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ember 14, 2001We present here a mathemati
al interpretation of the fragment without impli
ations of basi
logi
 (for an introdu
tion to basi
 logi
 and its motivations see [13℄). The models are just relationalmonoids (M; �; 1) equipped with an arbitrary relation R. The relation R indu
es two 
losureoperators on subsets of M , whi
h are obtained by 
ombining polarities, as in [2℄. The idea (dueto Ferru

io Guidi, see [7℄ and [8℄) is to interpret formulae in subsets of M whi
h are 
losedin this sense. The de�nition of the evaluation for ea
h 
onne
tive is based on the equivalen
es
hara
terizing that 
onne
tive (
alled de�nitional equations in [13℄). The proof of validity is thenimmediate. Contrary to what happens in other logi
s, here the evaluation of a sequent � ` �
annot be redu
ed in general to the evaluation of a sequent of the form ' `  or to the evaluationof a single formula. In fa
t, here the \
omma" in the lists � and � 
an be repla
ed by a 
onne
tiveonly when � (or �) 
onsist of only two formulae (property of visibility, see [13℄).Completeness is proved as usual by way of a generi
 model, built up from syntax.Basi
 logi
 has been explained (in [13℄) in terms of the prin
iple of re
e
tion: ea
h 
onne
tivere
e
ts at obje
t level a link between assertions at the metalevel. This provides ea
h 
onne
tivewith a 
lear meaning, that is with a semanti
s. Still, there are two good reasons to introdu
e a
omplete mathemati
al interpretation (what is 
ommonly 
alled a semanti
s). One is that it 
ouldbe useful to some readers to grasp the meaning of basi
 logi
. The other is that the relationalmonoids in whi
h the relation is strongly symmetri
 (that is, satis�es x � y R z ! x � z R y) turnout to be exa
tly the phase spa
es introdu
ed by J.-Y. Girard as semanti
s of linear logi
 in [6℄.This should highlight in whi
h sense linear logi
 (without exponentials!) is a proper extension ofbasi
 logi
.The stru
tural rule of ex
hange was introdu
ed in the sequent 
al
ulus B of basi
 logi
 simplyfor reasons of 
onvenien
e, to avoid dupli
ations of impli
ations. Sin
e we here omit impli
ations,it is very natural to 
onsider the sequent 
al
ulus obtained dropping also the rule of ex
hange. Infa
t ex
hange is valid in a relational monoid if and only if the monoid operation is 
ommutative.Thus the relational semanti
s introdu
ed here applies also to a non 
ommutative basi
 logi
.Finding a mathemati
al interpretation for the full 
al
ulus of basi
 logi
 B, with impli
a-tions, remain an open problem. A 
onvin
ing solution might involve a deeper understanding ofimpli
ation in basi
 logi
, and may be a reformulation of its rules.�This resear
h was partially supported by the proje
t \Computazione e logi
a: la logi
a di base 
ome strumentoper un nuovo appro

io unitario", Universit�a di Padova.1



1 The basi
 
al
ulusIn this se
tion we introdu
e the basi
 sequent 
al
ulus 
alled B�. It is obtained from the sequent
al
ulus B of basi
 logi
 (introdu
ed in [13℄) simply by deleting the impli
ations and ex
hangerules (i.e. the only stru
tural rules of B). In parti
ular 
al
ulus B� is non-
ommutative.The language L of B� 
onsists of propositional 
onstants >, ?, 1 and 0, propositional variablesp; q; : : :, additive 
onne
tives � and N , and multipli
ative 
onne
tives � and O . We denote bysmall Greek letters ';  ; � : : : the formulae of L and by 
apital Greek letters �;�;�; : : : (possiblyempty) lists of formulae. In a sequent � ` �, both the ante
edent � and the 
onsequent � are
alled 
ontexts.The inferen
e rules of B� are justi�ed, as in [13℄, by solving some de�nitional equations. Werefer to [13℄ for a dis
ussion on this methodology, and here we report shortly only the results.We assume at the beginning only axioms of the form ' ` ' and 
ut rules, as at the bottomof table 1. Ea
h 
onne
tive and logi
al 
onstant is asso
iated with a de�nitional equation, whi
h
ompletely des
ribes its behaviour.De�nition 1 (De�nitional equations). Ea
h 
onne
tive and ea
h logi
al 
onstant is requiredto satisfy the 
orresponding equation, as follows:� : For all �;  � ' ` � i�  ; ' ` �;O : For all �; � ` 'O i� � ` ';  ;� : For all �;  � ' ` � i�  ` � and ' ` �;N : For all �; � ` 'N i� � ` ' and � `  ;1 : For all �; 1 ` � i� ` �;? : For all �; � ` ? i� � ` ;0 : For all �; ' ` � and 0 ` � i� ' ` �;> : For all �; � `  and � ` > i� � `  :The inferen
e rules of B�, listed in table 1, are obtained by solving all de�nitional equations.This means that the inferen
e rules for a 
onne
tive or a 
onstant are obtained from the 
or-responding de�nitional equation by applying axioms and 
ut rules. And that, 
onversely, thede�nitional equations be
ome formally derivable in B�. We refer to [13℄ for the derivation of thesolution. De�nitional equations are very important in this paper, sin
e they provide with the rightintuitions for the de�nition of evaluation of formulae, in se
tion 3.2 Relational monoidsThe basi
 stru
tures whi
h will be used to give a relational semanti
s for the 
al
ulus B� arejust monoids equipped with a binary relation. We 
all them relational monoids. We now de�nethem formally. Then we will introdu
e Birkho�'s polarities (see [2℄) and we will repeat their �rstproperties, whi
h we will often use in the following.De�nition 2. M = (M; �; 1; R) is a relational monoid ifM is a set;� :M �M �!M is a binary operation su
h that(x � y) � z = x � (y � z) for all x; y; z 2M (asso
iativity),1 � x = x � 1 = x for all x 2M (neutral element);R is a binary relation of M on itself. 2



Axioms' ` 'Operational rulesMultipli
atives ; ' ` � � ' ` � �L � ` ';  � ` ' O  OR ` �1 ' ` �2 O ' ` �1;�2 OL �2 ` ' �1 `  �2;�1 ` '
  �R` �1 ` � 1L � `� ` ? ?R? ` ?L ` 1 1RAdditives ` � ' ` � � ' ` � �L � ` ' � `  � ` 'N NR ` � N' ` � NL ' ` � N' ` � NL � ` '� ` '�  �R � `  � ` '�  �R0 ` � 0L � ` > >RCut rules� ` ' �1; ';�2 ` ��1;�;�2 ` � 
utL � ` �2; ';�1 ' ` �� ` �2;�;�1 
utRTable 1: Basi
 sequent 
al
ulus B�.
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Through the relation R in M , every element z 2 M determines two subsets of M : the subsetz   of elements that are in left relation with z and the subset z!!! of elements that are in rightrelation with z. Formally1: z   � fx 2M : xRzg;z!!! � fy 2M : z R yg:We 
an extend this de�nition to subsets2 of M so that we 
an obtain the polarities introdu
edby Birkho� in [2℄. For any subset A � M we de�ne its left polar A   and its right polar A!!! asfollows.De�nition 3. For any A �M , we put:A   � fx 2M : xRz for all z �Ag = \z �A z   ; (1)A!!! � fy 2M : z R y for all z �Ag = \z �A z!!!: (2)Note that there is no ambiguity of notation, sin
e fzg   = z   and fzg!!! = z!!! for everyz 2M . Moreover, for any A �M the following equivalen
es hold by de�nition:x �A   i� A � x!!! and y �A!!! i� A � y   :By using them the reader 
an easily verify that the following lemma holds.Lemma 4. For any A1; A2; B1; B2 subsets3 of M :A1 � A2 implies A!!!2 � A!!!1 ; (3)B1 � B2 implies B   2 � B   1 ; (4)A1 � A! ! ! 1 and B1 � B ! ! !1 : (5)Conditions (3){(5) are just the de�nition to saying that the 
orresponden
es A 7! A!!! andB 7! B   de�ne a Galois 
onne
tion (see [2℄) between the 
omplete latti
e (P(M);�) and itself,where P(M) is the 
lass of subsets of M and � determines the order. Conditions (3){(5) areequivalent to a very important 
ondition whi
h we will use for soundness.Lemma 5. Conditions (3), (4) and (5) are equivalent to 
ondition:A � B   i� B � A!!! for all A;B �M: (6)Proof. We obtain the dire
tion left-right of (6) by applying (3) and (5), and the dire
tion right-leftof (6) by applying (4) and (5). Vi
e versa, we obtain (5) by applying (6) to A!!!1 � A!!!1 (if we putA = A1 and B = A!!!1 ). We obtain (3) in this way: if we assume A1 � A2, then A1 � A! ! ! 2 by (5),and so A!!!2 � A!!!1 by applying (6) to A = A1 and B = A!!!2 . We 
an obtain (4) symmetri
ally.The 
ondition (6) says that the two (
ontravariant) operators (�)!!! and (�)   are adjoint on theright (see [3℄ p.81).The following are immediate 
onsequen
es of lemma 4, or equivalently of (6).Corollary 6. For any A;B �M :A! !! !! ! = A!!! and B !  !  ! = B   : (7)1Here and in whole paper � is the sign for de�nitional equality, when a de�nition is �rst given, the de�niendumwill always be at the left and the de�niens at the right.2We adopt the de�nitions and notations for subsets introdu
ed and justi�ed in [14℄. So, for any set M , A �Mmeans that A is a propositional fun
tion over M . To denote that a is an element of the subset A, we write a �A.3With A! ! ! and B ! ! ! we mean (A!!!)   and (B   )!!! respe
tively. In general terms, an exponential with morethan one arrow is to be intended as the appli
ation of arrows from left to right. As an example: B ! ! ! ! ! ! means(((B   )!!!)   )!!!, and so on. 4



Proof. By (5), we have A!!! � A! !! !! ! and A � A! ! ! , hen
e A! !! !! ! � A!!! by (3). The proof thatB !  !  ! = B   is similar.Corollary 7. The operators (�)! ! ! : P(M) �! P(M) and (�) ! ! ! : P(M) �! P(M) are
losure operators.Proof. It easy to see that the 
onditions for 
losure operators holds, in fa
t for any A;A1 � M :A � A! ! ! by (5); A! ! ! = A! ! ! ! ! ! by (7); A � A1 implies A! ! ! � A! ! ! 1 by (3) and (4). The
ase of (�) ! ! ! is similar.Now we 
an de�ne two 
lasses of subsets of M whi
h we will use to de�ne the evaluation offormulae.De�nition 8 (Saturated subsets). For any A;B � M , we say that A is left saturated ifA = A! ! ! and that B is right saturated if B = B ! ! !. Moreover we de�ne Sat   (M) andSat!!!(M) as the 
olle
tion of left saturated and right saturated subsets of M respe
tively.The justi�
ation of the adje
tives \left" and \right" to saturated subsets derives from 
orollary6. In fa
t, by (7), left and right saturated subsets of M are just those of the form B   and A!!!respe
tively.The 
olle
tions Sat   (M) and Sat!!!(M) are 
omplete latti
es, where meet (gub) is the inter-se
tion \ and join (lub) is the saturation of the union [. M is the maximum among both left andright saturated subsets. The saturations of the empty subset, ;! ! ! and ; ! ! !, are the minimumamong left and right saturated subsets, respe
tively.The next theorem shows a very important 
orresponden
e between left and right saturatedsubsets. Su
h 
orresponden
e is useful to our interpretation of formulae of language L.Theorem 9. The 
orresponden
es A 7! A!!! and B 7! B   de�ne a dual isomorphism between the
omplete latti
es of left and right saturated subsets of M . In parti
ular, if A1; A2 are left saturatedsubsets and B1; B2 are right saturated subsets, then:(A1 \ A2)!!! = (A!!!1 [ A!!!2 ) ! ! ! (B1 \ B2)   = (B   1 [ B   2 )! ! ! (8)(A1 [ A2)!!! = A!!!1 \ A!!!2 (B1 [ B2)   = B   1 \B   2 (9);!!! =M ;   =M (10)M!!! = ; ! ! ! M   = ;! ! ! (11)Proof. By (7), the 
orresponden
es A 7! A!!! and B 7! B   are inverse of ea
h other; hen
e theyare one-one and onto. Finally, by (3) and (4), they invert in
lusion and so they inter
hange joinwith meet.3 SoundnessIn any relational monoid M = (M; �; 1; R) we 
an interpret formulae of the language L as sat-urated subsets, as we de�ne in this se
tion. Here we also prove a soundness theorem for su
hinterpretation, while a 
ompleteness theorem is given in next se
tion.The idea we follow is to think of M as the set of resour
es in a produ
tion 
y
le. For anyresour
es x; y 2 M we read xRy as: the resour
e x 
an produ
e the resour
e y. We 
all x the(possible) ingredient and y the (possible) produ
t.In this way the polarities we de�ned in se
tion 2 assume a parti
ular meaning. In fa
t forany resour
e x the subset x!!! determines the subset of all the resour
es (produ
ts) whi
h 
an beprodu
ed with x as ingredient. On the other hand, the subset x   determines the subset of all theresour
es (ingredients) that 
an give x as produ
t.In se
tion 2 we pointed out that any element in Sat   (M) is of the form B   , i.e. it is thesubset of the ingredients whi
h 
an produ
e every resour
e in B. Equivalently any element inSat!!!(M) is of the form A!!!, i.e. it is the subset of the produ
ts whi
h 
an be obtained by using5



any resour
e of A. So intuitively we 
an think of an element in the 
olle
tion Sat   (M) as a subsetof (possible) ingredients, and we 
an think to an element in Sat!!!(M) as a subset of (possible)produ
ts.We intend the operation � in M as the 
omposition of resour
es. If we 
ombine the resour
ex with y (in this order), then we obtain the resour
e x � y. In x � y the resour
es x and y are
onne
ted to ea
h other, we 
annot isolate x or y. In parti
ular 1 is the resour
e that does notmodify the resour
e whi
h it is 
ombined with.The 
ombination between two subsets A;B of resour
e is just the subset A � B formed by allthe possible 
ombinations between a resour
e of A a resour
e of B, namely the algebrai
 produ
tbetween subsets A �B � fx � y : x �A; y �Bg.We asso
iate any formula ' with a pair of saturated subset of M : a subset of ingredients (leftsaturated) and a subset of produ
ts (right saturated).Theorem 9 says that every left saturated subset (ingredients) determine one and only one rightsaturated subset (produ
ts), so we do not have to 
hoose two saturated subsets to evaluate aformula: for example, we 
an 
hose a left saturated subset and automati
ally we have also theright saturated one by applying the operator (�)!!!. This is our 
hoi
e.Let Frm be the set of formulae in the language L. We want to de�neV (�) : Frm �! Sat   (M)that is the evaluation of formulae. It will asso
iate every formula ' with a subset V (') of ingre-dients, and, 
learly, with the subset V (')!!! of produ
ts.For any propositional variable p the value V (p) in Sat   (M) is assumed to be given. Then weapply indu
tion on 
onne
tives. We �rst look at the interpretation of a sequent � ` � to explainthe de�nition of V .So suppose that V is already de�ned on all formulae, and let us de�ne the evaluation of the
ontexts that form a sequent. If we read the sequent � ` � as � 
an produ
e � in the 
al
ulusB�, then it be
omes natural to asso
iate � with ingredients and � with produ
ts. It is simple toasso
iate � = '1; : : : ; 'm with the 
ombination of ingredients Ingr(�) � V ('1) � : : : � V ('m), and� =  1; : : : ;  n with the 
ombination of produ
ts Prod(�) � V ( 1)!!! � : : : � V ( n)!!!.A parti
ular 
ase is that of the empty 
ontext. The behaviour of the empty 
ontext in the setof formulae and the one of the neutral element in the monoid are very mu
h alike. In fa
t theempty list [ ℄ is neutral respe
t to the 
omposition with formulae, as we will see for the synta
ti
model. So we de�ne Ingr([ ℄) � f1g and Prod([ ℄) � f1g.Formally, for any 
ontext � = �1; : : : ; �m, where m � 0, we de�ne:Ingr(�) � f1g � V (�1) � : : : � V (�m) (12)Prod(�) � f1g � V (�1)!!! � : : : � V (�m)!!! (13)Note that there is no ambiguity be
ause the operation of monoid is asso
iative. Moreover bothprodu
ts 
ontain the subset f 1 g; this fa
t allows us to evaluate the empty 
ontext as we have justsaid. If the 
ontext is formed by one or more formula, then the subset f 1 g does not in
uen
e theprodu
t. In fa
t f 1 g is neutral in the produ
t between subsets, that is f1g � A = A � f1g = A forall A � M . If the 
ontexts are formed by exa
tly one formula ', then Ingr(') = V ('), namelythe ingredients asso
iated with ', and Prod(') = V (')!!!, namely the produ
ts asso
iated with'. Intuitively we say that a sequent � ` � is valid if every resour
e asso
iated with � 
an produ
eevery resour
e asso
iated with �. Formally we say that the sequent � ` � is valid in the monoidM i� Ingr(�) � Prod(�)   (the resour
es asso
iated with � are ingredients for the resour
esasso
iated with �) or equivalently, by (6), i� Prod(�) � Ingr(�)!!! (the resour
es asso
iated with� are produ
ts of the resour
es asso
iated with �).Now we 
an make a step ba
k and de�ne the evaluation V on formulae. We use the intuitionwe have just given and the de�nitional equations for B�. In fa
t we revise the de�nition 1 usingthe idea of the produ
tion 
y
le. 6



Conne
tive N . The de�nitional equation says that: Ingr(�) � Prod('N )   i� Ingr(�) �Prod(')   and Ingr(�) � Prod( )   . Note that for any single formula �: Prod(�)   = V (�).So the equation is equivalent to: Ingr(�) � V (pN q) i� Ingr(�) � V (p) and Ingr(�) � V (q).This means that we have to asso
iate the 
onne
tive N whit meet (interse
tion) for left saturatedsubsets, and so we have to de�ne: V ('N ) � V (') \ V ( ): (14)Conne
tive �. The de�nitional equation says that: Prod(�) � Ingr( � ')!!! i� Prod(�) �Ingr( )!!! and Prod(�) � Ingr(')!!!. Here for any single formula �: Ingr(�)!!! = V (�)!!!. So theequation is equivalent to: Prod(�) � V ( � ')!!! i� Prod(�) � V ( )!!! and Prod(�) � V (')!!!.This means that we have to asso
iate the 
onne
tive � with meet (interse
tion) for right saturatedsubsets, and so: V ( � ')!!! � V ( )!!! \ V (')!!!: (15)Finally we obtain by (8):V ( � ') = V ( � ')! ! ! = (V ( )!!! \ V (')!!! )   = (V ( ) [ V (') )! ! ! : (16)that is the join for left saturated subsets.Conne
tive O . De�nition 1 says that Ingr(�) � Prod('O )   i� Ingr(�) � Prod(';  )   . Thismeans that we have to de�ne:V ('O ) � Prod(';  )   = (V (')!!! � V ( )!!! )   : (17)Conne
tive �. De�nition 1 says that Prod(�) � Ingr( �')!!! i� Prod(�) � Ingr( ; ')!!!. Thismeans we have to de�ne Ingr( � ')!!! = Ingr( ; ')!!! and so:V ( � ') � Ingr( ; ')! ! ! = (V ( ) � V (') )! ! ! : (18)Constant 1. By de�nition 1: Prod(�) � Ingr(1)!!! i� Prod(�) � Ingr([ ℄)!!!. So the onlypossibility we have is to de�ne: V (1) � Ingr([ ℄)! ! ! = f1g! ! ! : (19)Constant ?. By de�nition 1: Ingr(�) � Prod(?)   i� Ingr(�) � Prod([ ℄)   . So we have tode�ne: V (?) � Prod([ ℄)   = f1g   : (20)Constant 0. De�nition 1 says that the subset of produ
ts asso
iated with 0 must be as big aspossible. The biggest right saturated subset is M . Therefore we have to de�ne V (0)!!! � M andso: V (0) �M   = ;! ! ! : (21)Constant >. De�nition 1 says that the subset of ingredients asso
iated with > must be as big aspossible. The biggest left saturated subset is M again. So we have to de�ne:V (>) �M: (22)The previous intuitive explanations justify the following formal de�nition.De�nition 10 (Indu
tive de�nition of validity). Let M be a relational monoid. A givenassignment V of subsets V (p); V (q); : : : of Sat   (M) to propositional variables p; q; : : : is extendedto an evaluation V of all formulae by the indu
tive 
lauses:V (>) �M V (0) � ;! ! ! V (1) � f 1g! ! ! V (?) � f 1g   V ('N ) � V (') \ V ( ) V ( � ') � (V ( ) [ V (') )! ! ! 7



V ( � ') � (V ( ) � V (') )! ! ! V ('O ) � (V (')!!! � V ( )!!! )   For any list � = '1; : : : ; 'm (whit m � 0) we put:Ingr(�) � f 1 g � V ('1) � : : : � V ('m); (23)Prod(�) � f 1 g � V ('1)!!! � : : : � V ('m)!!!: (24)A sequent � ` � is said to be valid under the evaluation V if Ingr(�) � Prod(�)   (or equivalentlyif Prod(�) � Ingr(�)!!!), and valid in M if it is valid under any V in M.Theorem 11 (Soundness). Let M be any relational monoid. If the sequent � ` � is dedu
iblein B�, then � ` � is valid in M.Proof. Rather than a boring proof showing that axioms are valid, and that ea
h rule preservesvalidity,as is usually done, we obtain a full proof by showing the validity of de�nitional equations.In fa
t, this is equivalent to the validity of rules. We have already done it when we have introdu
edthe evaluation of formulae! So it is needed only to prove the validity for 
ut rules. This holdssin
e the 
ombination of subsets preserves in
lusion.4 CompletenessThe proof of 
ompleteness theorem is based on the 
onstru
tion of a parti
ular relational monoid:the synta
ti
 model. We will prove that a sequent is valid in the synta
ti
 model if and only if itis derivable in B�. In the sequent � ` � we 
onsider the ante
edent � as the ingredient and the
onsequent � as the produ
t.De�nition 12 (Synta
ti
 model). The synta
ti
 model is the stru
tureF � (Frm�; Æ; [ ℄;`B�)where:a. Frm� is the set of all �nite lists we 
an 
reate with formulae of L (in
luding the empty list)b. Æ is the 
on
atenation between lists; i.e. if �1 and �2 are lists, then �1 Æ �2 � �1;�2.
. [ ℄ is the empty list.d. relation `B� is de�ned in this way: � `B�� if and only if � ` � is derivable in B�.We 
an easily verify that F is indeed a relational monoid. In fa
t, the 
on
atenation betweenlists is asso
iative and [ ℄ is the neutral element, sin
e for every �nite list of formulae �, �; [ ℄ =[ ℄;� = �.We 
an de�ne the operators (�)   and (�)!!! in F ; let us look at how they behave on P(Frm�).If � is a list of formulae, de�nition 3 says that:�!!! = f� 2 Frm� : � `B��g 
onsequents of �; (25)�   = f� 2 Frm� : � `B��g ante
edents of �: (26)Generally for any A;B � Frm�:A!!! = f� 2 Frm� : � `B�� for all � �Ag ; (27)B   = f� 2 Frm� : � `B�� for all � �Bg : (28)Now we 
an prove an important lemma. If we 
onsider a formula ' in L, then its left saturationis formed by all its ante
edents and its right saturation is formed by all its 
onsequents.Lemma 13. For any formula ' of L: f'g! ! ! = f'g   and f'g ! ! ! = f'g!!!.8



Proof. For any � and ',� � f'g! ! ! i� � `B�� for all � � f'g!!!i� ' `B��� `B�� for all �i� � `B� ' (one dire
tion by 
hoosing ' ` '; vi
e versa by 
ut)i� � � f'g   :The 
ase of f'g ! ! ! is perfe
tly symmetri
.We have used an important equivalen
e for 
al
ulus B� in the above proof, at the next to laststep. It is an instan
e a more general lemma:Lemma 14. In the 
al
ulus B� the following hold:a. for any list � and m � 1, the sequent '1; : : : ; 'm ` � is derivable i��1 ` '1 : : : �m ` 'm�1; : : : ;�m ` � for all �1; : : : ;�m ; (29)b. for any list � and n � 1, the sequent � `  1; : : : ;  n is derivable i� 1 ` �1 : : :  n ` �n� ` �1; : : : ;�n for all �1; : : : ;�n : (30)Proof. a. By '1; : : : ; 'm ` � we 
an derive (29) using 
utL rule m times:�m ` 'm �1 ` '1 '1; : : : ; 'm ` ��1; '2; : : : ; 'm ` � 
utL....�1; : : : ;�m�1; 'm ` ��1; : : : ;�m ` � 
utLVi
e versa, by (29) if we 
onsider axioms 'i ` 'i (i = 1; : : : ;m), then we obtain the sequent'1; : : : ; 'm ` �. Case b. is symmetri
: by using n 
utR rules and by 
onsidering the axioms i `  i (i = 1; : : : ; n).If we 
onsider the 
ontexts with exa
tly two formulae, then this equivalen
e involves also themultipli
ative 
onne
tives. We have just to 
onsider the de�nitional equations.Corollary 15 (Multipli
atives). In the 
al
ulus B�:a. for every list �, the following are equivalent: � ' ` � ;  ; ' ` � ; �1 ` ' �2 `  �1;�2 ` � for all �1;�2 ;b. for every list �, the followings are equivalent:� ` 'O ; � ` ';  ; ' ` �1  ` �2� ` �1;�2 for all �1;�2 :Proof. a. The �rst equivalen
e is just de�nitional equation for �. The se
ond one is a parti
ular
ase of previous lemma 14 where m = 2. Case b. is symmetri
.9



Now we introdu
e the 
anoni
al evaluation V of formulae in F . We evaluate every propositionalvariable p with the subset of Frm� that is made by all the ante
edents of p. This kind of subsetis left saturated by lemma 13. Our 
hoi
e is respe
ted by every kind of formula in L, that is forevery formula ' 2 L the evaluation V (') is the left saturated subset of Frm� formed by all theante
edents (ingredients) of '. Obviously the right saturated subset of Frm� asso
iated to ' isjust the subset formed by all the 
onsequents (produ
ts) of '. We prove it formally:Lemma 16 (Canoni
al evaluation). Let us de�ne V (p) � fpg   for every propositional variablep. Then for every formula ' of L, V (') = f'g   . And for every 
ontext �, Ingr(�)!!! = f�g!!!and Prod(�)   = f�g   .Proof. First we 
onsider the formulas of L. By lemma 13 and (6), for every formula ':V (') = f'g   i� V (')!!! = f'g!!!: (31)so we 
an prove the �rst equality or the se
ond one equivalently.We pro
eed by indu
tion on the stru
ture of formulae. The thesis is veri�ed on propositionalvariables by hypothesis. We prove the thesis on 
onstants using the de�nitional equations.V (>) � Frm� = f� 2 Frm� : � `B�>g = f>g   :V (0)!!! � ;!!! = (Frm�) ! ! ! = Frm� = f� 2 Frm� : 0 `B��g = f0g!!!:V (?) � f [ ℄ g   = f� 2 Frm� : � `B� g = f� 2 Frm� : � `B�?g = f?g   :V (1)!!! � f [ ℄ g! !! !! ! = f� 2 Frm� : `B��g = f� 2 Frm� : 1 `B��g = f1g!!!:The indu
tive steps are veri�ed as followsV ('O ) � (V (')!!! Æ V ( )!!! )   = f�1;�2 : �1 �V (')!!! and �2 �V ( )!!!g   = f� : � `B��1;�2 for all �1 �V (')!!! and �2 �V ( )!!!g by (1)= f� : � `B��1;�2 for all �1;�2 s.t. ' `B��1 and  `B��2g Indu
tion= f� : � `B� 'O g by 
orollary 15.b= f'O g   by (26):V ( � ')!!! � (V ( ) Æ V (') )! !! !! != f�1;�2 : �1 � V ( ) and �2 � V (')g!!!= f� : �1;�2 `B�� for all �1 � V ( ) e �2 � V (')g by (2)= f� : �1;�2 `B�� for all �1;�2 s.t. �1 `B�  e �2 `B� 'g Indu
tion= f� :  � ' `B��g by 
orollary 15.a= f � 'g!!! by (25).V ('N ) � V (') \ V ( )= f� : � � V (') and � � V ( )g= f� : � `B� ' and � `B�  g Indu
tion= f� : � `B� 'N g by de�nition 1= f'N g   by (26). 10



V ( � ')!!! � (V (') [ V ( ) )! !! !! != V (')!!! \ V ( )!!!= f� : � � V ( )!!! and � � V (')!!!g= f� :  `B�� and ' `B��g Indu
tion= f� :  � ' `B��g by de�nition 1= f � 'g!!! by (25).Finally we 
onsider the lists of formulae. If � = [ ℄, then the lemma is veri�ed by de�nition 10; infa
t neutral element of synta
ti
 model is just [ ℄. If � = �1; : : : ; �m with m � 1, then:Ingr(�)!!! � ( f[ ℄g Æ V (�1) Æ : : : Æ V (�m) )!!!= f�1; : : : ;�m : �1 � V (�1); : : : ;�2 � V (�m)g!!!= f� : �1; : : : ;�m `B�� for all �1 � V (�1); : : : ;�m � V (�m)g by (2)= f� : �1; : : : ;�m `B�� for all �1 `B� �1; : : : ;�m `B� �mg= f� : � `B��g by lemma 14.a= f�g!!! by (2)The 
ase Prod(�)   is symmetri
.The reader 
an observe that V (')!!! (i.e. right saturated subset asso
iated to a formula ') isjust the subset of all 
onsequents of ' as we have anti
ipated. Moreover Ingr(�)!!! is the subsetof all the 
onsequents (i.e produ
ts in produ
tion 
y
le B�) of � and Prod(�)   is the subset ofall the ante
edents (i.e. ingredients in produ
tion 
y
le) of �, as we have said at the beginning ofthis se
tion.Finally we prove the 
ompleteness theorem.Theorem 17 (Completeness). The sequent � ` � is derivable in the 
al
ulus B� if and onlyif � ` � is valid in every relational monoid.Proof. The dire
tion from left to right is theorem 11 of soundness. From right to left, if � ` �is valid in every relational monoid then Ingr(�) � Prod(�)   in the synta
ti
 for the 
anoni
alevaluation. This means that Ingr(�) � f�g   by lemma 16. The fun
tion (�)! ! ! is a 
losureoperator and f�g   is left saturated, so Ingr(�)! ! ! � f�g   and then, by lemma 16, f�g! ! ! �f�g   . By (5) we obtain � � f�g   , and this means that � `B��.5 ExtensionsThe relational semanti
s 
an be extended to the 
ommutative 
al
ulus B�ex
h that we obtain byadding the rules of ex
hange to B�:�1;�;�;�2 ` ��1;�;�;�2 ` � ex
hL � ` �1;�;�;�2� ` �1;�;�;�2 ex
hR (32)To obtain a new 
ompleteness theorem for 
al
ulus B�ex
h we have just to restri
t the relationalsemanti
s to 
ommutative relational monoids, namely the relational monoids M = (M; �; 1; R)where the operation � is 
ommutative (x � y = y � x for all x; y 2M).The evaluation for formulae and 
ontexts, and the de�nition of validity of sequents remain thesame of se
tion 3. For 
ompleteness we have to 
onsider the synta
ti
 modelF 0 � (Frm~; Æ; [ ℄;`ex
h)where Frm~ is the set of all non ordered lists of formulae of L, and `ex
h is the derivability inB�ex
h, i.e. for �;� 2 Frm~:� `ex
h� i� � ` � is derivable in B�ex
h (33)11



It is easy to see that F 0 is a 
ommutative relational monoid4. Moreover all lemmas and 
orollariesthat we have proved for B� and F in se
tion 4 are still veri�ed for B�ex
h and F 0. So we easilyobtain a 
ompleteness theorem by following the proof of theorem 17. We have just to verify thevalidity of the new ex
h rules by using the 
ommutativity of operation in M.Theorem 18 (Completeness for B�ex
h). The sequent � ` � is dedu
ible by 
al
ulus B�ex
h ifand only if � ` � is valid into every 
ommutative relational monoid.We 
an extend B�ex
h to obtain Classi
al Linear Logi
 without exponentials (see [13℄). Girard'sphase spa
es provide with a set-theoreti
 semanti
s for linear logi
 (see [6℄). Phase spa
es 
an beseen as a parti
ular 
ase of relational monoids: we 
an show that a phase spa
e is a 
ommutativerelational monoid whit a strongly symmetri
 relation5. We de�ne that the relation R is stronglysymmetri
 if for all x; y; z 2M : if x � y R z then x � z R y : (34)Note that a strongly symmetri
 relation is symmetri
; in fa
t we 
an 
hoose x = 1 in (34). If R issymmetri
, the operators (�)   e (�)!!! 
oin
ide, and we indi
ate them with (�)���.Now we prove that the operator (�)��� for strongly symmetri
 monoids is the operator (�)? ofspa
e phases. Moreover the evaluation of formulae in phase spa
es 
oin
ides with the evaluationwe have just de�ned if we 
onsider only strongly symmetri
 monoids.Theorem 19 (Phase spa
es and strongly symmetri
 monoids). Any phase spa
e is astrongly symmetri
 monoid, and vi
e versa any strongly symmetri
 monoid is a phase spa
e.Proof. Let (M;???) be a phase spa
e. Then (M; �) is a 
ommutative monoid and it be
ome astrongly symmetri
 monoid (M; �; 1; R) if we de�ne:for all x; y 2M : xR y � x � y � ??? :Obviously the relation R is strongly symmetri
. Moreover the operators (�)��� and (�)? 
oin
ide onsubsets of M . In fa
t for any A �M :A��� � fy 2M : xR y for all x �Ag= fy 2M : x � y � ??? for all x �Ag � A?:In parti
ular f1g��� = fy 2M : 1 � y � ???g = fy 2M : y � ???g =??? (35)Vi
e versa, let (M; �; 1; R) be a strongly symmetri
 monoid; then we redu
e it to a phase spa
e byde�ning ??? � f1g���. In su
h way, for any A �M :A? � fy 2M : x � y � ??? for all x �Ag= fy 2M : x � y R 1 for all x �Ag= fy 2M : x � 1Ry for all x �Ag by (34)= fy 2M : xR y for all x �Ag � A���:
4Note that the relation `ex
h between not ordered lists is well de�ned. In fa
t the 
al
ulus B�ex
h, with rules ofex
hange, does not 
onsider the position of formulae into the 
ontexts; namely if � ` � is derivable in B�ex
h, thenalso �0 ` �0 is derivable in B�ex
h, where �0 and �0 are permutations of � and � respe
tively.5In 
onne
tion with linear logi
, the use of Birkho�'s polarities appears also in [1℄, [4℄, [15℄.12
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