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1 Introduction

In our daily life mobile computing resources moving in an out of other comput-
ing resources are very common. Prime examples are smart cards [27] used in
Subscriber Identity Module (SIM) cards or next generation credit cards, moving
from card issuers to card holders and in and out of mobile phones or automatic
teller machines (ATMs). In a distributed environment, in general, a user often
employs programs which are sent or fetched from different sites to achieve his/her
goals. Such programs may be run as a code to do simple calculation task or as
interactive parallel programs using resources located almost everywhere in the
world. Accordingly, the ability to reason about correctness of the behaviour of
concurrent systems holding and/or using such resources, as well as the need of
design and implementation tools, will raise to an increasing prominent role.

This prefigure exciting future perspectives, but it poses enormous challenger
to computer science, and it is likely to require the development of innovative
paradigms for information processing and task coordination. In fact traditional
correctness properties and methodologies for sequential systems are not more
applicable in presence of distributed and mobile systems. The lack of any kind
of central control, the continuously mutating topology of the network, the lack of
reliable information, the absence of any intrinsically trustable object imply the
necessity of designing new formal models for description of and the reasoning on
properties of distributed resources. This necessity has been recently recognized
by several authors; milestone papers on this subject are [16, 44].

In the global computing model of mobility, resources are shared and distrib-
uted over the network, and agents are not tied to any specific system resource or
to any geographical or logical network location. They need permission to cross
administrative domains and to execute on remote locations using local resources,
outside their control, as well as resources belonging to the domain of origin. Re-
source access control aims at providing guarantees of safety and authorization.
Safety corresponds to building safeguards against misuse of data leading to run-
time failures: authorization provides an insurance that access to resources is
granted only to principals that have obtained appropiate permissions. A reliable
software is a prerequisite for the success of the global computing infrastructure.

Following the traditional approaches for the analysis of concurrent systems,
properties of mobile processes and distributed resources can be expressed in



terms of semantics (e.g.behavioural equivalences [41]), logics [15,45,48,54], or
types [42,47]. Although correctness and security issues motivated the studies of
abstract models for distributed systems, there are still few works dealing with
the verification of correctness or security properties of concurrent and mobiles
systems.

We propose to study semantic characterizations of distributed systems which
are suitable to analyze processes in dynamic environments. Our purpose is to
specify a logical/formal tool which makes it easier to deal with concurrent and
mobile systems. A logical formalism should simplify the definition of correctness
and security properties for a distributed system. A logical formula defines a
property which assumes meaning in a defined model. On the one hand a formula
can detect a class of processes, the processes that enjoys that property [12]. On
the other hand a formula can model directly the observed properties of resources
in a distributed system [45, 48].

Moreover the logical framework helps in deriving new properties as well as
connections between different characterization of process properties or resource
distributions. Our purpose is to individuate a logical language which is able to
describe the behaviour and spatial structure of concurrent systems, and thus
it is a useful instrument in deriving correct systems in a compositional way.
Candidate languages could be Spatial Logic [12,13], which provides a powerful
language to formally describe the structure of concurrent processes, Bunched
Implication [45] or Separation Logic [4, 48], which provide a powerful language
to describe the distribution of resources in distributed systems.

Our principal intention is to play on logic, to describe process and resources
behaviour w.r.t mobility and in particular security. In fact security is a basic
property for distributed systems [51]. To this aim we started by analyzing the
definition of secure process in well known formalisms, such as CCS [41] and 7
calculi [44].

A possibly title for our project could be: “A logical framework to deal with
concurrency and security properties”.

2 State of the Art

2.1 Process Calculi

Among the approaches and theories for the modelling, analysis and verification of
concurrent distributed systems, process algebras have received a lot of attention
for their mathematical rigour and modelling flexibility. Their theory takes off
over twenty years ago from the seminal CCS [41] and other calculi [3,28,32]
and led to the emergence of important notions of behavioural equivalences that
are now part of the common way of reasoning about concurrent systems. CCS
was surpassed by the introduction of w-calculus [43,44, 55], which introduces
name mobility and, therefore, puts network topologies under the control of the
processes themselves. Thus an extra expressiveness has been achieved.

As the focus of international research on concurrency moved towards system
distributed on wide-area networks, the communications offered by w-calculus



became less than perfect a choice for foundational calculi, in fact w-calculus
makes an abstraction on communications that it is not easily implemented in a
truly distributed setting!. This led to the definitions of several versions of the
m-calculus featuring asynchronous message passing [33, 56], and to the develop-
ment of the relative semantics theories, including bisimulation [1], and testing
equivalence [17,35]. A further step towards a faithful modelling of distributed
computation was focusing on migration and location failures, as in the distrib-
uted join-calculus [24] and in D7 [30], which introduced process migration and
access control. An original viewpoint was brought forward by the ambient calcu-
lus [16]. Ambients are administrative or physical boundaries that confine their
contents (including executing threads) and carry them along when autonomously
moving. Ambients introduce new concepts (e.g. traversing the network opening
of ambients, subjective versus objective moves) and new challenges. As the full
ambient calculus is often perceived as too general, several proposal aimed at
simplifying it, especially concerned with the control of access [2, 36, 9].

A prominent line of research in the semantics of distributed systems is the
development of types systems for process calculi [42,47] or the definition of new
substructural logics [25,45,48]. Our research is focused on the foundations of
logics for mobile distributed systems.

2.2 Logics

The relationships between computation and logic are regarded as fundamen-
tal, as perceived through paradigms of programming such as proof-as-programs
(Curry-Howard isomorphism, functional programming), proofs-as-computations
(logic programming), and proofs-as-processes (concurrent programming). Ac-
cordingly, modelling of concepts, mechanisms and computations is approached
by the researchers through logic using methods based on automatized construc-
tion of proofs and structural analysis in substructural and constructive logics.

Semi-structured data recently arise as central in the exchange of information
in computer science but adequate models and logics are necessary in order to
represent, manipulate and reason about such data. One difficulty is to provide
models that well reflect the structures (see Section 2.1) and logics that are enough
expressive to represent data properties and enough restricted to decide if a given
model satisfies a formula and if some properties entail other properties. In this
context, recent works focus on separation logics [4, 14, 34,46, 48].

Separation logic was initially introduced by Reynolds-O’Hearn to support
compositional reasoning about sequential programs which manipulate pointers.
Afterwards O’Hearn proposed a Hoare-style methodology based on separation

! In m-calculus, processes interact by sending communication links to each other.
The basic computational step is the transfer of a communication link between two
processes; the recipient can then use the link for further interaction with other par-
ties. This is hardly implementable on physical system: how can we move the links
to a process? We can neither change the physical topology of the system nor handle
channels as a physical address, which should be known by a central trusted autority.



logic for reasoning about partial correctness of shared-memory parallel programs
which manipulate pointers.

Reynolds and O’Hearn gave an operational semantics for sequential pro-
grams, by using an abstract model of machine state in which a state comprise a
store and a heap. They extended the familiar pre- and post-condition notation
of Hoare-style partial correctness formulas with a separating conjunction, used
in pre- and post-conditions to specify disjointness assumptions and guarantees.
The separation among formulae can be seen, e.g., as the separation between
integers and addresses in a structure with pointers. An integer is stored into a
location and it is in someway unique: two integers with the same value in differ-
ent locations are two separate resources. Pointers that refer to the same location
are indistinguishable, so their number is irrelevant.

Separation logic introduced the novel logical operation ¢ * ¢, (separating
conjunction) that asserts that ¢ and 1 are formulae that hold for disjoint por-
tions of the addressable storage. The prohibition of sharing is built into the
operation. The intuitionistic character of this logic implied a monotonicity prop-
erty: an assertion true for some portion of the addressable storage would remain
true for any extension of that portion, such as might be created by later storage
allocation.

The logic of bunched implication, BF [45], generalizes the idea of separation
by dealing not only with pointers, but also with distributed resources in general.
The basic idea is to model directly the observed properties of resources and
then to give a logical axiomatization. The very first model of the logic was very
simple. BF requires the following properties of resources: a set R of resources, a
combination e of resources with a zero resource e, and a comparison C between
resources. Mathematically, this set-up is modelled with a commutative preordered
monoid R = (R, e,¢e,C) in which e, with unit e, is functional w.r.t. C. By taking
such a structure as an algebra of worlds, we obtain a Kripke-style semantics for
BF which freely combines multiplicative (intuitionistic linear ® and —o) and
additive (intuitionistic A, — and V). The key property of the semantics is the
sharing interpretation.

The elementary semantics or the multiplicative conjunction

m = @1 * @9 iff there are ny and ng such that m T ny e ng, n1 = 91, N2 E ¢

is interpreted as follows: the resource m is sufficient to support ¢ * @ just
in case it can be divided into resources n; and ns such that ny is sufficient to
support ¢1 and ns is sufficient to support ¢o. The assertions ¢ and o — think of
them as expressing properties of programs — do no share resources. In contrast,
in the semantics of the additive conjunction

mE o1& s iff m | @1 and m | @

the assertions ¢1 and o share the resource m.
BF is different form Girard’s Linear Logic (LL), principally because impli-
cations. In LL there is only a native implication: the multiplicative one (which



defines the additive one by means of a modality). In BF there are two native
and independent implications. The semantics of multiplicative implication

m = ¢ =1 iff for all n such that n =@, men =1

is interpreted as follows: the resources m is sufficient to support ¢ —« — think
of the proposition as (the type of) a function — just in case for any resource n
which is sufficient to support ¢ — think of it as the argument of the function —
the combination m e n is sufficient to support . The function and its argument
do not share resources. In contrast, in the semantics of additive implication

mE ¢ — ¢ iff for all n Cm, if n |= @, then n = ¢

the function and its argument share the resource n. For a simple example of
resource as cost, let the monoid be given by the natural numbers with addition
and unit zero, ordered by less than equal.

BI logic has recently been extended with a modality for locations [4]. Now
it can be viewed as a separation and a spatial logic: the BI's multiplicatives
naturally introduce the notion of resource separation and the location modality
allows to gather resources in some locations and thus introduce a notion of spatial
representation or resources. In [4] a new data model is given, it is called resource
tree, that is a labelled tree structure in which contain nodes are elements of a
partially defined monoid of resources.

Next step for the development of BI should be the introduction of the mo-
bility for the resources, in order to perform nomadic distributed systems.

On the other hand, Caires and Cardelli’s Spatial Logic displays an active
parallel line of development on reasoning about concurrent processes and semi-
structured data [12-14]. Spatial Logic has been proposed with the aim of de-
scribing the behaviour and spatial structure of concurrent systems.

Spatial Logic tackles the problem from another point of view. On the one
hand BI is a logic that originates form a simple resource model and now is
approaching to more complex models. On the other hand Spatial Logic originates
from an already complex model.

The spatial properties that this logic consider are essentially of two kinds:
whether a system is composed of two or more subsystems (i.e. “Composition”
of m-calculus), and whether a system restricts the use of certain resources to
certain subsystems (i.e. “Restriction” of m-calculus).

A model of Spatial Logic is just m-calculus, but the idea can be easily ex-
tended to other calculi, such as ambient calculi with locations. A formula in
Spatial Logic describes a property of a particular concurrent system at a partic-
ular time; therefore it is modal both in space and in time.

In conclusion these logical calculi, can talk about fine details of process struc-
ture. This is what is required if we want meaningfully describe the distribution
of processes and the use of resources over a network. We are considering both
of them in order to detect the right logical formalism suitable to describe a real
distributed system.



2.3 Security as Noninterference

Protecting the confidentiality of manipulated information is one of the most im-
portant problems in distributed systems. There is little assurance that concurrent
systems protect data confidentiality and integrity. Analysing the confidentiality
properties of a distributed system is difficult even when insecurity arises only
from unintentional errors in the design or implementation. Additionally mod-
ern systems commonly incorporate untrusted, possibly malicious host or code,
making assurance of confidentiality more difficult.

The standard way to protect confidential data is access control: some privi-
leges are required in order to access files or objects containing the confidential
data. Access control checks place restrictions on the release of information but
not its propagation. Once information is released from its container, the access-
ing program may, through error or malice, improperly transmit the information
in some form. To ensure that information is used only in accordance with the
confidentiality policies, it is necessary to analyse how information flows within
the using program. The analysis must show that information controlled by a
confidentiality policy cannot flow to a location where that policy is violated.

Information flow security aims at guaranteeing that no high level (confiden-
tial) information is revealed to users running at low levels [19, 23, 40,51, 57], even
in the presence of any possible malicious process. An early attempt to formalize
the absence of information flow was the concept of noninterference proposed in
the seminal paper by Goguen and Meseguer [26], and further developed in [10,
19,20, 31, 38, 50, 52]. Intuitively, to establish that information does not flow from
high to low it is sufficient to establish that high behavior has no effect on what
low level users can observe, i.e., the low level view of the system is independent
of high behavior.

Noninterference policy has been implemented in various formalisms such as
Security Process Algebra (SPA for short) [18, 19, 39], or m-calculus [29], or ambi-
ent calculus [10, 36].

SPA is a variation of Milner’s CCS [41] where the set of visible actions is
partitioned into high level actions (H) and low level ones (L), in order to specify
multilevel systems. Noninterference among processes has been formalized in [18,
19] with the definition of Bisimulation-based Non Deducibility on Compositions
(BNDC). The BNDC security property aims at guaranteeing that no information
flow from the high to the low level is possible, even in the presence of malicious
processes. The main motivation is to protect a system also from internal attacks,
which could be performed by the so called Trojan Horse programs. Property
BNDC is based on the idea of checking the system against all high level potential
interactions, representing every possible high level malicious program.

If has been shown, [22], that BNDC property is not strong enough to analyse
systems in dynamic execution environments. For instance, if code mobility is
allowed, a program could migrate to different host in the middle of its compu-
tation. In this setting we have to guarantee that every reachable state of the
process is secure. Another interesting example is the execution of an applet on
a Java Card, where an attacker could try to bring the card in an unstable (in-



secure) state by powering off the card in the middle of applet computation. To
deal with these situations it has been introduced the security property named
P_BNDC [5,8,21,22,49] that requires that every state reachable by the process
has to be secure.

Noninterference is given treatment also in m-calculus, e.g. [29], by using types.
Numerous typing systems have been developed for this language. Most are based
on judgments of the form I' - P, indicating that the process P is well-typed
with respect to the security policy I', which associates capabilities with the free
channel names of P. Usually these capabilities are of the form:

r(T) : ability to read values of type T form a channel (read capability);
w(T) : ability to write values of type T to a channel (write capability).

In addition, a complete lattice SL of security levels is associated to obtain se-
curity types. By varying the precise definition of a security type we can either
implement resource access control methodologies, or ensure forms of noninter-
ference.

Among the various techniques used for defining security properties we focused
our attention on the proof-theoretical approach, such as in [19], which verifies
that the behaviour of a given process conforms to a given definition.

Now our aim is to translate the noninterference notion of SPA into w-calculus
in order to study the relations with the noninterference definitions of 7-calculus.

3 Preliminary Results

Our purpose is to studying semantic characterizations of distributed systems
which are suitable to analyze processes in dynamic environments. We aim at
specifying a logical /formal tool which makes it easier to deal with concurrent or
mobile systems. A logical formalism should simplify the definition of correctness
and security properties for a distributed system.

We first considered a basic property for distributed systems: security, espe-
cially noninterference. So we started by analyzing the definition of secure process
in well known formalisms, such as CCS [41] and w-calculus [44].

In [6] we consider information flow security in a multilevel system, which
aims at guaranteeing that no high level information is revealed to low level
users, even in the presence of any possible malicious process. Our work starts
from the observation that this requirement could be too demanding when some
knowledge about the environment (context) in which the process is going to
run is available. To deal with these situations we introduce the notion of secure
contexts for a class of processes.

A context is a process with a variable subprocess (a hole) that can be replaced
by any process, in order to characterize the environments in which processes are
evolving. The notion of secure context is parametric with respect to both the
observation equivalence and the operation used to characterize the low level
behavior of a process. We believe that a “secure” context is a context which



cannot change in unpredictable ways, but follows some predetermined rules.
These behaviuoral constraints are reflected in the structure of the context itself.

We mainly analyze the cases of bisimulation and trace equivalence. We de-
scribe how to build secure contexts in these cases and we show that two well-
known security properties, named BNDC and NDC, are just special instances
of our general definition.

Contexts formalize systems with unspecified components. In general, in the
design process of distributed systems we may have to replace abstract speci-
fications of components by more concrete specifications, thus providing more
detailed design information. This well-known approach is often referred to as
action refinement. In [7] we study the relationships between action refinement,
compositionality, and information flow security within the Security Process Al-
gebra (SPA). In particular, we first formalize the concept of action refinement
in terms of context composition. We study the compositional properties of our
notion of refinement and provide conditions under which information flow secu-
rity properties expressed in terms of bisimulation are preserved through action
refinement.

The results reported in [8] are our first step towards m-calculus. In fact in [§]
we consider CCS with another form of recursion expressed using the replication
operator (!) instead of constant definitions. Replication is the main recursion
operator in the m-calculus, where it has the same expressive power as constant
definitions [55]. As recently proved in [11], replication cannot supplant recursion
in CCS. We show that the class of P_.BNDC processes is compositional with re-
spect to the replication operator. This allows us to define a proof system which
provides a very efficient technique for the stepwise development and the verifi-
cation of recursively defined P_.BNDC' processes. Moreover, we prove a partial
compositionality of P_.BNDC with respect to constant definitions, i.e., we iden-
tify a class of constant definitions which can be safely added to the language
with replication and treated by an extended proof system.

4 Future Work Organization

Our main goal is specifying a logical/formal tool which makes it easier to deal
with concurrent and mobile systems. Accordingly, here we state the work pro-
gram for the next future. Our work is roughly divided by objectives, though
there are tasks to be accomplished in parallel.

Objective 1. Starting from CCS, consider other formalisms such as -
calculus, D, or ambients in order to extend the properties studied in CCS.
In particular transfer into more structured calculi the notions of noninterfer-
ence of SPA, such as secure contexts, and try to express them within a logical
framework.

Objective 2. Develop a logical framework suitable to deal with completely
mobile distributed systems, which exploit both the spatial characteristics and
interconnections of objects. This intention could be reach by following two com-
plementary strategies:



— Extend a separation logic, such as BI, in order to deal with mobile distrib-

uted resources. Consider the model with location for BI [4] and introduce
the mobility. This could lead to an ambient model for BI.

Consider the central kernel of Spatial Logic and introduce a notion of process
mobility. In fact Spatial Logic has been introduced for the purpose of describ-
ing communicating processes in a distributed environment. Spatial Logic is a
classical logic not properly concentrated on locality of reasoning, which uses
marriage of substructural conjunction and full boolean connectives. Hence
it cannot catch the hint that a constructive logic, such as BI or Intuition-
istic Linear Logic, can appreciate. On the other and, a strength for Spatial
Logic is that its model is more accurate and more closed to a real distributed
system than the resource model of Separation logic.

Our research is headed also toward foundations of logic. In particular Basic

Logic [53], a substructural logic which has been introduced with foundational
purposes, and in this sense it is the core for every substructural logic, such as BI.
It should be interesting to study the inner relation between BI and Basic Logic.
In fact it has recently been proved that Basic Logic admits a mathematical model
[37]: a relational monoid, just a commutative monoid with a binary relation. Such
a model is very close to BI’s resource model.
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