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We present here a mathematical interpretation of the fragment without implications of basic
logic (for an introduction to basic logic and its motivations see [13]). The models are just relational
monoids (M,-,1) equipped with an arbitrary relation R. The relation R induces two closure
operators on subsets of M, which are obtained by combining polarities, as in [2]. The idea (due
to Ferruccio Guidi, see [7] and [8]) is to interpret formulae in subsets of M which are closed
in this sense. The definition of the evaluation for each connective is based on the equivalences
characterizing that connective (called definitional equations in [13]). The proof of validity is then
immediate. Contrary to what happens in other logics, here the evaluation of a sequent I' A
cannot be reduced in general to the evaluation of a sequent of the form ¢ - ¢ or to the evaluation
of a single formula. In fact, here the “comma” in the lists I’ and A can be replaced by a connective
only when I' (or A) cousist of only two formulae (property of visibility, see [13]).

Completeness is proved as usual by way of a generic model, built up from syntax.

Basic logic has been explained (in [13]) in terms of the principle of reflection: each connective
reflects at object level a link between assertions at the metalevel. This provides each connective
with a clear meaning, that is with a semantics. Still, there are two good reasons to introduce a
complete mathematical interpretation (what is commonly called a semantics). One is that it could
be useful to some readers to grasp the meaning of basic logic. The other is that the relational
monoids in which the relation is strongly symmetric (that is, satisfies z - y Rz — = - z Ry) turn
out to be exactly the phase spaces introduced by J.-Y. Girard as semantics of linear logic in [6].
This should highlight in which sense linear logic (without exponentials!) is a proper extension of
basic logic.

The structural rule of exchange was introduced in the sequent calculus B of basic logic simply
for reasons of convenience, to avoid duplications of implications. Since we here omit implications,
it is very natural to consider the sequent calculus obtained dropping also the rule of exchange. In
fact exchange is valid in a relational monoid if and only if the monoid operation is commutative.
Thus the relational semantics introduced here applies also to a non commutative basic logic.

Finding a mathematical interpretation for the full calculus of basic logic B, with implica-

tions, remain an open problem. A convincing solution might involve a deeper understanding of
implication in basic logic, and may be a reformulation of its rules.

*This research was partially supported by the project “Computazione e logica: la logica di base come strumento
per un nuovo approccio unitario”, Universita di Padova.



1 The basic calculus

In this section we introduce the basic sequent calculus called B . It is obtained from the sequent
calculus B of basic logic (introduced in [13]) simply by deleting the implications and exchange
rules (i.e. the only structural rules of B). In particular calculus B™ is non-commutative.

The language £ of B™ consists of propositional constants T, L, 1 and 0, propositional variables
P, q, ..., additive connectives & and &, and multiplicative connectives ® and ®. We denote by
small Greek letters o, ¢, p. .. the formulae of £ and by capital Greek letters I', A, X, ... (possibly
empty) lists of formulae. In a sequent I' F A, both the antecedent I' and the consequent A are
called contexts.

The inference rules of B™ are justified, as in [13], by solving some definitional equations. We
refer to [13] for a discussion on this methodology, and here we report shortly only the results.

We assume at the beginning only axioms of the form ¢ F ¢ and cut rules, as at the bottom
of table 1. Each connective and logical constant is associated with a definitional equation, which
completely describes its behaviour.

Definition 1 (Definitional equations). Each connective and each logical constant is required
to satisfy the corresponding equation, as follows:

Forall A, v Q@pFAiff Y,pF A;

For ollT, Tk ooy iff I'F e,
Forall A, v®pkFAGff v FA and pF A;
ForallT', TFe&Y iff TFy and T + 1
Forall A, 1FAGff FA;

ForallT', THLiff TF ;

For all A, oF A and OF A iff pF A;
ForallT', TFvY andT T iff T+ .

4 ok = 0 ® % ®

The inference rules of B, listed in table 1, are obtained by solving all definitional equations.
This means that the inference rules for a connective or a constant are obtained from the cor-
responding definitional equation by applying axioms and cut rules. And that, conversely, the
definitional equations become formally derivable in B™. We refer to [13] for the derivation of the
solution. Definitional equations are very important in this paper, since they provide with the right
intuitions for the definition of evaluation of formulae, in section 3.

2 Relational monoids

The basic structures which will be used to give a relational semantics for the calculus B~ are
just monoids equipped with a binary relation. We call them relational monoids. We now define
them formally. Then we will introduce Birkhoff’s polarities (see [2]) and we will repeat their first
properties, which we will often use in the following.

Definition 2. M = (M, 1, R) is a relational monoid if
M is a set;
- M x M — M 1is a binary operation such that

(z-y)-z=x-(y-2) for all x,y,z € M (associativity),

l-z=xz-1=z for allx € M (neutral element);

R is a binary relation of M on itself.
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Table 1: Basic sequent calculus B™.



Through the relation R in M, every element z € M determines two subsets of M: the subset
2% of elements that are in left relation with z and the subset z™ of elements that are in right

relation with z. Formally!:

2" ={xeM : xRz}

—

27 ={yeM : zRy}.

We can extend this definition to subsets? of M so that we can obtain the polarities introduced
by Birkhoff in [2]. For any subset A C M we define its left polar A< and its right polar A™ as
follows.

Definition 3. For any A C M, we put:

A ={xeM :zRz forallze A} = ﬂ 2 (1)
zeA

A7 ={yeM :zRy forallze A} = ﬂ 27, (2)
zeA

Note that there is no ambiguity of notation, since {z}* = z* and {z}7 = 27 for every

z € M. Moreover, for any A C M the following equivalences hold by definition:
ze AT fFAC2” and yeAdA7iff ACy*.
By using them the reader can easily verify that the following lemma holds.

Lemma 4. For any Ay, Ay, By, By subsets® of M:

A; C Ay implies AT C AT, (3)
B, C By implies BS C Bf, (4)

Conditions (3)—(5) are just the definition to saying that the correspondences A — A= and
B — B* define a Galois connection (see [2]) between the complete lattice (P(M), C) and itself,
where P (M) is the class of subsets of M and C determines the order. Conditions (3) (5) are
equivalent to a very important condition which we will use for soundness.

Lemma 5. Conditions (3), (4) and (5) are equivalent to condition.:
ACBY iff BCA? forall AJBC M. (6)

Proof. We obtain the direction left-right of (6) by applying (3) and (5), and the direction right-left
of (6) by applying (4) and (5). Vice versa, we obtain (5) by applying (6) to A7 C A7 (if we put
A=A, and B = A7*). We obtain (3) in this way: if we assume A; C Ay, then A3 C A7 by (5),
and so A3* C AT by applying (6) to A = A; and B = A37*. We can obtain (4) symmetrically. O

The condition (6) says that the two (contravariant) operators (-)™ and (-)* are adjoint on the
right (see [3] p.81).
The following are immediate consequences of lemma 4, or equivalently of (6).

Corollary 6. For any A,BC M:

A = g

and BT~ = B*. (7)

Here and in whole paper = is the sign for definitional equality, when a definition is first given, the definiendum
will always be at the left and the definiens at the right.

2We adopt the definitions and notations for subsets introduced and justified in [14]. So, for any set M, A C M
means that A is a propositional function over M. To denote that a is an element of the subset A, we write ae A.

3With A7* and B< ™ we mean (A™)* and (B* )™ respectively. In general terms, an exponential with more
than one arrow is to be intended as the application of arrows from left to right. As an example: B~ means
(((B*)™)* ), and so on.



Proof. By (5), we have A C A7 and A C A7*, hence A7 C A™ by (3). The proof that
B¥7% = B* is similar. O

Corollary 7. The operators ()7 : P(M) — P(M) and (1)< : P(M) — P(M) are
closure operators.

Proof. It easy to see that the conditions for closure operators holds, in fact for any A4, A, C M:
A C A7 by (5); A7 = A7 by (7); A C Ay implies A7 C AT* by (3) and (4). The
case of ()< is similar. O

Now we can define two classes of subsets of M which we will use to define the evaluation of
formulae.

Definition 8 (Saturated subsets). For any A, B C M, we say that A is left saturated if
A = A7 and that B is right saturated if B = B<. Moreover we define Sat* (M) and
Sat™ (M) as the collection of left saturated and right saturated subsets of M respectively.

The justification of the adjectives “left” and “right” to saturated subsets derives from corollary
6. In fact, by (7), left and right saturated subsets of M are just those of the form B and A~
respectively.

The collections Sat* (M) and Sat™ (M) are complete lattices, where meet (gub) is the inter-
section N and join (lub) is the saturation of the union U. M is the maximum among both left and
right saturated subsets. The saturations of the empty subset, )¢ and (*, are the minimum
among left and right saturated subsets, respectively.

The next theorem shows a very important correspondence between left and right saturated
subsets. Such correspondence is useful to our interpretation of formulae of language L.

Theorem 9. The correspondences A — A™ and B — B% define a dual isomorphism between the
complete lattices of left and right saturated subsets of M. In particular, if A1, Ay are left saturated
subsets and By, By are right saturated subsets, then:

(AN Ay)™ = (AT U AT (BiNBy)™ = (B UBY)™* (8)
(AjUAQ)™ = A7 N AT (B1UB2)Y = B nBY 9)
0> =M P =M (10)

M= =g M = (2 (11)

Proof. By (7), the correspondences A — A™ and B — B* are inverse of each other; hence they
are one-one and onto. Finally, by (3) and (4), they invert inclusion and so they interchange join
with meet. O

3 Soundness

In any relational monoid M = (M,-,1, R) we can interpret formulae of the language £ as sat-
urated subsets, as we define in this section. Here we also prove a soundness theorem for such
interpretation, while a completeness theorem is given in next section.

The idea we follow is to think of M as the set of resources in a production cycle. For any
resources x,y € M we read xRy as: the resource x can produce the resource y. We call x the
(possible) ingredient and y the (possible) product.

In this way the polarities we defined in section 2 assume a particular meaning. In fact for
any resource x the subset ™ determines the subset of all the resources (products) which can be
produced with z as ingredient. On the other hand, the subset ¥ determines the subset of all the
resources (ingredients) that can give x as product.

In section 2 we pointed out that any element in Sat* (M) is of the form B*, i.e. it is the
subset of the ingredients which can produce every resource in B. Equivalently any element in
Sat™ (M) is of the form A7 i.e. it is the subset of the products which can be obtained by using



any resource of A. So intuitively we can think of an element in the collection Sat* (M) as a subset
of (possible) ingredients, and we can think to an element in Sat™ (M) as a subset of (possible)
products.

We intend the operation - in M as the composition of resources. If we combine the resource
x with y (in this order), then we obtain the resource z - y. In z -y the resources z and y are
connected to each other, we cannot isolate z or y. In particular 1 is the resource that does not
modify the resource which it is combined with.

The combination between two subsets A, B of resource is just the subset A - B formed by all
the possible combinations between a resource of A a resource of B, namely the algebraic product
between subsets A- B ={z-y:zeA,yeB}.

We associate any formula ¢ with a pair of saturated subset of M: a subset of ingredients (left
saturated) and a subset of products (right saturated).

Theorem 9 says that every left saturated subset (ingredients) determine one and only one right
saturated subset (products), so we do not have to choose two saturated subsets to evaluate a
formula: for example, we can chose a left saturated subset and automatically we have also the
right saturated one by applying the operator (). This is our choice.

Let Frm be the set of formulae in the language £. We want to define

V(): Frm — Sat* (M)

that is the evaluation of formulae. It will associate every formula ¢ with a subset V (¢) of ingre-
dients, and, clearly, with the subset V(p)™ of products.

For any propositional variable p the value V (p) in Sat* (M) is assumed to be given. Then we
apply induction on connectives. We first look at the interpretation of a sequent I' - A to explain
the definition of V.

So suppose that V is already defined on all formulae, and let us define the evaluation of the
contexts that form a sequent. If we read the sequent I' - A as I' can produce A in the calculus
B, then it becomes natural to associate I' with ingredients and A with products. It is simple to
associate I' = @1, ..., @, with the combination of ingredients Ingr(I') = V(p1) - ... V(om), and
A =1),...,1, with the combination of products Prod(A) =V (y1)™ ... - V().

A particular case is that of the empty context. The behaviour of the empty context in the set
of formulae and the one of the neutral element in the monoid are very much alike. In fact the

empty list [ ] is neutral respect to the composition with formulae, as we will see for the syntactic
model. So we define Ingr([]) = {1} and Prod([]) = {1}.

Formally, for any context ¥ = o1, ...,0,,, where m > 0, we define:
Ingr(X)={1}-V(o1)-...- V(om) (12)
Prod(X) ={1}-V(e1)™ -...- V(on)™ (13)

Note that there is no ambiguity because the operation of monoid is associative. Moreover both
products contain the subset {1 }; this fact allows us to evaluate the empty context as we have just
said. If the context is formed by one or more formula, then the subset {1} does not influence the
product. In fact {1} is neutral in the product between subsets, that is {1}- A=A - {1} = A for
all A C M. If the contexts are formed by exactly one formula ¢, then Ingr(y) = V(p), namely
the ingredients associated with ¢, and Prod(y) = V ()™, namely the products associated with
©.

Intuitively we say that a sequent I' F A is valid if every resource associated with T' can produce
every resource associated with A. Formally we say that the sequent T' - A is valid in the monoid
M iff Ingr(T') C Prod(A) (the resources associated with T are ingredients for the resources
associated with A) or equivalently, by (6), iff Prod(A) C Ingr(I')™ (the resources associated with
A are products of the resources associated with T').

Now we can make a step back and define the evaluation V' on formulae. We use the intuition
we have just given and the definitional equations for B™. In fact we revise the definition 1 using
the idea of the production cycle.



Connective & . The definitional equation says that: Ingr(I') C Prod(y &)< iff Ingr( ) C
Prod(¢)* and Ingr(T') C Prod(y)*. Note that for any single formula o: Prod(c)* (a)
So the equation is equivalent to: Ingr(I') C V(p&q) iff Ingr(T') C V(p) and Ingr(T) g Vig).
This means that we have to associate the connective & whit meet (intersection) for left saturated
subsets, and so we have to define:

Vie&y) =Vie) NV (¥). (14)

Connective ®. The definitional equation says that: Prod(A) C Ingr(y & @)™ iff Prod(A) C
Ingr(¢)™ and Prod(A) C Ingr(p)™. Here for any single formula o: Ingr(c)™ = V(o)™. So the
equation is equivalent to: Prod(A) C V(¢ @ @)™ iff Prod(A) C V()™ and Prod(A) C V()™
This means that we have to associate the connective @ with meet (intersection) for right saturated
subsets, and so:

Vpoe)” =VE)~" NV(e)~. (15)
Finally we obtain by (8):

Vo) =V@ep)”T =(VE)" nV(p)™ )T = (V@) uV(p))~". (16)

that is the join for left saturated subsets.
Connective ’9 . Definition 1 says that Ingr(I') C Prod(¢ e )< iff Ingr(I') C Prod(p, ). This
means that we have to define:

V(g® ) = Prod(e, )" = (V(p)™ - V()77 (17)
Connective @. Definition 1 says that Prod(A) C Ingr(y @ ¢)™ iff Prod(A) C Ingr(y, ). This
means we have to define Ingr(¢ ® p)™ = Ingr(y, )™ and so:

VY ® ) = Ingr(ih,9)” = (V(¥) - V(p))7*. (18)

Constant 1. By definition 1: Prod(A) C Ingr(1)™ iff Prod(A) C Ingr([ ])™. So the only
possibility we have is to define:

V(1) = Ingr([])7F ={1}7. (19)

Constant L. By definition 1: Ingr(I') C Prod(L)* iff Ingr(I') C Prod([ ])*. So we have to
define:
V(L) = Prod([ )" ={1}*. (20)

Constant 0. Definition 1 says that the subset of products associated with 0 must be as big as
possible. The biggest right saturated subset is M. Therefore we have to define V(0)™ = M and

| V(0) = M*< =07, (21)

Constant T. Definition 1 says that the subset of ingredients associated with T must be as big as
possible. The biggest left saturated subset is M again. So we have to define:

V(T)= M. (22)
The previous intuitive explanations justify the following formal definition.

Definition 10 (Inductive definition of validity). Let M be a relational monoid. A given
assignment V' of subsets V(p),V(q), ... of Sat* (M) to propositional variables p,q,. .. is extended
to an evaluation V' of all formulae by the inductive clauses:

V(T)=M V() =07
V() ={1}7" V(L) ={1}"
Vie&y)=V(p)NV(Y) Ve )= (V) uV(e))?



Vi ®y) = (V@) - Vip))™T Viewy)=(V(g)™ V()™ )"
For any list ¥ = p1,...,0m (whit m > 0) we put:
Ingr(X) = {1} -V(p1)-...- V(gm); (23)
Prod(X)={1} - V(p1)? ... - Viem)™. (24)

A sequentT' = A is said to be valid under the evaluation V if Ingr(T') C Prod(A)* (or equivalently
if Prod(A) C Ingr(I)™ ), and valid in M if it is valid under any V in M.

Theorem 11 (Soundness). Let M be any relational monoid. If the sequent T'+ A is deducible
in B, then I' = A is valid in M.

Proof. Rather than a boring proof showing that axioms are valid, and that each rule preserves
validity,as is usually done, we obtain a full proof by showing the validity of definitional equations.
In fact, this is equivalent to the validity of rules. We have already done it when we have introduced
the evaluation of formulae! So it is needed only to prove the validity for cut rules. This holds
since the combination of subsets preserves inclusion. O

4 Completeness

The proof of completeness theorem is based on the construction of a particular relational monoid:
the syntactic model. We will prove that a sequent is valid in the syntactic model if and only if it
is derivable in B™. In the sequent I' - A we consider the antecedent I' as the ingredient and the
consequent A as the product.

Definition 12 (Syntactic model). The syntactic model is the structure
F = (Frm*,o,[],Fg-)
where:
a. Frm* is the set of all finite lists we can create with formulae of L (including the empty list)
b. o is the concatenation between lists; i.e. if Ty and Ty are lists, then T'y o Ty =T, 5.
c. [] is the empty list.
d. relation - g- is defined in this way: T Fg- A if and only if T+ A is derivable in B~ .

We can easily verify that F is indeed a relational monoid. In fact, the concatenation between
lists is associative and [ ] is the neutral element, since for every finite list of formulae ', T',[ ] =
[, =T.

We can define the operators () and (-)™ in F; let us look at how they behave on P(Frm*).
If ¥ is a list of formulae, definition 3 says that:

Y7 ={A € Frm* : ¥ Fg- A} consequents of ¥; (25)
Y ={T € Frm* :T Fg- ¥} antecedents of X. (26)

Generally for any A, B C Frm™:

A7 ={A e Frm*:Ttg-AforallTeA}; (27)
B ={l'e Frm* : T g- A for all Ae B}. (28)

Now we can prove an important lemma. If we consider a formula ¢ in £, then its left saturation
is formed by all its antecedents and its right saturation is formed by all its consequents.

Lemma 13. For any formula ¢ of L: {p}7 ={¢}* and {p}*7 = {p}.



Proof. For any I' and ¢,

Te{p}™ iff Tk A forall Ae{p}

Fg- A
lﬁ. % for all A
iff T Fg- ¢ (one direction by choosing ¢ F ¢, vice versa by cut)
iff Te{p}T.
The case of {p}< is perfectly symmetric. O

We have used an important equivalence for calculus B~ in the above proof, at the next to last
step. It is an instance a more general lemma:

Lemma 14. In the calculus B~ the following hold:
a. for any list A and m > 1, the sequent p1,...,pm b A is derivable iff

Fll_(pl le_‘pm

for allTy, ..., (29)

b. for any list ' and n > 1, the sequent T' -y, ..., Yy, is derivable iff

P EA P A

% forall Ay,..., A, . (30)

Proof. a. By ¢1,...,¢0m F A we can derive (29) using cutL rule m times:

Fll_(pl (pl,...,(pml_A

Fl,(pz,..:,(pml_A cutL
TooFom  TiyooosTot,om B A
T, .. T, FA cutl
Vice versa, by (29) if we consider axioms ¢; F ¢; (i = 1,...,m), then we obtain the sequent
©1,---,pm B A. Case b. is symmetric: by using n cutR rules and by considering the axioms

If we consider the contexts with exactly two formulae, then this equivalence involves also the
multiplicative connectives. We have just to consider the definitional equations.

Corollary 15 (Multiplicatives). In the calculus B~ :

a. for every list A, the following are equivalent:

ik k9

vY®pkA; v, oA T T,F A

for all Ty,Ty;

b. for every list I, the followings are equivalent:

gol_Al ’(/)"Az
LEpwy; LF s TEA A, for all Ay, A, .

Proof. a. The first equivalence is just definitional equation for ®. The second one is a particular
case of previous lemma 14 where m = 2. Case b. is symmetric. o



Now we introduce the canonical evaluation V of formulae in . We evaluate every propositional
variable p with the subset of F'rm* that is made by all the antecedents of p. This kind of subset
is left saturated by lemma 13. Our choice is respected by every kind of formula in £, that is for
every formula ¢ € £ the evaluation V() is the left saturated subset of Frm* formed by all the
antecedents (ingredients) of p. Obviously the right saturated subset of F'rm* associated to ¢ is
just the subset formed by all the consequents (products) of p. We prove it formally:

Lemma 16 (Canonical evaluation). Let us define V (p) = {p}* for every propositional variable
p. Then for every formula ¢ of L, V() = {p}*. And for every context ¥, Ingr(X)™ = {X}7
and Prod(¥)© = {¥}*.

Proof. First we consider the formulas of £. By lemma 13 and (6), for every formula ¢:
Vi) ={o}™ it V(p)” ={p}”. (31)

so we can prove the first equality or the second one equivalently.
We proceed by induction on the structure of formulae. The thesis is verified on propositional
variables by hypothesis. We prove the thesis on constants using the definitional equations.

V(T) =Frm*={T € Frm* :Tkg-T}={T}*.

V()T =07 =(Frm*) 7 =Frm* ={A € Frm* : 0 Fg- A} = {0} .

=
=
Il

{[1}Y ={TeFrm*:Ttg- }={le€Frm*:Tkg- L} ={L}".

<

=

1
1l

={[]}17" 7 ={AeFrm*: Ftg-A}={Ae€ Frm*:1Fg-A}={1}".
The inductive steps are verified as follows

Viewy) =(V(p)™ o V()™ )"
={A1,A2 : A1 eV (p)™ and Aq eV (¢) 7}
={T:T Fg- A1,Ay for all A; eV (p)™ and Ay eV (¥h)?} by (1)
={T:T Fg- A1, A, for all Aj;As sit. ¢ Fg- Ay and ¢ Fg- Ay} Induction
={T':Tkg-p®1} by corollary 15.b
={p®y}T by (26).

V®e)” =(V()oV(p)”"7
={T,[2:T1eV(p) and Tr eV ()}~
={A: T, Iy kFg-AforallT  eV(¢) eT2eV(p)} by (2)
={A: T,y Fg-AforallT';,['y s.t. I'1 Fg-v e [y Fg- 9}  Induction
={A:¢Y®pkg-A} Dby corollary 15.a
—{bop}” by (25).

Vie&p) =Vie)NV(y)
={T:TeV(p) and TeV ()}
={T':Tkg-pand I' - ¥} Induction
={T':TFg-p&1Y} by definition 1
={p &y} by (26).

10



Vo)™ = (V(p)UV(y))~™
=V(e)” nV(¥)~
={A:AeV())” and AeV(p)~}
={A:¢YFg- Aand pFg- A} Induction
={A:¢Y®ptg- A} by definition 1
—{b®e}® by (25).

Finally we consider the lists of formulae. If ¥ =[], then the lemma is verified by definition 10; in
fact neutral element of syntactic model is just []. If ¥ = oq,..., om with m > 1, then:

3 3

Ingr(X)” = ({[I}oV(er)o...0V(om))™”
={Ty,....,Tn:T1eV(o1),....,TaeV(oy)}~
={A:Ty,...,T,, Fg-Aforall Ty eV(oy),..., IeV(om)} by (2)

={A:Ty,....,I),Fg-AforallTy bg-o1,...,[y Fg-om}

3

={A:XFg-A} bylemma 14.a

={Z}7 by (2
The case Prod(X)* is symmetric. O
The reader can observe that V()™ (i.e. right saturated subset associated to a formula ¢) is
just the subset of all consequents of ¢ as we have anticipated. Moreover Ingr(X)™ is the subset
of all the consequents (i.e products in production cycle B™) of ¥ and Prod(X)* is the subset of
all the antecedents (i.e. ingredients in production cycle) of X, as we have said at the beginning of
this section.

Finally we prove the completeness theorem:.

Theorem 17 (Completeness). The sequent I' = A is derivable in the calculus B~ if and only
if ' B A is valid in every relational monoid.

Proof. The direction from left to right is theorem 11 of soundness. From right to left, if ' H A
is valid in every relational monoid then Ingr(I') C Prod(A)* in the syntactic for the canonical
evaluation. This means that Ingr(I') C {A}* by lemma 16. The function (-)7* is a closure
operator and {A}* is left saturated, so Ingr(I')7* C {A}* and then, by lemma 16, {T'}?* C
{A}*. By (5) we obtain I'e {A}*", and this means that T Fg- A. O

5 Extensions

The relational semantics can be extended to the commutative calculus B, that we obtain by
adding the rules of ezchange to B™:

I, S, F A THALILY, A

T, IS, T, F A crchl TF A, 5.1, A, ¢EChh

(32)
To obtain a new completeness theorem for calculus B_,_, we have just to restrict the relational
semantics to commutative relational monoids, namely the relational monoids M = (M,-,1, R)
where the operation - is commutative (z -y =y -z for all z,y € M).

The evaluation for formulae and contexts, and the definition of validity of sequents remain the
same of section 3. For completeness we have to consider the syntactic model

-7:I = (FT’ITL®,O7 [ ]7|_ea:ch)

where Frm® is the set of all non ordered lists of formulae of £, and 4., is the derivability in
B_, . e for T,A € Frm®:

T'FezenA iff  T'F A is derivable in B

exch

(33)
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It is easy to see that F' is a commutative relational monoid*. Moreover all lemmas and corollaries
that we have proved for B~ and F in section 4 are still verified for B_,., and F'. So we easily
obtain a completeness theorem by following the proof of theorem 17. We have just to verify the
validity of the new exch rules by using the commutativity of operation in M.

Theorem 18 (Completeness for B__ ). The sequent '+ A is deducible by calculus B_, ., if
and only if T F A is valid into every commutative relational monoid.

We can extend B_, ., to obtain Classical Linear Logic without exponentials (see [13]). Girard’s
phase spaces provide with a set-theoretic semantics for linear logic (see [6]). Phase spaces can be
seen as a particular case of relational monoids: we can show that a phase space is a commutative
relational monoid whit a strongly symmetric relation®. We define that the relation R is strongly
symmetric if

forall z,y,z€ M : ifx-yRzthen z-2zRy. (34)

Note that a strongly symmetric relation is symmetric; in fact we can choose z = 1 in (34). If R is
symmetric, the operators (-)* e (-)™ coincide, and we indicate them with (-)~.

Now we prove that the operator ()~ for strongly symmetric monoids is the operator (-)* of
space phases. Moreover the evaluation of formulae in phase spaces coincides with the evaluation
we have just defined if we consider only strongly symmetric monoids.

Theorem 19 (Phase spaces and strongly symmetric monoids). Any phase space is a
strongly symmetric monoid, and vice versa any strongly symmetric monoid is a phase space.

Proof. Let (M, 1) be a phase space. Then (M,-) is a commutative monoid and it become a
strongly symmetric monoid (M, -, 1, R) if we define:

foralz,ye M: zRy = z-ye L.

Obviously the relation R is strongly symmetric. Moreover the operators (-)~ and (-)* coincide on
subsets of M. In fact for any A C M:
AT ={ye M :zRy for all xe A}
={yeM:z-yel forallzeA} = A",
In particular
{1}y ={yeM:1-yel}={ye M:yel}=1 (35)
Vice versa, let (M, -, 1, R) be a strongly symmetric monoid; then we reduce it to a phase space by

defining 1 = {1}~. In such way, for any A C M:

At ={ye M:z-ye L forall zeA}
={yeM:z-yR1forall zeA}
={yeM:z-1Ryforall ze A} by (34)
={yeM:zRyforallzeA} = A".

4Note that the relation Feze, between not ordered lists is well defined. In fact the calculus B_, .., with rules of
then

exchange, does not consider the position of formulae into the contexts; namely if I' = A is derivable in B__ ,,

also T = A’ is derivable in B__ ,, where T" and A’ are permutations of I' and A respectively.
5In connection with linear logic, the use of Birkhoff’s polarities appears also in [1], [4], [15].
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