→ N ′

1 and M ′
1 ≡ N ′

1.

Now take N ′ to be N ′
1 | M2; by using rule (Par) we deduce that N

λ−−→ N ′ and
M ′ ≡ N ′, as required.

So the result follows by a fairly lengthy case analysis, both for the structural
congruence rule used and for the last step of the transition inference. �

Theorem 3.3 (Harmony Theorem)

1. M ↓c@K iff M
c!v@K−−−−−→ for some value v.

2. If M
τ−−→ M ′ then M _ M ′.

3. If M _ M ′ then M
τ−−→≡ M ′.

Proof The first part follows from Definition 2.1 and Lemma 3.1(2).

The second part is by induction on the derivation M
τ−−→ M ′. We recall that

the τ -transitions can only be generated by the rules in Table 5.
Suppose that the τ -action has been generated by an application of rule (Lose).

In this case, we have M
c!v[l,r]
−−−−−→ M ′ for some c, v, l, and r. By an application of

Lemma 3.1 we get:

M ≡ (νd̃)
(
n[c〈v〉.P ]µl,r |

∏
i∈I

ni[c(xi).Pi]
µi

li,ri
| M1

)
and

M ′ ≡ (νd̃)
(
n[P ]µl,r |

∏
i∈I

ni[{v/xi}Pi]
µi

li,ri
| M1

)
for some n, v, P , µ, l, r, M1, d̃, with c 6∈ d̃, and some ni, Pi, µi, ri, li, such that
d(l, li) ≤ r, for all i ∈ I. By applying rules (R-Bcast), (R-Par), and (R-Res) we get

(νd̃)
(
n[c〈v〉.P ]µl,r |

∏
i∈I ni[c(xi).Pi]

µi

li,ri
| M1

)
_

(νd̃)
(
n[P ]µl,r |

∏
i∈I ni[{v/xi}Pi]

µi

li,ri
| M1

)
.
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By applying rule (R-Struct) we obtain M _ M ′, as required.

Suppose now that that the τ -action M
τ−−→ M ′ has been generated by an

application of rule (Move). Then, by an application of rule (R-Move) we derive
that M _ M ′, as required.

The other cases follow straightforwardly from the congruence rules of the
reduction relation.

The third part of the theorem is proved by induction of the derivation M _
M ′.

Suppose that the derivation M _ M ′ has been generated by an application
of rule (R-Bcast), that is,

n[c〈v〉.P ]µl,r |
∏
i∈I

ni[c(xi).Pi]
µi

li,ri
_ n[P ]µl,r |

∏
i∈I

ni[{v/xi}Pi]
µi

li,ri

such that d(l, li) ≤ r , for all i ∈ I. Then, the derivation below is valid.

c〈v〉.P cv−−−→ P

n[c〈v〉.P ]µl,r
c!v[l,r]
−−−−−−→ n[P ]µl,r

c(x1).P1
cv−−−→ {v/x1}P1

n1[c(x1).P1]
µ1

l1,r1

c?v@l1−−−−−−→ n1[{v/x1}P1]
µ1

l1,r1

n[c〈v〉.P ]µl,r | n1[c(x1).P1]
µ1

l1,r1

c!v[l,r]
−−−−−−→ n[P ]µl,r | n1[{v/x1}P1]

µ1

l1,r1

By applying | I | −1 times rule (Bcast) and one time rule (Lose) we get:

n[c〈v〉.P ]µl,r |
∏
i∈I

ni[c(xi).Pi]
µi

li,ri

τ−−→ n[P ]µl,r |
∏
i∈I

ni[{v/xi}Pi]
µi

li,ri

as required.
Suppose that the derivation M _ M ′ has been generated by an application of

rule (R-Move), in this case, by an application of rule (Move) we have M
τ−−→ M ′.

Suppose that the derivation M _ M ′ has been generated by an application
of rule

(R-Struct)
M ≡ N N _ N ′ N ′ ≡ M ′

M _ M ′ .

The induction hypothesis tells us that there is N ′′ such that N
τ−−→ N ′′ ≡ N ′.

Lemma 3.2 tells us that there is M ′′ such that M
τ−−→ M ′′ and M ′′ ≡ N ′′. By

transitivity of ≡, it follows that M
τ−−→≡ M ′, as required.

Finally, as both the τ -transitions and the structural congruence are preserved
by networks contexts, the cases when the reduction M _ M ′ is derived either by
rule (R-Par) or by rule (R-Res) are straightforward. �
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4 Bi-simulation Proof Methods

In this section, we use our LTS to define an appropriate notion of simulation/bisi-
mulation for ad hoc networks. We then prove that our labelled bisimilarity implies
reduction barbed congruence, and hence represents a valid method for proving
that two networks are reduction barbed congruent.

For convenience, we use the metavariable α to range over those actions that
will be used in the definition of (bi)simulation. Formally,

α ::= c?v@l
∣∣ c!v@K

∣∣ τ .

Since we are interested in weak behavioural equivalences, that abstract over τ -
actions, we introduce the notion of weak action. The definition is not completely
standard:

• =⇒ denotes the reflexive and transitive closure of
τ−−→;

• c?v@l
=====⇒ denotes =⇒ c?v@l−−−−−→ =⇒;

• c!v@K
=====⇒ denotes =⇒ c!v@K1−−−−−−→ =⇒ . . . =⇒ c!v@Kn−−−−−−→ =⇒, for

⋃n
i=1 Ki = K;

• α̂
==⇒ denotes =⇒ if α = τ and

α
==⇒ otherwise.

Notice that the definition of the weak observable action
c!v@K

=====⇒ may contain

several (strong) observable actions of the form
c!v@Ki−−−−−−→. This is because a dis-

tributed observer that receives an instance of message v, at each location in K,
in several computational steps, cannot assume that those messages belong to the
same broadcast transmission.

Definition 4.1 (Bisimilarity) A binary relation R over networks is a simula-
tion if M R N implies:

• If M
α−−→ M ′, α 6= c?v@l, then there is N ′ such that N

α̂
==⇒ N ′ and

M ′ R N ′;

• If M
c?v@l−−−−−→ M ′ then there is N ′ such that:

– either N
c?v@l

=====⇒ N ′ and M ′ R N ′

– or N =⇒ N ′ and M ′ R N ′.
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We say that N simulates M if there is some simulation R such that M R N . A
relation R is called bisimulation if both R and its converse are simulations. We
say that M and N are bisimilar, written M ≈ N , if there is some bisimulation
R such that M R N .

Notice that, since reception of messages cannot be directly detected, the clause for
message reception imposes weaker requirements, allowing to match input actions
with τ -actions.

Remark 4.2 An equivalent way to model the non-observability of message recep-
tion is that of adding in the LTS the rule

(Shh Rcv) M
c?v@l−−−−−→ M ′

M
τ−−→ M ′

to turn message receptions into silent actions. Then, we could completely remove
the clause for message reception from Definition 4.1. In the current article, we
have preferred to emphasise the non-observable nature of message reception at
bisimulation level.

It is easy to show that our labelled bisimilarity is an equivalence relation.
However, our bisimilarity enjoys a much more important property: the closure
under contexts.

Lemma 4.3 (≈ is contextual) Let M and N be two networks such that M ≈
N . Then,

1. M | O ≈ N | O, for all networks O;

2. (νc)M ≈ (νc)N , for all channels c.

Proof As regards the first item, i.e that ≈ is preserved by parallel composition,
we prove that the relation

S def
= {

(
M | O , N | O

)
for all O such that M ≈ N}

is a bisimulation. We do a case analysis on the transition M | O
α−−→ M̂ . The

interesting cases are when the transition is due to an interaction between M and
O, i.e. when rule (Bcast) is used.

Let M | O
c!v@K−−−−−→ M̂ because M | O

c!v[l,r]
−−−−−→ M̂ for some l and r, with

d(l, k) ≤ r, for all k ∈ K due to an application of rule (Bcast). There are two
possibilities:

15



• M | O
c!v[l,r]
−−−−−→ M̂ because M

c!v[l,r]
−−−−−→ M ′ and O

c?v@l′−−−−−→ O′, with d(l, l′) ≤
r and M̂ = M ′ | O′. In this case, by an application of rule (Obs) we

have M
c!v@K′

−−−−−−→ M ′, with K ′ = K ∪ {l′}. As M ≈ N there is N ′ such

that N
c!v@K′

======⇒ N ′ with M ′ ≈ N ′. By applying rule (Obs) backward

there must be K1, . . . , Kn such that N =⇒ c!v@K1−−−−−−→ . . .
c!v@Kn−−−−−−→ =⇒ N ′ with⋃n

i=1 Ki = K ′ and l′ ∈ Kj, for some 1≤j≤n. This implies that

N =⇒ c!v@K1−−−−−−→ . . . =⇒
c!v[lj ,rj ]−−−−−−→ =⇒ . . .

c!v@Kn−−−−−−→ =⇒ N ′

with d(lj, k) ≤ rj, for all k ∈ Kj. Hence by an application of rule (Bcast):

N | O =⇒ c!v@K1−−−−−−→ . . . =⇒
c!v[lj ,rj ]−−−−−−→ =⇒ . . .

c!v@Kn−−−−−−→ =⇒ N ′ | O′ .

Finally, by applying rule (Obs) we can turn the transition
c!v[lj ,rj ]−−−−−−→ into

c!v@Kj−−−−−−→. This implies N | O c!v@K
=====⇒ N ′ | O′ with

(
M ′ | O′ , N ′ | O′) ∈ S,

as required.

• M | O
c!v[l,r]
−−−−−→ M̂ because M

c?v@l′−−−−−→ M ′ and O
c!v[l,r]
−−−−−→ O′, with d(l, l′) ≤

r and M̂ = M ′ | O′. As M ≈ N there is N ′ such that:

– either N
c?v@l′

=====⇒ N ′, with M ′ ≈ N ′; in this case

N | O =⇒
c!v[l,r]
−−−−−→ =⇒ N ′ | O′

and, by rule (Obs), also N | O
c!v@K

=====⇒ N ′ | O′, with
(
M ′ | O′ , N ′ |

O′) ∈ S, as required.

– or N =⇒ N ′, with M ′ ≈ N ′; in this case, by applying rule (Par) we

obtain N | O =⇒
c!v[l,r]
−−−−−→ =⇒ N ′ | O′ and, by rule (Obs) also N |

O
c!v@K

=====⇒ N ′ | O′, with
(
M ′ | O′ , N ′ | O′) ∈ S, as required.

Let M | O
τ−−→ M̂ because M | O

c!v[l,r]
−−−−−→ M̂ . We reason as in the previous

case.
The remaining cases, when there is no interaction between M and O, are easy

to deal with.

In order to prove that ≈ is preserved by restriction, it suffices to show that
the relation

S def
= {

(
(νc)M , (νc)N) for all c such that M ≈ N}
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is a bisimulation. We do a case analysis on the transition (νc)M
α−−→ O. The

proof is straightforward as channels cannot be transmitted and hence there is no
scope extrusion. �

We can now demonstrate that our bisimilarity is a proof method for reduction
barbed congruence, i.e. that ≈ is contained in ∼=.

Theorem 4.4 (Soundness) Let M and N be two arbitrary networks such that
M ≈ N , then M ∼= N .

Proof We recall that ∼= is the least symmetric relation which is reduction
closed, barb-preserving, and contextual. In fact, the bisimilarity is reduction
closed (by Theorems 3.3(2) and 3.3(3)), barb-preserving (by Theorem 3.3(1)),
and contextual (by Lemma 4.3). Thus, ≈⊆∼=. �

5 Characterising Reduction Barbed Congruence

In this section, we prove that our labelled bisimilarity is more than a proof tech-
nique. Actually, it represents a complete characterisation of reduction barbed
congruence.

When proving the completeness result, i.e. that reduction barbed congruence
is contained in the labelled bisimilarity, we implicitly use a standard property of
reduction barbed congruence (see for instance [23]).

Proposition 5.1 If M ∼= N then

• M ⇓c@k iff N ⇓c@k

• M =⇒ M ′ implies there is N ′ such that N =⇒ N ′ and M ′ ∼= N ′.

Lemma 5.2 (Completeness) Reduction barbed congruence is contained in the
bisimilarity.

Proof We prove that the relation R = {(M, N) | M ∼= N} is a bisimulation.
The result will then follow by co-induction.

• Suppose that M R N and M
τ−−→ M ′. This case is easy to deal with.

• Suppose that M R N and M
c!v@K−−−−−→ M ′, with K = {k1, . . . , kn}. As

the action c!v@K can only be generated by an application of rule (Obs), it

follows that M
c!v[l,r]
−−−−−→ M ′ for some l and r such that d(l, k) ≤ r, for all

k ∈ K.
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Let us build up a context which mimics the effect of the action c!v@K, and
also allows us to subsequently compare the residuals of the two systems
under consideration. Our context has the form:

C[·] def
= [·] |

n∏
i=1

(
mi[c(x).[x = v]fi〈x〉]

s

ki,ri
| ni[fi(x).oki〈x〉]

s

ki,ri

)
with names mi, ni, for 1≤i≤n, and channel names fi and oki, for 1≤i≤n,
fresh. Intuitively, the existence of the barbs on the fresh channels fi indicates
that the action has not yet happened, whereas the presence of the barbs on
channels oki, together with the absence of the barbs on fi, ensures that the
action has been performed.

As ∼= is preserved by network contexts, M ∼= N implies C[M ] ∼= C[N ]. As

M
c!v[l,r]
−−−−−→ M ′, it follows that

C[M ] =⇒ M ′ |
n∏

i=1

(
mi[0]ski,ri

| ni[oki〈v〉]
s

ki,ri

)
= M̂

with M̂ 6⇓fi@ki
and M̂ ⇓oki@ki

, for 1≤i≤n.

The reduction sequence above must be matched by a corresponding reduc-
tion sequence C[N ] =⇒ N̂ with M̂ ∼= N̂ , N̂ 6⇓fi@ki

and N̂ ⇓oki@ki
, for 1≤i≤n.

The constraints on the barbs allow us to deduce the structure of the above
reduction sequence. That is:

C[N ] =⇒ N ′ |
n∏

i=1

(
mi[0]ski,ri

| ni[oki〈v〉]
s

ki,ri

) ∼= N̂ .

This implies that N
c!v@L

=====⇒ N ′, with K ⊆ L. More precisely, the derivative
N ′ might be reached performing several outputs of message v along the same
channel c. However, as all nodes mi are reached by a transmission along
channel c coming from N , we can be sure that K ⊆ L. It is then easy

to show that N
c!v@K

=====⇒ N ′ by considering in the composition of the weak
action only on those outputs addressed to the locations in K, and turning
the others in τ -actions using rule (Lose).

As M̂ ∼= N̂ and reduction barbed congruence is preserved by restriction, we
have

(ν f̃, õk)M̂ ∼= (ν f̃, õk)N̂ .

As channels fi and oki, for 1≤i≤n, are fresh we have
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– (ν f̃, õk)M̂ ≡ M ′ | (ν f̃, õk)
( ∏n

i=1 mi[0]ski,ri
| ni[oki〈v〉]

s

ki,ri

)
– (ν f̃, õk)N̂ ≡ N ′ | (ν f̃, õk)

( ∏n
i=1 mi[0]ski,ri

| ni[oki〈v〉]
s

ki,ri

)
.

Using our labelled bisimilarity and Theorem 4.4 is easy to prove that

(ν f̃, õk)
( n∏

i=1

mi[0]ski,ri
| ni[oki〈v〉]

s

ki,ri

) ∼= 0 .

As a consequence, it follows that M ′ ∼= N ′, as required.

• Suppose that M R N and M
c?v@l−−−−−→ M ′. We recall that this actions cannot

be directly observed, as exemplified by the presence of weaker requirements
in the clause for inputs in Definition 4.1. However, a context associated to
the action c?v@l could be

C[·] def
= [·] | n[c〈v〉.f〈v〉.ok〈v〉]sk,r

with f and ok fresh channels, and d(l, k) ≤ r.

As ∼= is preserved by network contexts, M ∼= N implies C[M ] ∼= C[N ]. As

M
c?v@l−−−−−→ M ′, it follows that if

C[M ] =⇒ M ′ | n[ok〈v〉]sk,r = M̂

with M̂ 6⇓f@k and M̂ ⇓ok@k

The reduction sequence above must be matched by a corresponding reduc-
tion sequence C[N ] =⇒ N̂ with M̂ ∼= N̂ , N̂ 6⇓f@k and N̂ ⇓ok@k. The con-
strains on the barbs allow us to deduce the structure of the above reduction
sequence. That is:

C[N ] =⇒ N ′ | n[ok〈v〉]sk,r
∼= N̂ .

However, this does not ensure us that N actually performed the c?v@l

actions. We can only conclude that there is N ′ such that either N
c?v@l

=====⇒
N ′ or N =⇒ N ′, in case rule (Lose) has been applied to node n.

As M̂ ∼= N̂ and ∼= is preserved by restriction it follows that

(νok)M̂ ∼= (νok)N̂

from which we can easily derive M ′ ∼= N ′, as required.
�
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An easy consequence of Theorem 4.4 and Lemma 5.2 is the following.

Theorem 5.3 (Characterisation) Bisimilarity and reduction barbed congru-
ence coincide.

6 Properties and examples

In this section, we prove a number of properties using our observational theory.
We start proving an interesting property of mobile nodes.

Theorem 6.1 (Ubiquity of mobile nodes) For any process P , physical loca-
tions k and l, and transmission radius r, it holds that

n[P ]mk,r ≈ n[P ]ml,r .

Proof We show that the relation

S def
= {

(
n[P ]mk,r, n[P ]ml,r

)
: for all P, k, l, r } ∪ I

is a bisimulation, where I is the identity relation.

Suppose that n[P ]mk,r

α−−→ M , for some α and M , then n[P ]ml,r
α̂

==⇒ M by
applying rule (Move) to migrate to k before performing action α. �

The next result shows that silent nodes cannot be detected (or observed). A
node is said to be silent if it never transmit messages.

Theorem 6.2 (Silent nodes cannot be observed) If process P does not con-
tain output constructs, then

n[P ]µl,r ≈ 0

for any l and r.

Proof It follows from our definition of bisimilarity in which it is possible to
match both τ -actions and input actions with weak τ -actions. We recall that =⇒
is the reflexive and transitive closure of

τ−−→. �

Now, we show how syntactically different infinite output sequences may be
semantically indistinguishable, because of message loss.

Theorem 6.3 (Mixing up infinite output sequences)

Let ALT(a, b)
def
= c〈a〉.c〈b〉.ALT〈a, b〉. Then, for any l, n, r, u, and v it holds

that:

1. n[ALT〈u, v〉]sl,r ≈ n[ALT〈v, u〉]sl,r
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2. n[ALT〈u, v〉]mk,r ≈ n[ALT〈v, u〉]ml,r .

Proof We only prove the second statement. We show that the relation

R def
= {

(
n[ALT〈u, v〉]mk,r , n[ALT〈v, u〉]ml,r

)
: for all k, l, r, u, v} ∪ I

where I is the identity relation, is a bisimulation up to ≡. Let us focus on the
most significant case. Suppose that

n[ALT〈u, v〉]mk,r

c!u@K−−−−−→≡ n[ALT〈v, u〉]mk,r

for some set of locations K, then

n[ALT〈v, u〉]ml,r
c!u@K

=====⇒≡ n[ALT〈v, u〉]mk,r

by applying rule (Move) to go to location l, rule (Lose) to discard the message v,
and rule (Obs) to broadcast value u. �

This result can be generalised by replacing u and v with an arbitrary finite set
V = {v1, . . . , vn} of messages. More generally, if two nodes contain only an infinite
sequence of output constructs transmitting values belonging to some finite set V ,
such that for each v ∈ V the output c〈v〉 appears an infinite number of times,
then the two nodes are equivalent.

In the next result, we show that devices transmitting messages “ad infinitum”
may obfuscate the transmission activity of nodes which are transmitting the same
messages within the same transmission cell. We recall that the function fc(·)
returns the set of free channels contained in one or more processes, while op(·)
returns the set of values appearing in output position in one or more processes.

Theorem 6.4 (Obfuscating message transmission) Let P and Q be two pro-
cesses such that fc(P, Q) ⊆ {c}, for some channel c, and op(P, Q) ⊆ {u, v}, for

some values u and v. Let ALT(a, b)
def
= c〈a〉.c〈b〉. ALT〈a, b〉. Then,

1. n[P ]sl,r | m[ALT〈u, v〉]sl,r ≈ n[Q]sl,r | m[ALT〈u, v〉]sl,r

2. n[P ]mk,r | m[ALT〈u, v〉]ml,r ≈ n[Q]mk′,r | m[ALT〈u, v〉]ml′,r .

Proof We only prove the first statement. By transitivity of ≈, it suffices to
demonstrate that

n[P ]sl,r | m[ALT〈u, v〉]sl,r ≈ m[ALT〈u, v〉]sl,r
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for all l and r, and for all P such that fc(P ) ⊆ {c} and op(P ) ⊆ {u, v}. Let us
fix arbitrary u, v, l, and r. Then it suffices to prove that the binary relation

{
(
n[P ]sl,r | m[ALT〈u, v〉]sl,r , m[ALT〈u, v〉]sl,r

)
: ∀P. fc(P )⊆{c} ∧ op(P )⊆{u, v}}⋃

{
(
n[P ]sl,r | m[ALT〈v, u〉]sl,r, m[ALT〈v, u〉]sl,r

)
: ∀P. fc(P )⊆{c} ∧ op(P )⊆{u, v}}

is a bisimulation up to ≡. �

Also this result can be generalised using an arbitrary finite set V of messages.
The next results are about range repeaters (or range extenders), and concern

stationary nodes, like access points. In general, a repeater simply regenerates a
network signal in order to extend the range of the existing network infrastructure.
In a wireless network a range repeater does not physically connect by wire to
any part of the network. Instead, it receives radio signals from an access point,
end user device, or another repeater and retransmits the frames. This makes it
possible for a repeater located in between an access point and a distant stationary
user to act as a relay for frames travelling back and forth between the user and
the access point. In this manner, using a range repeater, a distant user can get
connected to the network.

In our calculus, a range repeater can be modelled as a node rr[c ↪→ c]sl,r, where
the process c ↪→ c is a forwarder process whose general recursive definition is

a ↪→ b
def
= a(x).b〈x〉.a ↪→ b

This process receives values at channel a and retransmits them on channel b; in
c ↪→ c the same channel c is used for reception and transmission. We will use the
definition of forwarder process in several examples.

Now, suppose we want to extend the range of an access point n[P ]sk,r. In
particular, suppose we want to cover the cell with center at l and radius r′. In
this case, if d(k, l) ≤ r and d(k, l) ≤ r′ we could add a range repeater at l
that simply repeats the signal back and forth with transmission radius r′. In
such a scenario, if node n is single-channel, i.e. it uses only one channel, then
the introduction of the range repeater allows us to simulate the presence of the
access point n at l with transmission radius r′, i.e. n[P ]sl,r′ .

Theorem 6.5 (Range repeaters) Let P be a process such that fc(P ) ⊆ {c},
for some channel c. Let k, l be physical locations, and r, r′ be transmission radii
such that d(k, l) ≤ r and d(k, l) ≤ r′. Then, the system

n[P ]sk,r

∣∣ rr[c ↪→ c]sl,r′

simulates the node n[P ]sl,r′ .

22



Proof By proving that the relation

{
(
n[P ]sl,r′ , n[P ]sk,r

∣∣rr[c ↪→ c]sl,r′

)
: ∀k, l, r, r′. d(k, l)≤r ∧ d(k, l)≤r′, ∀P. fc(P )⊆{c}}

is a simulation. �

A well-known downside of range repeaters, though, is that they reduce the
throughput of the network. A range repeater must receive and retransmit each
frame on the same channel, which effectively doubles the number of frames that
are sent. In particular, accordingly with the protocol CSMA/CA, whenever the
range repeater transmits on channel c the node n must remain silent to avoid
collisions. A way to avoid this inconvenience could be that of using more sophis-
ticated range repeaters working on two different channels: for example, channel
c for communicating with the access point n, and a different channel, say d, to
interact with the local stationary users.

Theorem 6.6 (Range repeaters with two channels) Let P be a process such
that fc(P ) ⊆ {c}, for some channel c. Let k, l be physical locations, and r, r′ be
transmission radii, such that d(k, l) ≤ r and d(k, l) ≤ r′. Then, for any channel
d, the system

n[P ]sk,r

∣∣ out[c ↪→ d]sl,r′

∣∣ in[d ↪→ c]sl,r′

simulates the node n[{d/c}P ]
s

l,r′ .

Proof We prove that the relation

S def
= {

(
n[{d/c}P ]

s

l,r′ ,
(
n[P ]sk,r

∣∣ out[c ↪→ d]sl,r′

∣∣ in[d ↪→ c]sl,r′

))
:

∀ k, l, r, r′. d(k, l)≤r ∧ d(k, l)≤r′

∀ P. fc(P ) ⊆ {c}
}

is a simulation. �

As already pointed out, the previous results on range repeaters only regards
stationary nodes. In fact, range repeaters are superfluous when dealing with
mobile nodes, as exemplified below.

Theorem 6.7 Let k, l be physical locations and r, r′ be transmission radii such
that r ≥ r′. Then,

n[P ]mk,r simulates n[P ]ml,r′ .

Proof We show that the relation

S def
= {

(
n[P ]ml,r′ , n[P ]mk,r

)
: for all P, k, l, r, r′ }

is a simulation. �
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Finally, we provide a result concerning energy consumption. It is well-know
[22] that the power pk required by a node located at k to correctly transmit data
to a node located at l must satisfy the inequality pk

d(k,l)α ≥ β, where α ≥ 2 is

the distance-power gradient and β ≥ 1 is the transmission quality parameter.1

While the value of β is usually set to 1, the value of α depends on environmental
conditions. In the ideal case, we have α = 2; however α is typically 4 in realistic
situations. For instance, for r = 10 the power pk of the transmitter must be at
least 10000.

However, if we introduce a repeater node between transmitter and receiver,
say in the middle, we can drastically reduce the whole transmission power. More
precisely, to cover the distance of 5 is enough a transmission power of 625. Thus,
the transmission power we need for both the transmitter and the repeater is 1250
instead of 10000!

The following result shows that the introduction of a repeater between a first
(stationary) node located at some l1, and a second (stationary) node located at
some l2, using a private channel to propagate the signal, does not change the
behaviour of the original system. Notice that for d(l1, l2) = r, we write l1+r/2 to
denote the location placed in the middle, between l1 and l2.

Theorem 6.8 (Saving antenna power) Let P be a process such that fc(P ) =
{d}, for some channel d. Let l1, l2 be physical locations, and r1, r2 be transmission
radii such that d(l1, l2) = r, with r ≤ r1 and r ≤ r2. Then, the system

(νd)
(
m[P ]sl1,r/2

∣∣ rr [d ↪→ d]sl1+r/2,r/2

∣∣ n[Q]sl2,r2

)
simulates the system

(νd)
(
m[P ]sl1,r1

∣∣ n[Q]sl2,r2

)
.

Proof The two systems basically differ for the presence of the range repeater
operating on the private channel d. Formally, it suffices to prove that the relation

{
(
(νd)(m[P ]sl1,r1

∣∣ n[Q]sl2,r2
) , (νd)(m[P ]sl1,r/2

∣∣ rr [d ↪→ d]sl1+r/2,r/2

∣∣ n[Q]sl2,r2
)
)

:

∀ l1, l2, r1, r2. d(l1, l2) ≤ r1 ∧ d(l1, l2) ≤ r2

∀Q ∀P. fc(P )={d}
}

1This inequality holds for free-space environments with non-obstructed line of sight, and
it does not consider the possible occurrence of reflections, scattering, and diffraction caused
by buildings, terrain, and so on. Nevertheless, it is widely accepted in the ad hoc network
community.
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is a simulation. The most significant case is when the nodes n and m of the
system

(νd)
(
m[P ]sl1,r1

∣∣ n[Q]sl2,r2

)
communicate via channel d. Then, the presence of the range repeater in the
system

(νd)
(
m[P ]sl1,r/2

∣∣ rr [d ↪→ d]sl1+r/2,r/2

∣∣ n[Q]sl2,r2

)
allows to simulate the communication. �

Notice that the result does not hold if we remove the restriction on channel d.
This is because our transmission cells are meant to have a circular shape. Had
the signal propagation be directional then the result would hold without the
restriction on channel d.

7 Related and Future Work

Broadcast for Ethernet-like communications has been first analysed by Prasad
[19, 20, 15] in his Calculus of Broadcasting Systems (CBS), in which all processes
receive a broadcast message at once. In [18] the same author proposed a LTS and
a (both strong and weak) labelled bisimilarity relying on the notion of “discard
relation”, a special transition that any process can perform to discard a potential
message. Technically speaking, the discard relation is a mechanism to fit the
semantics of broadcast with that of parallel composition.

Hennessy and Rathke [7] proved that the above (weak) bisimilarity, renamed
noisy bisimilarity, coincides with barbed congruence. Modulo the presence of the
discard relation, our bisimilarity is very close to noisy bisimilarity.

The bπ-calculus [2] of Ene and Muntean equips the π-calculus with a broadcast
paradigm such that only nodes listening on the right channel can receive a broad-
cast. While this seems to come closer to a notion of local broadcast, it remains
complicated to change a once established connectivity. The authors proposed an
LTS (relying on the discard relation) and a labelled bisimilarity which is proved
to coincide with barbed equivalence. They also proved that the closure under
substitution of their labelled bisimilarity corresponds to the barbed congruence.

Nanz and Hankin [14] have introduced a calculus for Mobile Wireless Networks
(CBS#) where the recipients of a transmission are determined using a graph
representation of node localities. While this approach is more flexible, ours (based
on location and radius that define transmission cells and distance) allows a more
compact representation of connectivity. The authors proposed a LTS similar to
that of [18, 7] and again relies on the discard relation. This LTS is then used
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to define a behavioural equivalence, called mediated equivalence that identifies
processes only with respect to their capability to store items. The final goal
of Nanz and Hankin is to use their calculus as the basis of a framework for
specification and security analysis of communication protocols for MANETs.

Prasad’s more recent calculus of Mobile Broadcasting Systems, (MBS) [21]
aims at providing a communication model which implements the “globally asyn-
chronous, locally synchronous” communication mechanism which is proper of
wireless communication communication systems. Channels are employed as sealed
rooms, preventing a message sent within a room to being captured by processes
in other rooms.

Singh, Ramakrishnan, and Smolka [25] have designed the ω-calculus, a con-
servative extension of the π-calculus specifically tailored for modelling MANETs’
protocols. The key feature of the ω-calculus is the separation of a node’s commu-
nication and computational behaviour from the description of its physical trans-
mission range. The latter is modelled annotating processes with the set of group
names to which the process belongs. The authors have proposed a labelled tran-
sition semantics that, unlike the previous ones, does not use the discard relation
but instead contains a rule, similar to our (Lose), to model the non-blocking na-
ture of multicast send. A bisimulation in “open” style is provided. The ω-calculus
is then used for developing a model of the AODV protocol [16], a routing protocol
for MANETs.

More recently, Godskesen [5] has proposed CMAN, a name-passing calculus
for ad hoc networks without channel restriction, and where nodes can be hidden
to the environment. In CMAN the neighbourhood’s relation is given in terms
of logical locations letting the topology be explicit part of the network syntax.
The paper provides a labelled bisimilarity that characterises reduction barbed
congruence. The labelled bisimilarity is then used to formalise an attack on the
cryptographic routing protocol ARAN [24].

Finally, notice that all the previous calculi abstract from interferences. Mezzetti
and Sangiorgi [9] have instead proposed a lower level calculus in which a node can
detect interferences when located in the intersection of the transmission range of
two different nodes. While our syntax is inspired by that of [9], the reduction
semantics and the corresponding LTS is quite different; this is because in our
model we assume the absence of interferences.

Future Work A number of developments are possible. For instance, we could
enrich the calculus with operators to model the concept of store as in [14]. We
could try to extend the behavioural theory to deal with node failure. At this
regards, the developments in [3, 4] for wired networks could be a good starting
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point. Moreover, wireless systems have also features of synchrony that remind us
of synchronous languages (e.g. Esterel [1], Statecharts [6], SCCS [10]). Indeed,
in a single time unit of a wireless system multiple events can happen. It is our
intention to investigate these aspects taking inspiration from [21]. Finally, as
pointed out in [14], security is, of course, another important issue in MANETs
that we would like to investigate.
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