
Relational semantis for Basi Logi�Damiano Maedonioy and Giovanni Sambinzy Dipartimento di informatia,Universit�a \Ca' Fosari" di Venezia (Italy).z Dipartimento di matematia pura e appliata,Universit�a di Padova (Italy).e-mail: mae�dsi.unive.it, sambin�math.unipd.itDeember 14, 2001We present here a mathematial interpretation of the fragment without impliations of basilogi (for an introdution to basi logi and its motivations see [13℄). The models are just relationalmonoids (M; �; 1) equipped with an arbitrary relation R. The relation R indues two losureoperators on subsets of M , whih are obtained by ombining polarities, as in [2℄. The idea (dueto Ferruio Guidi, see [7℄ and [8℄) is to interpret formulae in subsets of M whih are losedin this sense. The de�nition of the evaluation for eah onnetive is based on the equivalenesharaterizing that onnetive (alled de�nitional equations in [13℄). The proof of validity is thenimmediate. Contrary to what happens in other logis, here the evaluation of a sequent � ` �annot be redued in general to the evaluation of a sequent of the form ' `  or to the evaluationof a single formula. In fat, here the \omma" in the lists � and � an be replaed by a onnetiveonly when � (or �) onsist of only two formulae (property of visibility, see [13℄).Completeness is proved as usual by way of a generi model, built up from syntax.Basi logi has been explained (in [13℄) in terms of the priniple of reetion: eah onnetivereets at objet level a link between assertions at the metalevel. This provides eah onnetivewith a lear meaning, that is with a semantis. Still, there are two good reasons to introdue aomplete mathematial interpretation (what is ommonly alled a semantis). One is that it ouldbe useful to some readers to grasp the meaning of basi logi. The other is that the relationalmonoids in whih the relation is strongly symmetri (that is, satis�es x � y R z ! x � z R y) turnout to be exatly the phase spaes introdued by J.-Y. Girard as semantis of linear logi in [6℄.This should highlight in whih sense linear logi (without exponentials!) is a proper extension ofbasi logi.The strutural rule of exhange was introdued in the sequent alulus B of basi logi simplyfor reasons of onveniene, to avoid dupliations of impliations. Sine we here omit impliations,it is very natural to onsider the sequent alulus obtained dropping also the rule of exhange. Infat exhange is valid in a relational monoid if and only if the monoid operation is ommutative.Thus the relational semantis introdued here applies also to a non ommutative basi logi.Finding a mathematial interpretation for the full alulus of basi logi B, with implia-tions, remain an open problem. A onvining solution might involve a deeper understanding ofimpliation in basi logi, and may be a reformulation of its rules.�This researh was partially supported by the projet \Computazione e logia: la logia di base ome strumentoper un nuovo approio unitario", Universit�a di Padova.1



1 The basi alulusIn this setion we introdue the basi sequent alulus alled B�. It is obtained from the sequentalulus B of basi logi (introdued in [13℄) simply by deleting the impliations and exhangerules (i.e. the only strutural rules of B). In partiular alulus B� is non-ommutative.The language L of B� onsists of propositional onstants >, ?, 1 and 0, propositional variablesp; q; : : :, additive onnetives � and N , and multipliative onnetives � and O . We denote bysmall Greek letters ';  ; � : : : the formulae of L and by apital Greek letters �;�;�; : : : (possiblyempty) lists of formulae. In a sequent � ` �, both the anteedent � and the onsequent � arealled ontexts.The inferene rules of B� are justi�ed, as in [13℄, by solving some de�nitional equations. Werefer to [13℄ for a disussion on this methodology, and here we report shortly only the results.We assume at the beginning only axioms of the form ' ` ' and ut rules, as at the bottomof table 1. Eah onnetive and logial onstant is assoiated with a de�nitional equation, whihompletely desribes its behaviour.De�nition 1 (De�nitional equations). Eah onnetive and eah logial onstant is requiredto satisfy the orresponding equation, as follows:� : For all �;  � ' ` � i�  ; ' ` �;O : For all �; � ` 'O i� � ` ';  ;� : For all �;  � ' ` � i�  ` � and ' ` �;N : For all �; � ` 'N i� � ` ' and � `  ;1 : For all �; 1 ` � i� ` �;? : For all �; � ` ? i� � ` ;0 : For all �; ' ` � and 0 ` � i� ' ` �;> : For all �; � `  and � ` > i� � `  :The inferene rules of B�, listed in table 1, are obtained by solving all de�nitional equations.This means that the inferene rules for a onnetive or a onstant are obtained from the or-responding de�nitional equation by applying axioms and ut rules. And that, onversely, thede�nitional equations beome formally derivable in B�. We refer to [13℄ for the derivation of thesolution. De�nitional equations are very important in this paper, sine they provide with the rightintuitions for the de�nition of evaluation of formulae, in setion 3.2 Relational monoidsThe basi strutures whih will be used to give a relational semantis for the alulus B� arejust monoids equipped with a binary relation. We all them relational monoids. We now de�nethem formally. Then we will introdue Birkho�'s polarities (see [2℄) and we will repeat their �rstproperties, whih we will often use in the following.De�nition 2. M = (M; �; 1; R) is a relational monoid ifM is a set;� :M �M �!M is a binary operation suh that(x � y) � z = x � (y � z) for all x; y; z 2M (assoiativity),1 � x = x � 1 = x for all x 2M (neutral element);R is a binary relation of M on itself. 2
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Through the relation R in M , every element z 2 M determines two subsets of M : the subsetz   of elements that are in left relation with z and the subset z!!! of elements that are in rightrelation with z. Formally1: z   � fx 2M : xRzg;z!!! � fy 2M : z R yg:We an extend this de�nition to subsets2 of M so that we an obtain the polarities introduedby Birkho� in [2℄. For any subset A � M we de�ne its left polar A   and its right polar A!!! asfollows.De�nition 3. For any A �M , we put:A   � fx 2M : xRz for all z �Ag = \z �A z   ; (1)A!!! � fy 2M : z R y for all z �Ag = \z �A z!!!: (2)Note that there is no ambiguity of notation, sine fzg   = z   and fzg!!! = z!!! for everyz 2M . Moreover, for any A �M the following equivalenes hold by de�nition:x �A   i� A � x!!! and y �A!!! i� A � y   :By using them the reader an easily verify that the following lemma holds.Lemma 4. For any A1; A2; B1; B2 subsets3 of M :A1 � A2 implies A!!!2 � A!!!1 ; (3)B1 � B2 implies B   2 � B   1 ; (4)A1 � A! ! ! 1 and B1 � B ! ! !1 : (5)Conditions (3){(5) are just the de�nition to saying that the orrespondenes A 7! A!!! andB 7! B   de�ne a Galois onnetion (see [2℄) between the omplete lattie (P(M);�) and itself,where P(M) is the lass of subsets of M and � determines the order. Conditions (3){(5) areequivalent to a very important ondition whih we will use for soundness.Lemma 5. Conditions (3), (4) and (5) are equivalent to ondition:A � B   i� B � A!!! for all A;B �M: (6)Proof. We obtain the diretion left-right of (6) by applying (3) and (5), and the diretion right-leftof (6) by applying (4) and (5). Vie versa, we obtain (5) by applying (6) to A!!!1 � A!!!1 (if we putA = A1 and B = A!!!1 ). We obtain (3) in this way: if we assume A1 � A2, then A1 � A! ! ! 2 by (5),and so A!!!2 � A!!!1 by applying (6) to A = A1 and B = A!!!2 . We an obtain (4) symmetrially.The ondition (6) says that the two (ontravariant) operators (�)!!! and (�)   are adjoint on theright (see [3℄ p.81).The following are immediate onsequenes of lemma 4, or equivalently of (6).Corollary 6. For any A;B �M :A! !! !! ! = A!!! and B !  !  ! = B   : (7)1Here and in whole paper � is the sign for de�nitional equality, when a de�nition is �rst given, the de�niendumwill always be at the left and the de�niens at the right.2We adopt the de�nitions and notations for subsets introdued and justi�ed in [14℄. So, for any set M , A �Mmeans that A is a propositional funtion over M . To denote that a is an element of the subset A, we write a �A.3With A! ! ! and B ! ! ! we mean (A!!!)   and (B   )!!! respetively. In general terms, an exponential with morethan one arrow is to be intended as the appliation of arrows from left to right. As an example: B ! ! ! ! ! ! means(((B   )!!!)   )!!!, and so on. 4



Proof. By (5), we have A!!! � A! !! !! ! and A � A! ! ! , hene A! !! !! ! � A!!! by (3). The proof thatB !  !  ! = B   is similar.Corollary 7. The operators (�)! ! ! : P(M) �! P(M) and (�) ! ! ! : P(M) �! P(M) arelosure operators.Proof. It easy to see that the onditions for losure operators holds, in fat for any A;A1 � M :A � A! ! ! by (5); A! ! ! = A! ! ! ! ! ! by (7); A � A1 implies A! ! ! � A! ! ! 1 by (3) and (4). Thease of (�) ! ! ! is similar.Now we an de�ne two lasses of subsets of M whih we will use to de�ne the evaluation offormulae.De�nition 8 (Saturated subsets). For any A;B � M , we say that A is left saturated ifA = A! ! ! and that B is right saturated if B = B ! ! !. Moreover we de�ne Sat   (M) andSat!!!(M) as the olletion of left saturated and right saturated subsets of M respetively.The justi�ation of the adjetives \left" and \right" to saturated subsets derives from orollary6. In fat, by (7), left and right saturated subsets of M are just those of the form B   and A!!!respetively.The olletions Sat   (M) and Sat!!!(M) are omplete latties, where meet (gub) is the inter-setion \ and join (lub) is the saturation of the union [. M is the maximum among both left andright saturated subsets. The saturations of the empty subset, ;! ! ! and ; ! ! !, are the minimumamong left and right saturated subsets, respetively.The next theorem shows a very important orrespondene between left and right saturatedsubsets. Suh orrespondene is useful to our interpretation of formulae of language L.Theorem 9. The orrespondenes A 7! A!!! and B 7! B   de�ne a dual isomorphism between theomplete latties of left and right saturated subsets of M . In partiular, if A1; A2 are left saturatedsubsets and B1; B2 are right saturated subsets, then:(A1 \ A2)!!! = (A!!!1 [ A!!!2 ) ! ! ! (B1 \ B2)   = (B   1 [ B   2 )! ! ! (8)(A1 [ A2)!!! = A!!!1 \ A!!!2 (B1 [ B2)   = B   1 \B   2 (9);!!! =M ;   =M (10)M!!! = ; ! ! ! M   = ;! ! ! (11)Proof. By (7), the orrespondenes A 7! A!!! and B 7! B   are inverse of eah other; hene theyare one-one and onto. Finally, by (3) and (4), they invert inlusion and so they interhange joinwith meet.3 SoundnessIn any relational monoid M = (M; �; 1; R) we an interpret formulae of the language L as sat-urated subsets, as we de�ne in this setion. Here we also prove a soundness theorem for suhinterpretation, while a ompleteness theorem is given in next setion.The idea we follow is to think of M as the set of resoures in a prodution yle. For anyresoures x; y 2 M we read xRy as: the resoure x an produe the resoure y. We all x the(possible) ingredient and y the (possible) produt.In this way the polarities we de�ned in setion 2 assume a partiular meaning. In fat forany resoure x the subset x!!! determines the subset of all the resoures (produts) whih an beprodued with x as ingredient. On the other hand, the subset x   determines the subset of all theresoures (ingredients) that an give x as produt.In setion 2 we pointed out that any element in Sat   (M) is of the form B   , i.e. it is thesubset of the ingredients whih an produe every resoure in B. Equivalently any element inSat!!!(M) is of the form A!!!, i.e. it is the subset of the produts whih an be obtained by using5



any resoure of A. So intuitively we an think of an element in the olletion Sat   (M) as a subsetof (possible) ingredients, and we an think to an element in Sat!!!(M) as a subset of (possible)produts.We intend the operation � in M as the omposition of resoures. If we ombine the resourex with y (in this order), then we obtain the resoure x � y. In x � y the resoures x and y areonneted to eah other, we annot isolate x or y. In partiular 1 is the resoure that does notmodify the resoure whih it is ombined with.The ombination between two subsets A;B of resoure is just the subset A � B formed by allthe possible ombinations between a resoure of A a resoure of B, namely the algebrai produtbetween subsets A �B � fx � y : x �A; y �Bg.We assoiate any formula ' with a pair of saturated subset of M : a subset of ingredients (leftsaturated) and a subset of produts (right saturated).Theorem 9 says that every left saturated subset (ingredients) determine one and only one rightsaturated subset (produts), so we do not have to hoose two saturated subsets to evaluate aformula: for example, we an hose a left saturated subset and automatially we have also theright saturated one by applying the operator (�)!!!. This is our hoie.Let Frm be the set of formulae in the language L. We want to de�neV (�) : Frm �! Sat   (M)that is the evaluation of formulae. It will assoiate every formula ' with a subset V (') of ingre-dients, and, learly, with the subset V (')!!! of produts.For any propositional variable p the value V (p) in Sat   (M) is assumed to be given. Then weapply indution on onnetives. We �rst look at the interpretation of a sequent � ` � to explainthe de�nition of V .So suppose that V is already de�ned on all formulae, and let us de�ne the evaluation of theontexts that form a sequent. If we read the sequent � ` � as � an produe � in the alulusB�, then it beomes natural to assoiate � with ingredients and � with produts. It is simple toassoiate � = '1; : : : ; 'm with the ombination of ingredients Ingr(�) � V ('1) � : : : � V ('m), and� =  1; : : : ;  n with the ombination of produts Prod(�) � V ( 1)!!! � : : : � V ( n)!!!.A partiular ase is that of the empty ontext. The behaviour of the empty ontext in the setof formulae and the one of the neutral element in the monoid are very muh alike. In fat theempty list [ ℄ is neutral respet to the omposition with formulae, as we will see for the syntatimodel. So we de�ne Ingr([ ℄) � f1g and Prod([ ℄) � f1g.Formally, for any ontext � = �1; : : : ; �m, where m � 0, we de�ne:Ingr(�) � f1g � V (�1) � : : : � V (�m) (12)Prod(�) � f1g � V (�1)!!! � : : : � V (�m)!!! (13)Note that there is no ambiguity beause the operation of monoid is assoiative. Moreover bothproduts ontain the subset f 1 g; this fat allows us to evaluate the empty ontext as we have justsaid. If the ontext is formed by one or more formula, then the subset f 1 g does not inuene theprodut. In fat f 1 g is neutral in the produt between subsets, that is f1g � A = A � f1g = A forall A � M . If the ontexts are formed by exatly one formula ', then Ingr(') = V ('), namelythe ingredients assoiated with ', and Prod(') = V (')!!!, namely the produts assoiated with'. Intuitively we say that a sequent � ` � is valid if every resoure assoiated with � an produeevery resoure assoiated with �. Formally we say that the sequent � ` � is valid in the monoidM i� Ingr(�) � Prod(�)   (the resoures assoiated with � are ingredients for the resouresassoiated with �) or equivalently, by (6), i� Prod(�) � Ingr(�)!!! (the resoures assoiated with� are produts of the resoures assoiated with �).Now we an make a step bak and de�ne the evaluation V on formulae. We use the intuitionwe have just given and the de�nitional equations for B�. In fat we revise the de�nition 1 usingthe idea of the prodution yle. 6



Connetive N . The de�nitional equation says that: Ingr(�) � Prod('N )   i� Ingr(�) �Prod(')   and Ingr(�) � Prod( )   . Note that for any single formula �: Prod(�)   = V (�).So the equation is equivalent to: Ingr(�) � V (pN q) i� Ingr(�) � V (p) and Ingr(�) � V (q).This means that we have to assoiate the onnetive N whit meet (intersetion) for left saturatedsubsets, and so we have to de�ne: V ('N ) � V (') \ V ( ): (14)Connetive �. The de�nitional equation says that: Prod(�) � Ingr( � ')!!! i� Prod(�) �Ingr( )!!! and Prod(�) � Ingr(')!!!. Here for any single formula �: Ingr(�)!!! = V (�)!!!. So theequation is equivalent to: Prod(�) � V ( � ')!!! i� Prod(�) � V ( )!!! and Prod(�) � V (')!!!.This means that we have to assoiate the onnetive � with meet (intersetion) for right saturatedsubsets, and so: V ( � ')!!! � V ( )!!! \ V (')!!!: (15)Finally we obtain by (8):V ( � ') = V ( � ')! ! ! = (V ( )!!! \ V (')!!! )   = (V ( ) [ V (') )! ! ! : (16)that is the join for left saturated subsets.Connetive O . De�nition 1 says that Ingr(�) � Prod('O )   i� Ingr(�) � Prod(';  )   . Thismeans that we have to de�ne:V ('O ) � Prod(';  )   = (V (')!!! � V ( )!!! )   : (17)Connetive �. De�nition 1 says that Prod(�) � Ingr( �')!!! i� Prod(�) � Ingr( ; ')!!!. Thismeans we have to de�ne Ingr( � ')!!! = Ingr( ; ')!!! and so:V ( � ') � Ingr( ; ')! ! ! = (V ( ) � V (') )! ! ! : (18)Constant 1. By de�nition 1: Prod(�) � Ingr(1)!!! i� Prod(�) � Ingr([ ℄)!!!. So the onlypossibility we have is to de�ne: V (1) � Ingr([ ℄)! ! ! = f1g! ! ! : (19)Constant ?. By de�nition 1: Ingr(�) � Prod(?)   i� Ingr(�) � Prod([ ℄)   . So we have tode�ne: V (?) � Prod([ ℄)   = f1g   : (20)Constant 0. De�nition 1 says that the subset of produts assoiated with 0 must be as big aspossible. The biggest right saturated subset is M . Therefore we have to de�ne V (0)!!! � M andso: V (0) �M   = ;! ! ! : (21)Constant >. De�nition 1 says that the subset of ingredients assoiated with > must be as big aspossible. The biggest left saturated subset is M again. So we have to de�ne:V (>) �M: (22)The previous intuitive explanations justify the following formal de�nition.De�nition 10 (Indutive de�nition of validity). Let M be a relational monoid. A givenassignment V of subsets V (p); V (q); : : : of Sat   (M) to propositional variables p; q; : : : is extendedto an evaluation V of all formulae by the indutive lauses:V (>) �M V (0) � ;! ! ! V (1) � f 1g! ! ! V (?) � f 1g   V ('N ) � V (') \ V ( ) V ( � ') � (V ( ) [ V (') )! ! ! 7



V ( � ') � (V ( ) � V (') )! ! ! V ('O ) � (V (')!!! � V ( )!!! )   For any list � = '1; : : : ; 'm (whit m � 0) we put:Ingr(�) � f 1 g � V ('1) � : : : � V ('m); (23)Prod(�) � f 1 g � V ('1)!!! � : : : � V ('m)!!!: (24)A sequent � ` � is said to be valid under the evaluation V if Ingr(�) � Prod(�)   (or equivalentlyif Prod(�) � Ingr(�)!!!), and valid in M if it is valid under any V in M.Theorem 11 (Soundness). Let M be any relational monoid. If the sequent � ` � is deduiblein B�, then � ` � is valid in M.Proof. Rather than a boring proof showing that axioms are valid, and that eah rule preservesvalidity,as is usually done, we obtain a full proof by showing the validity of de�nitional equations.In fat, this is equivalent to the validity of rules. We have already done it when we have introduedthe evaluation of formulae! So it is needed only to prove the validity for ut rules. This holdssine the ombination of subsets preserves inlusion.4 CompletenessThe proof of ompleteness theorem is based on the onstrution of a partiular relational monoid:the syntati model. We will prove that a sequent is valid in the syntati model if and only if itis derivable in B�. In the sequent � ` � we onsider the anteedent � as the ingredient and theonsequent � as the produt.De�nition 12 (Syntati model). The syntati model is the strutureF � (Frm�; Æ; [ ℄;`B�)where:a. Frm� is the set of all �nite lists we an reate with formulae of L (inluding the empty list)b. Æ is the onatenation between lists; i.e. if �1 and �2 are lists, then �1 Æ �2 � �1;�2.. [ ℄ is the empty list.d. relation `B� is de�ned in this way: � `B�� if and only if � ` � is derivable in B�.We an easily verify that F is indeed a relational monoid. In fat, the onatenation betweenlists is assoiative and [ ℄ is the neutral element, sine for every �nite list of formulae �, �; [ ℄ =[ ℄;� = �.We an de�ne the operators (�)   and (�)!!! in F ; let us look at how they behave on P(Frm�).If � is a list of formulae, de�nition 3 says that:�!!! = f� 2 Frm� : � `B��g onsequents of �; (25)�   = f� 2 Frm� : � `B��g anteedents of �: (26)Generally for any A;B � Frm�:A!!! = f� 2 Frm� : � `B�� for all � �Ag ; (27)B   = f� 2 Frm� : � `B�� for all � �Bg : (28)Now we an prove an important lemma. If we onsider a formula ' in L, then its left saturationis formed by all its anteedents and its right saturation is formed by all its onsequents.Lemma 13. For any formula ' of L: f'g! ! ! = f'g   and f'g ! ! ! = f'g!!!.8



Proof. For any � and ',� � f'g! ! ! i� � `B�� for all � � f'g!!!i� ' `B��� `B�� for all �i� � `B� ' (one diretion by hoosing ' ` '; vie versa by ut)i� � � f'g   :The ase of f'g ! ! ! is perfetly symmetri.We have used an important equivalene for alulus B� in the above proof, at the next to laststep. It is an instane a more general lemma:Lemma 14. In the alulus B� the following hold:a. for any list � and m � 1, the sequent '1; : : : ; 'm ` � is derivable i��1 ` '1 : : : �m ` 'm�1; : : : ;�m ` � for all �1; : : : ;�m ; (29)b. for any list � and n � 1, the sequent � `  1; : : : ;  n is derivable i� 1 ` �1 : : :  n ` �n� ` �1; : : : ;�n for all �1; : : : ;�n : (30)Proof. a. By '1; : : : ; 'm ` � we an derive (29) using utL rule m times:�m ` 'm �1 ` '1 '1; : : : ; 'm ` ��1; '2; : : : ; 'm ` � utL....�1; : : : ;�m�1; 'm ` ��1; : : : ;�m ` � utLVie versa, by (29) if we onsider axioms 'i ` 'i (i = 1; : : : ;m), then we obtain the sequent'1; : : : ; 'm ` �. Case b. is symmetri: by using n utR rules and by onsidering the axioms i `  i (i = 1; : : : ; n).If we onsider the ontexts with exatly two formulae, then this equivalene involves also themultipliative onnetives. We have just to onsider the de�nitional equations.Corollary 15 (Multipliatives). In the alulus B�:a. for every list �, the following are equivalent: � ' ` � ;  ; ' ` � ; �1 ` ' �2 `  �1;�2 ` � for all �1;�2 ;b. for every list �, the followings are equivalent:� ` 'O ; � ` ';  ; ' ` �1  ` �2� ` �1;�2 for all �1;�2 :Proof. a. The �rst equivalene is just de�nitional equation for �. The seond one is a partiularase of previous lemma 14 where m = 2. Case b. is symmetri.9



Now we introdue the anonial evaluation V of formulae in F . We evaluate every propositionalvariable p with the subset of Frm� that is made by all the anteedents of p. This kind of subsetis left saturated by lemma 13. Our hoie is respeted by every kind of formula in L, that is forevery formula ' 2 L the evaluation V (') is the left saturated subset of Frm� formed by all theanteedents (ingredients) of '. Obviously the right saturated subset of Frm� assoiated to ' isjust the subset formed by all the onsequents (produts) of '. We prove it formally:Lemma 16 (Canonial evaluation). Let us de�ne V (p) � fpg   for every propositional variablep. Then for every formula ' of L, V (') = f'g   . And for every ontext �, Ingr(�)!!! = f�g!!!and Prod(�)   = f�g   .Proof. First we onsider the formulas of L. By lemma 13 and (6), for every formula ':V (') = f'g   i� V (')!!! = f'g!!!: (31)so we an prove the �rst equality or the seond one equivalently.We proeed by indution on the struture of formulae. The thesis is veri�ed on propositionalvariables by hypothesis. We prove the thesis on onstants using the de�nitional equations.V (>) � Frm� = f� 2 Frm� : � `B�>g = f>g   :V (0)!!! � ;!!! = (Frm�) ! ! ! = Frm� = f� 2 Frm� : 0 `B��g = f0g!!!:V (?) � f [ ℄ g   = f� 2 Frm� : � `B� g = f� 2 Frm� : � `B�?g = f?g   :V (1)!!! � f [ ℄ g! !! !! ! = f� 2 Frm� : `B��g = f� 2 Frm� : 1 `B��g = f1g!!!:The indutive steps are veri�ed as followsV ('O ) � (V (')!!! Æ V ( )!!! )   = f�1;�2 : �1 �V (')!!! and �2 �V ( )!!!g   = f� : � `B��1;�2 for all �1 �V (')!!! and �2 �V ( )!!!g by (1)= f� : � `B��1;�2 for all �1;�2 s.t. ' `B��1 and  `B��2g Indution= f� : � `B� 'O g by orollary 15.b= f'O g   by (26):V ( � ')!!! � (V ( ) Æ V (') )! !! !! != f�1;�2 : �1 � V ( ) and �2 � V (')g!!!= f� : �1;�2 `B�� for all �1 � V ( ) e �2 � V (')g by (2)= f� : �1;�2 `B�� for all �1;�2 s.t. �1 `B�  e �2 `B� 'g Indution= f� :  � ' `B��g by orollary 15.a= f � 'g!!! by (25).V ('N ) � V (') \ V ( )= f� : � � V (') and � � V ( )g= f� : � `B� ' and � `B�  g Indution= f� : � `B� 'N g by de�nition 1= f'N g   by (26). 10



V ( � ')!!! � (V (') [ V ( ) )! !! !! != V (')!!! \ V ( )!!!= f� : � � V ( )!!! and � � V (')!!!g= f� :  `B�� and ' `B��g Indution= f� :  � ' `B��g by de�nition 1= f � 'g!!! by (25).Finally we onsider the lists of formulae. If � = [ ℄, then the lemma is veri�ed by de�nition 10; infat neutral element of syntati model is just [ ℄. If � = �1; : : : ; �m with m � 1, then:Ingr(�)!!! � ( f[ ℄g Æ V (�1) Æ : : : Æ V (�m) )!!!= f�1; : : : ;�m : �1 � V (�1); : : : ;�2 � V (�m)g!!!= f� : �1; : : : ;�m `B�� for all �1 � V (�1); : : : ;�m � V (�m)g by (2)= f� : �1; : : : ;�m `B�� for all �1 `B� �1; : : : ;�m `B� �mg= f� : � `B��g by lemma 14.a= f�g!!! by (2)The ase Prod(�)   is symmetri.The reader an observe that V (')!!! (i.e. right saturated subset assoiated to a formula ') isjust the subset of all onsequents of ' as we have antiipated. Moreover Ingr(�)!!! is the subsetof all the onsequents (i.e produts in prodution yle B�) of � and Prod(�)   is the subset ofall the anteedents (i.e. ingredients in prodution yle) of �, as we have said at the beginning ofthis setion.Finally we prove the ompleteness theorem.Theorem 17 (Completeness). The sequent � ` � is derivable in the alulus B� if and onlyif � ` � is valid in every relational monoid.Proof. The diretion from left to right is theorem 11 of soundness. From right to left, if � ` �is valid in every relational monoid then Ingr(�) � Prod(�)   in the syntati for the anonialevaluation. This means that Ingr(�) � f�g   by lemma 16. The funtion (�)! ! ! is a losureoperator and f�g   is left saturated, so Ingr(�)! ! ! � f�g   and then, by lemma 16, f�g! ! ! �f�g   . By (5) we obtain � � f�g   , and this means that � `B��.5 ExtensionsThe relational semantis an be extended to the ommutative alulus B�exh that we obtain byadding the rules of exhange to B�:�1;�;�;�2 ` ��1;�;�;�2 ` � exhL � ` �1;�;�;�2� ` �1;�;�;�2 exhR (32)To obtain a new ompleteness theorem for alulus B�exh we have just to restrit the relationalsemantis to ommutative relational monoids, namely the relational monoids M = (M; �; 1; R)where the operation � is ommutative (x � y = y � x for all x; y 2M).The evaluation for formulae and ontexts, and the de�nition of validity of sequents remain thesame of setion 3. For ompleteness we have to onsider the syntati modelF 0 � (Frm~; Æ; [ ℄;`exh)where Frm~ is the set of all non ordered lists of formulae of L, and `exh is the derivability inB�exh, i.e. for �;� 2 Frm~:� `exh� i� � ` � is derivable in B�exh (33)11



It is easy to see that F 0 is a ommutative relational monoid4. Moreover all lemmas and orollariesthat we have proved for B� and F in setion 4 are still veri�ed for B�exh and F 0. So we easilyobtain a ompleteness theorem by following the proof of theorem 17. We have just to verify thevalidity of the new exh rules by using the ommutativity of operation in M.Theorem 18 (Completeness for B�exh). The sequent � ` � is deduible by alulus B�exh ifand only if � ` � is valid into every ommutative relational monoid.We an extend B�exh to obtain Classial Linear Logi without exponentials (see [13℄). Girard'sphase spaes provide with a set-theoreti semantis for linear logi (see [6℄). Phase spaes an beseen as a partiular ase of relational monoids: we an show that a phase spae is a ommutativerelational monoid whit a strongly symmetri relation5. We de�ne that the relation R is stronglysymmetri if for all x; y; z 2M : if x � y R z then x � z R y : (34)Note that a strongly symmetri relation is symmetri; in fat we an hoose x = 1 in (34). If R issymmetri, the operators (�)   e (�)!!! oinide, and we indiate them with (�)���.Now we prove that the operator (�)��� for strongly symmetri monoids is the operator (�)? ofspae phases. Moreover the evaluation of formulae in phase spaes oinides with the evaluationwe have just de�ned if we onsider only strongly symmetri monoids.Theorem 19 (Phase spaes and strongly symmetri monoids). Any phase spae is astrongly symmetri monoid, and vie versa any strongly symmetri monoid is a phase spae.Proof. Let (M;???) be a phase spae. Then (M; �) is a ommutative monoid and it beome astrongly symmetri monoid (M; �; 1; R) if we de�ne:for all x; y 2M : xR y � x � y � ??? :Obviously the relation R is strongly symmetri. Moreover the operators (�)��� and (�)? oinide onsubsets of M . In fat for any A �M :A��� � fy 2M : xR y for all x �Ag= fy 2M : x � y � ??? for all x �Ag � A?:In partiular f1g��� = fy 2M : 1 � y � ???g = fy 2M : y � ???g =??? (35)Vie versa, let (M; �; 1; R) be a strongly symmetri monoid; then we redue it to a phase spae byde�ning ??? � f1g���. In suh way, for any A �M :A? � fy 2M : x � y � ??? for all x �Ag= fy 2M : x � y R 1 for all x �Ag= fy 2M : x � 1Ry for all x �Ag by (34)= fy 2M : xR y for all x �Ag � A���:
4Note that the relation `exh between not ordered lists is well de�ned. In fat the alulus B�exh, with rules ofexhange, does not onsider the position of formulae into the ontexts; namely if � ` � is derivable in B�exh, thenalso �0 ` �0 is derivable in B�exh, where �0 and �0 are permutations of � and � respetively.5In onnetion with linear logi, the use of Birkho�'s polarities appears also in [1℄, [4℄, [15℄.12
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