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Abstract. This report outlines the research carried out during the PhD
course in Venice. The general aim is to define logical characterisations of

distributed systems, to describe resources in heterogeneous environments. We

identified two complementary approaches: proof theoretical and model theo-
retical. The former studies the Bunched Implications Logic and Intuitionistic

Modal Logic. The latter leads to the definition of a spatial logic for bigraphs,

named BiLog.

Introduction

In our daily life it is common to deal with distributed computing resources. Prime
examples are programs which are sent or fetched from different sites, and may be
run as a code to do simple calculation tasks or as interactive parallel programs using
resources located almost everywhere in the world. Accordingly, the ability to reason
about correctness of the behaviour of concurrent systems holding or using such
resources, as well as the need of design and implementation tools, is raising to an
increasing prominent role. This prefigures exciting future perspectives, but it poses
enormous challenger to computer science. The lack of any kind of central control,
the continuously mutating topology of the network, the lack of reliable information,
the absence of any intrinsically trustable object imply the necessity of designing new
formal models to describe and reason on properties of distributed resources. This
necessity has been recognised by several authors (e.g., [4, 23, 26, 36]).

Following the traditional approaches, properties of concurrent systems and dis-
tributed resources can be expressed in terms of semantics, logics, or types. We
propose to study logical characterisations of distributed systems which are suitable
to describe resources in heterogeneous environments. Our principal aim is to specify
logics to characterise concurrent systems. The logics we developed mainly describe
the structures of a distributed system. Our focus is more on the structure and the
distribution of resources, than their behaviour. A logical formalism should simplify
the definition and the verification of properties for a distributed system. A formula
defines a property which assumes meaning in a defined model. On the one hand, a
formula characterises a class of processes: the processes that enjoys the expressed
property [4]. On the other hand, a formula models directly the observed properties
of resources in a distributed system [23, 32, 36].
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Moreover a logic helps in deriving new properties as well as connections between
different characterisation of processes properties or resource distributions. Our
purpose is to individuate a logical language which is able to describe the behaviour
and spatial structure of concurrent systems. The aim of the thesis is to use the
logic to describe process and resources behaviour. Its title is ‘Logics for Distributed
Resources.’

Thesis

In order to develop a logic that exploits both the spatial characteristics and in-
terconnections of objects in a distributed system, we identified two complementary
strategies to follow.

(1) Proof theoretical approach: to specialise a pure logical calculus in order to
express properties in a distributed system, and to introduce a pure logical
framework suitable to characterise heterogeneous environments.

(2) Model theoretical approach: to define a logical calculus by considering a
formalisation for distributed systems as a model, and to interpret the new
logical constructs in such a model.

On the one hand, we identified a group of candidate languages suitable for de-
veloping the proof theoretical approach. They are

• Spatial Logic [4, 5], which provides a powerful language to formally describe
the structure of concurrent processes.

• Bunched Implication [32] or Separation Logic [1, 36], which provide a pow-
erful language to describe resources in distributed systems.

• Modal Intuitionistic Logic [23, 30, 31], in which the modalities are not
interpreted temporarily, but spatially.

On the other hand, in the second approach, the range of process calculi to choose
as a formalism for distributed system is wide. We focalised on Bigraphs [22, 26],
which are establishing themselves a truly general (meta-)model of global systems,
and appear to encompass several existing calculi and models, including CCS [29],
π-calculus [22], ambients [20], and Petri-nets [28]. A logic founded on bigraphs aims
at achieving the same generality as a description language: as bigraphs specialise
to particular models, the focus of our research is to understand how to specialise
BiLog to powerful logics on these, in this sense, some results have already been
reached in [15, 16].

The thesis is basad on the following publications:
[2] A. Bossi, D. Macedonio, C. Piazza and S. Rossi. Information Flow in

Secure Contexts. Journal of Computer Security, 2005.
[12] R. Chadha, D. Macedonio and V. Sassone. A Distributed Kripke Semantics.

Computer Science Report 2004:04, University of Sussex, 2004.
[13] R. Chadha, D. Macedonio and V. Sassone. A Hybrid Intuitionistic Logic:

Semantics and Decidability. Accepted for publication in the Journal of
Logic and Computation, October 2005.

[14] G. Conforti, D. Macedonio and V. Sassone. Bigraphical Logics for XML.
Proc. of the Thirteenth Italian Symposium on Advanced Database Systems
(SEBD), 2005.

[15] G. Conforti,D. Macedonio and V. Sassone. BiLog: spatial logics for bi-
graphs. Computer Science Report 2005:02, University of Sussex, 2005.
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[16] G. Conforti, D. Macedonio and V. Sassone. Spatial Logics for Bigraphs.
Proc. of Int. Colloquium on Automata, Languages and Programming
(ICALP), 2005.

[25] D. Macedonio and G.Sambin. Relational Semantics for Basic Logic. To
appear in the Journal of Symbolic Logic.

Proof Theoretical Approach.

Separation Logic. The first logical formalism we considered is Separation Logic
[33, 36], initially introduced to support compositional reasoning about sequential
programs which manipulate pointers. Separation Logic introduced the novel logical
operation ϕ ∗ ψ (the separating conjunction) that asserts that ϕ and ψ are formulae
holding for disjoint portions of the addressable storage. The prohibition of sharing
is built into the operation.

The logic of Bunched Implications, BI [32, 35], generalises the idea of separation
by dealing not only with pointers, but also with distributed resources in general.
It models directly the observed properties of resources. The very first model of
the logic is very simple: a set of resources, which can be combined and compared.
Mathematically, this set-up is modelled with a partial monoid that is commutative
and partially ordered. Such a model is useful to obtain a Kripke-style semantics
which freely combines multiplicative (intuitionistic linear) and additive (intuition-
istic) conjunctions.

The main feature of BI are the bunches instead of the contexts (i.e., lists of
formulae) in a sequent. Intuitively, bunches are trees of formulae. They are built
by using two ways of combining formulae at the meta level: multiplicative (only
commutative) and additive (with weakening and contraction). Thanks to the par-
ticular structure of bunches the calculus presents two conjunctions and two adjoint
operators: the multiplicative ∗, the additive ∧, and the corresponding implications
−∗ and →. We studied the connection of BI with its principal constituents: Linear
Logic (LL) [18] and Intuitionistic Logic (IL). They differ principally in the impli-
cations. In LL an IL there is only a native implication: multiplicative for LL and
additive for IL. In BI there are two native and independent implications. From a
proof theoretical point of view (natural deduction and sequent calculus), we found
that BI is the Intuitionistic Linear Logic (ILL) with a new connective (→) defined
to be adjoint to the additive conjunction between formulae (&). In other words, in
order to obtain BI from ILL it is sufficient to enrich the language with the symbol
→ and require the axiom “ϕ ` ψ → µ if and only if ϕ&ψ ` µ.” We also compared
BI with Basic Logic [37, 25], that is the common core between LL and IL. This
work has been concluded, but not written yet.

Basic Logic. The sequent calculus B, named Basic Logic, has been introduced
in [37] with the aim of finding a structure in the space of the logics. Classical,
intuitionistic, quantum and non-modal linear logics, are all obtained as extensions
in a uniform way. The calculus is defined by introducing the principle of reflection.
A logical constant obeys the principle of reflection if it is characterised semantically
by an equation binding it with a metalinguistic link between assertions, and if its
syntactic inference rules are obtained by solving that equation. All the connectives
of Basic Logic satisfy reflection. As an example, consider the additive conjunction
&. The common explanation of the truth of a compound proposition like ϕ&ψ is
that ϕ&ψ is true if and only if ϕ is true and ψ is true. In this case the connective
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& reflects at the level of object language the link and at the metalanguage. The
semantical equivalence that we obtain in term of sequents is “Γ ` ϕ&ψ if and only
if Γ ` ϕ and Γ ` ψ” which we call definitional equation for &. By solving such
an equation, we obtain the inference rules for &, and we say that & is introduced
according to the principle of reflection.

We found that also the sequent calculus for BI [35] can be introduced according
to the principle of reflection. In particular the connectives ∗ and ∧ reflect the two
way of combining formulae with bunches. Moreover, inspired by the principle of
reflection, we introduced a new sequent calculus equivalent to BI that does not use
bunches. Such a calculus is useful to introduce BI in a natural and intuitive way,
but, unfortunately, it does not enjoy the cut elimination property. Such a calculus
is the combination of two kind of sequents: the linear (multiplicative) Γ ` ϕ, and
the intuitionistic (additive) Γ 
 ϕ. The only communication between the two way
of reasoning can happen only when the left context is a single formula, i.e., we allow
for two communication rules:

ϕ ` ψ
ϕ 
 ψ

Mult to Add
ϕ 
 ψ

ϕ ` ψ Add to Mult

Unfortunately, these two rules are not appropriate for the elimination of cut rules.
In [25] a monoidal semantics for Basic Logic has been introduced. The models

we introduced are close to BI’s models. They are just monoids (M, ·, 1) equipped
with any binary relation R, that we name relational monoids. Note that in this
case the operation · is total. The idea we follow to define the semantics is thinking
of M as the set of resources in a distributed system. We admit a representative
or null resource (the neutral element “1”) and a way of combining resources (the
monoidal operation “·”). We can read the relation R as an accessibility relation,
by saying xRy if the resource x can access the resource y in the system. Such a
relation induces two operator on resources:

x→
def
= {y ∈M : xRy} the resources that x can access;

y←
def
= {x ∈M : xRy} the resources that access to y.

The operators are extended on subsets and are used to define an evaluation of
formulae. We proved a theorem of soundness and a theorem of refined complete-
ness that enables a semantical proof of cut elimination as corollary. We extended
in a modular way the relational semantics to intuitionistic and classical linear logic,
intuitionistic logic, and classical logic. All the extensions allow for a refined com-
pleteness theorem, leading to a semantical cut elimination proof.

It is possible to extend such a result also to BI. In this case the model is a set
with a binary relation and two monoidal operations. Such a monoid is the combina-
tion of the monoids that gives a semantic to ILL and LL. The extended semantics
gives a refined completeness theorem, that provides a constructive semantical proof
of cut elimination for the sequent calculus LBI introduced in [35]. Intuitively the
two properties we add to relational monoids correspond to ask for two well defined
implications: the one is linear and the other intuitionistic. Hence we have a seman-
tical diamond : by starting from B, we obtain ILL by requiring a multiplicative
implication ((), IL by requiring an additive implication (→), and finally BI by
requiring both the implications (and two monoidal operations).

If we relax the requirement of a refined completeness theorem, it is possible to
simplify the models for BI by considering partial ordered monoids (M, ·,≤), where
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the order ≤ is partial and the monoidal operation · is total. In fact, the extension
of the monoidal semantics for LL has recently been simplified in [17] to a partial
ordered set of resources (M,≤). The semantics for BI is obtained by combining
the relational semantics for ILL and the semantics for IL given in [17]. We prove
a soundness and completeness theorem for BI on partially ordered monoids (with
a total operation), whose proof is entirely constructive. A paper is in preparation
on that.

Intuitionistic Modal Logic. A first attempt to deal explicitly with distributivity
and BI is presented in [1], where the original monoidal model for BI is enriched
with locations, in an ambients-like formalism. The work in [1] presents a simple
Kripke model were resources are explicitly distributed in locations and extends
the language of BI by introducing locations. Roughly speaking, this work can be
seen as an intuitionistic version of ambient logic [11]. We preferred to focus on
a more general logic, by considering a modal intuitionistic logic [38] in which the
modalities 2ϕ (always) e ♦ϕ (in the future) are not interpreted temporarily, but
spatially. We interpret them as everywhere and somewhere in the system. Recently,
many authors have moved in this direction [23, 30, 31]: intuitionistic modal logics
are used as foundations of type systems by exploiting the propositions-as-types,
proofs-as-programs paradigm [19]. An instance of this was introduced in [23], and
we focused our study on the logic introduced there.

Formulae in such a logic [23] include names, called places. Assertions in the logic
are associated with places, and are validated in places. The three modalities of
the logic allow us to infer whether a property is validated in a specific place of the
system (@p), or in an unspecified place of the system (♦), or in any part (2). The
modality @p internalises the model in the logic and hence it can be classified as a
hybrid logic. Although hybrid logics are usually studied in a classical setting, an
intuitionistic natural deduction for such a logic is given in [23], whose judgements
mention the places under consideration.

As noted in [23], the logic can also be used to reason about distribution of re-
sources in addition to serving as the foundation of a type system. That paper,
however, lacks a model to match the usage of the logic as a tool to reason about
distributed resources. In [12] we bridged the gap by presenting a Kripke-style
semantics [24] for the logic of [23]. We extended the Kripke semantics of the in-
tuitionistic logic [24], enriching possible worlds with fixed sets of places. In each
possible world, different places satisfy different formulae. For the intuitionistic
connectives, the satisfaction of formulae at a place in a possible world follows the
standard definition [24]. The enrichment of the model with places reveals the true
meaning of the modalities in the logic. In the model, we interpret atomic formulae
as the resources of a distributed system, and placement of atoms in a possible world
corresponds to the distribution of resources.

We have considered several extensions of the logic. A major limitation of the
logic presented in [23] is that if a formula ψ is validated at some named place, say
p, then the formula ψ@p can be inferred at every other place. Similarly if ♦ψ or 2ψ
can be inferred at one place, then they can be inferred at any other place. In a large
distributed system, we may want to restrict the rights of accessing information in a
place. We investigated an extension of the logic to formalise accessibility of places
and we reached the well known intuitionistic modal setting [3, 38].
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By means of a counter example, adapted from [34], we proved that the semantics
in [12] does not enjoy the finite model property. In [13] we refined such model by
introducing a bi-relational models [38], the semantics given on such models is sound
and complete for the logic.The reason for introducing bi-relational models is that
they satisfies the finite model property, and so they allow us to prove decidability.
As in Kripke models, birelational models have a partially ordered set. In addition,
birelational models also have an equivalence relation amongst elements. Unlike the
Kripke semantics, we do not enriched each world with a set of places. Instead, we
defined a partial function, the evaluation function, which attaches a name to a world
in its domain. The partiality of the function is crucial to the proof of decidability.
The canonical model used to prove completeness is carefully defined in order to
deduce the finite model property for the birelational semantics: if a judgement is
not provable in the logic, then we can construct a finite birelational model which
invalidates the judgement. The proof is adapted from the case of intuitionistic
modal logic [38]. Then we conclude the decidability of the logic. Hence we could
use such a logic to solve queries in a distributed system, e.g., a P2P distributed
database to address query such as “Is there such information?”, “Where are these
data stored?”

Model Theoretical Approach.

Bigraphs. Bigraphs [22, 26] are an emerging model for structures in global com-
puting, which can be instantiated to model several well-known examples, including
CCS [29], the π-calculus [21, 22], the ambient calculus [20] and Petri nets [28].
Bigraphs consist essentially of two graphs sharing the same nodes, which have a
control for specifying their nature or behaviour. The first graph, the place graph, is
tree structured and expresses a hierarchical relationship on nodes (viz. locality in
space and nesting of locations). The second graph, the link graph, is an hyper-graph
and expresses a generic n-to-n relationships among nodes (e.g. data link, sharing
of a channel). The two structures are orthogonal, so links between nodes can cross
locality boundaries. Thus, bigraphs express two kinds of separation: structural
separation (i.e. separation in the place graph) and name separation (i.e. separation
on the link graph). By combining these two notion we obtain a ‘strong’ version of
separation for general bigraphs.

At the top level of the tree structure sit the regions. Inside nodes there may
be ‘context’ holes which are uniquely identified by ordinals. Place graphs can be
seen as arrows over a symmetric monoidal category whose objects are ordinals. We
write P : m → n to indicate a place graph P with m holes and n regions. Given
place graphs P1, P2, their composition P1 ◦P2 is defined only if the holes of P1 are
as many as the regions of P2, and amounts to filling holes with regions, according
to the number each carries. The tensor product P1 ⊗ P2 corresponds to put close
the two structures, it is symmetric, but not commutative, as it ‘renumbers’ regions
and holes ‘from left to right’.

Link graphs are arrows of a partial monoidal category whose objects are (finite)
sets of names,X,Y . Given an link graphW : X → Y , the setX represents the inner
names and Y represents the set of outer names. The composition of link graphs
W1◦W2 corresponds to linking the inner names of W1 with the corresponding outer
names of W2 and forgetting about their identities. The tensor product ⊗ of link
graphs is defined in the obvious way only if their inner/outer names are disjoint.
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Combining ordinals m with names X we obtain interfaces, that are couples
〈m,X〉. Combining the notion of place graph and link graphs on the same nodes
we obtain the notion of bigraphs, i.e., arrows G : 〈m,X〉 → 〈n, Y 〉. Given two
bigraphs G1 and G2, intuitively the composition G1 ◦G2 first places every region of
G2 in the proper hole of G1 (place composition) and then joins equal inner names
of G and outer names of F (link composition). The operation is partially defined,
since it requires the inner names and the number of holes of G to match the number
of regions and the outer names of F , respectively. Shared names create the new
links between the two structures. On the other hand the tensor product G1 ⊗G2,
consists of placing close the two bigraphs, only in the case that the tensor product
between their link graphs is defined.

BiLog: a logic for bigraphs. In [16], we exploited the bi-structural nature of the
bigraphical model to introduce a ‘contextual nominal/spatial logic’ for bigraphs
built on two orthogonal sublogics:

• a place graph logic (for tree contexts), to express properties of resource
locations;

• a link graph logic (for name linkings), to express connections between re-
sources (or, more precisely, resource names).

For this reason, we named the formalism BiLog.
We consider the axiomatisation given in [27], where the bigraphical terms are in-

troduced. Every bigraph is formalised as the composition of fixed constructor terms
by using the bigraphical operations ◦ and ⊗. BiLog internalises the bigraphical term
constructors in the style of the ambient logic [11]. Constructors are represented in
the logic as constant formulae, while tensor product and composition are expressed
by connectives. We thus have two binary spatial operators. This contrasts with
other spatial logics, which have only one: ambient-like logics, with parallel compo-
sition A | B, Separation Logic [36], with separating conjunction A∗B, and Context
Tree Logic [8], with applicationK(P ). Our logic is parameterised on a transparency
predicate, that establish when a term can be directly observed in the logic: some are
opaque and do not allow inspection of their contents. In [16] we showed that when
all terms are observable, logical equivalence corresponds to congruence. Otherwise,
it can be less discriminating.

The logic features a logical constant for each transparent construct. The satis-
faction of logical constants is simply defined as the congruence to the corresponding
constructor. The horizontal decomposition formula A⊗B is satisfied by a term that
can be decomposed as the tensor product of terms satisfying A and B respectively.
The vertical decomposition formula A ◦B is satisfied by terms that can be seen as
the composition of terms satisfying A and B. Moreover we define the left and right
adjuncts for composition and tensor to express extensional properties.

The main point is that a resource has a spatial structure as well as a link structure
associated to it. Suppose for instance to be describing a tree-shaped distribution
of resources in locations. We may use atomic formulae like PC(A) and PCx(A) to
describe a resource in an unnamed location, respectively location x, of ‘type’ PC
(e.g. a computer) whose contents satisfy A. We can then write PC(>) ⊗ PC(>)
to characterise models with two unnamed PC resources whose contents satisfy the
tautological formula (i.e., with anything inside). Using named locations, as e.g.
in PCa(>) ⊗ PCb(>), we are able to express name separation, i.e., that names a
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and b are different. The logic is also so expressive to force name-sharing between
resources with formulae like:

PCa(Inc(1)⊗>)
c
⊗ PCb(Outc(1)⊗>)

This describes two PC with different names, a and b, sharing a link on a distinct
name c, which models, e.g., a communication channel. Name c is used as input for
the first PC and as an output for the second PC.

A bigraphical structure is, in general, a context with several holes and open links
that can be filled by composition. This means that the logic can describe contexts
for resources at no addition cost. We can then express formulae like PCa(> ⊗
HD(id1 ∧A)) that describes a modular PC, where id1 represents a ‘pluggable’ hole
(e.g. some disk space in PC’s hard disk). Contextual resources have many important
applications. In particular, the contextual nature of bigraphs is useful to specify
reaction rules to deal with dynamics, but it can also be used as a general mechanism
to describe contexts of bigraphical (bigraph-shaped) data structures (cf. [14]).

Bigraphs are establishing themselves a truly general (meta)model of global sys-
tems, and appear to encompass several existing calculi and models (cf. [22, 20, 28]).
BiLog, our bigraph logic, aims at achieving the same generality as a description
language: as bigraphs specialise to particular models, we expect BiLog to specialise
to powerful logics on these. The main technical results of [16] are the encoding in
BiLog fragments of the static spatial logics of [7], [10] and [8]. In this sense, the
contribution of [16] is to propose BiLog as a unifying language for the description
of global resources. We are currently exploring this path, fortified by the positive
preliminary results obtained for semistructured data [14].

Dynamics. The main aim of [15] and [16] is to show the expressive power of BiLog
in describing static structures. In some cases, BiLog is however able to deal with
the dynamic behaviour of the model also [15]. Essentially, this happens thanks
to the contextual nature of the logic that can be used to characterise structural
parametric reaction rules.

In process algebras the dynamics is often presented by reaction (or rewriting)
rules of the form r –. r′, meaning that r (the redex) is replaced by to r′ (the
reactum) in suitable contexts, named active. A bigraphical reactive system [26] is
a system provided with a set of parametric reaction rules, i.e., a set S of couples
(R,R′), where the bigraphs R and R′ are the redex and the reactum of a parametric
reaction. Intuitively, we say that a bigraph g reacts to g′ (and we write g –. g′) if
there is a couple (R,R′) ∈ S, and a bigraphical structure G( ) such that g = G(R)
and g′ = G(R′).

When the model is enriched with a dynamical framework, it is natural to enrich
the logic in order to catch the temporal evolution of its model. The usual way is to
introduce a modality ♦ (the next step modality), and extend the forcing relation by
defining “g |= ♦A iff g –. g′and g′ |= A.” In several cases, notably the bigraphical
system describing CCS [29], we know that such operator can be expressed directly
by using the static fragment of BiLog [15]. This happens because BiLog is inten-
sional : in some cases it can fully describe the structure of bigraphs. Even more
interesting is the relation between activeness of controls and their transparency as
it seems related to the intensionality/extensionality of the logic. We are currently
investigating a full treatment of dynamics in BiLog, and in particular the encoding
of existing logic for concurrency.
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An application: Semistructured data. In [14] we focus on the applications of BiLog
to semistructured data, XML in particular. XML data are essentially tree-shaped
resources, and have been modelled with unordered labelled tree (cf. [9]). The work
in [14] enriches over such model of tree-shaped data by adding links on resource
names, to obtain a more general model for semistructured data and XML. In addi-
tion, bigraphs naturally model XML contexts: we thus obtained, with no additional
effort, a logic to describe XML contexts which can be interpreted as web services or
XML transformations. In particular, we first show how XML data (and, more gen-
erally, contexts or positive web services) can be interpreted as a bigraph. Equipped
with such ‘bigraphical’ representation of XML data and contexts, we then give a
gentle introduction to different fragments of BiLog and show how they can be ap-
plied to describe and reason about XML. The contribution of the paper is therefore
to identify (fragments of) BiLog as a suitable formalism for semistructured data,
and illustrate its expressiveness by means of selected examples.

Some Investigations left open by the thesis

In [16] we moved a first step towards describing global resources by focusing on
static bigraphs. An important question remains: as bigraphs have an interesting
dynamics, specified using reactions rules, we plan to extend BiLog to such a frame-
work. Building on the encodings of the ambient and the π calculi into bigraphical
reactive systems, we expect a dynamic BiLog to be able to express both ambient
logic [11] and spatial logics for π-calculus [4]. We obtained a first result in this
direction for a fragment of CCS [15]. By using the bigraphical encoding for CCS
in [29] we encoded into BiLog a simple dynamical spatial logic [6] suitable to analyse
CCS processes.

Moreover the encoding of CCS into bigraphs, and the instantiation of BiLog as a
logic for CCS as well, opens the possibility to apply the logic to a non-interference
problem studied during the first years of the PhD course. In [2] we consider infor-
mation flow security in a multilevel system, which aims at guaranteeing that no high
level information is revealed to low level users, even in the presence of any possible
malicious process. The process calculus we consider is straight derived from CCS.
We introduce the notion of secure contexts for a class of processes. A context is a
process with a variable subprocess (a hole) that can be replaced by any process, in
order to characterise the environments in which processes are evolving. The notion
of secure context is parametric with respect to both the observation equivalence and
the operation used to characterise the low level behaviour of a process. We believe
that a “secure” context is a context which cannot change in unpredictable ways,
but follows some predetermined rules. These behavioural constraints are reflected
in the structure of the context itself. We analysed the secure contexts for some
class of processes. Now, our aim is tho exploit the contextuallity of BiLog, and the
encoding of CCS, in order to characterise such contexts.

Another possible application for BiLog can be in the software engineering field.
In fact the main characteristics of bigraphs are: locality (places), connectivity
(links), dynamics (reaction system), and open-endedness. These are the main char-
acteristics of a software architecture. We expect to use BiLog as a powerful language
to describe and open-ended software.
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Structure of the dissertation

Title: ‘Logics for Distributed Resources.’
(1) Introduction to Logic. (cf. [17, 25])

(a) Basic Logic and its extensions.
(b) Relational semantics [25] for Basic Logic and its extensions: soundness,

refined completeness and semantical cut elimination.
(c) Simplified semantics for Intuitionistic Logic [17]

(2) BI, a logic for compoundable resources.
(a) Introduction of BI by following the principle of reflection.
(b) Relational semantics for BI and semantical cut elimination.
(c) Preordered monoids as models for BI: completeness constructive proof.

(3) Intuitionistic Modal Logic, for distributed resources. (cf. [12, 13])
(a) Introduction of places in the logic.
(b) Distributed Kripke models: soundness and completeness [12].
(c) Birelational models: finite model property and decidability [13].

(4) BiLog, a logic for structured and dynamic resources. (cf. [14, 15, 16])
(a) Introduction of Bigraphs as a (meta-)model of global systems.
(b) Introduction of BiLog and its semantics [16].
(c) Encoding of fragments of spatial logics into BiLog [15, 16].
(d) Dynamics in BiLog, a result with CCS calculus (cf. [15])
(e) Application of BiLog (XML [14]):

Publications during the PhD course

Journal Papers.
• R. Chadha, D. Macedonio and V. Sassone. A Hybrid Intuitionistic Logic:

Semantics and Decidability. Accepted for publication in the Journal of
Logic and Computation, October 2005.

• A. Bossi, D. Macedonio, C. Piazza and S. Rossi. Information Flow in
Secure Contexts. Journal of Computer Security. IOS Press.

• D. Macedonio and G.Sambin. Relational Semantics for Basic Logic. Under
publication in the Journal of Symbolic Logic.

Conference Proceedings.
• G. Conforti, D. Macedonio and V. Sassone. Spatial Logics for Bigraphs.

Proc. of Int. Colloquium on Automata, Languages and Programming
(ICALP), 2005.

• G. Conforti, D. Macedonio and V. Sassone. Bigraphical Logics for XML.
Proc. of the Thirteenth Italian Symposium on Advanced Database Systems
(SEBD), 2005.

• A. Bossi, R. Focardi, D. Macedonio, C. Piazza, and S. Rossi. Unwinding
in Information Flow Security. In Proc. of Workshop MEFISTO, ENTCS,
Elsevier Sciences, 2004.

• A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Information Flow Security
and Recursive Systems. In Proc. of the Italian Conference on Theoretical
Computer Science (ICTCS ’03). October 2003.

• A. Bossi, D. Macedonio, C. Piazza, S. Rossi. Secure Contexts for Confi-
dential Data. In Proc. of the 16th IEEE Computer Security Foundations
Workshop (CSFW ’03), September 2003.

12



• A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Secure Contexts (Ex-
tended Abstract). In Electronic Proceedings of the Workshop on Issue in
the Theory of Security (WITS’03), April 2003.

Technical Reports.
• G. Conforti,D. Macedonio and V. Sassone. BiLog: spatial logics for bi-

graphs. Computer Science Report 2005:02, University of Sussex, 2005.
• R. Chadha, D. Macedonio and V. Sassone. A Distributed Kripke Semantics.

Computer Science Report 2004:04, University of Sussex, 2004.
• A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Compositional Action

Refinement and Information Flow Security. Technical Report CS-2003-13,
Dipartimento di Informatica, Università Ca’ Foscari di Venezia, August
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Foscari di Venezia, April 2003.

• A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Secure Contexts for
Information Flow Security. Technical Report CS-2002-18, Dipartimento di
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