
Bigraphical Logics for XML

Giovanni Conforti
Universit̀a di Pisa

Damiano Macedonio
Universit̀a Ca’ Foscari di Venezia

Vladimiro Sassone
University of Sussex

Abstract

Bigraphs are emerging as an interesting model that can represent both the pi-
calculus and the ambient calculus. Bigraphs are built orthogonally on two struc-
tures: a hierarchical ‘place’ graph for locations and a ‘link’ (hyper-)graph for con-
nections. In a previous work (submitted elsewhere and yet unpublished), we intro-
duced a logic for bigraphical structures as a natural composition of a place graph
logic and a link graph logic. Here we show that fragments of BiLogic can be used
to describe XML data (withID andIDREFs) and to reason about programs that
manipulate tree-structures with query-oriented update operators.

1 Introduction

The term ‘spatial,’ as opposed to ‘temporal,’ has been recently used to refer to logics
providing modal operators to express properties of the structure of the model. Such
logics are usually equipped with a separation/composition operator thatsplits the cur-
rent model into two parts, in order to ‘talk’ about them separately. Looking closely, we
observe that notion ofseparationis interpreted differently in different logics.

• In ‘separation’ logics [23, 21], the separation is used to reason about dynamic
update of tree-like structures, and it isstrongin that it forces names of resources
and pointers in separated components to be disjoint. In addition, this constraint
usually implies that model composition must partially defined.

• In static spatial logics (e.g. for trees [4], graphs [7] or trees with hidden names [8]),
the separation/composition operator isstructural, and it is used to describe prop-
erties of the underlying structure. In this case no constraint on the model is
usually required, andnamesmay be shared between separated parts.

• In dynamic spatial logics (e.g. for ambients [10] orπ-calculus [3]), the separa-
tion is intended only for location in space, and names can be shared between
separated resources.

Research partially supported by ‘MyThS: Models and Types for Security in Mobile Distributed Sys-
tems’, EU FET-GC IST-2001-32617 and by ‘DisCo: Semantic Foundations of Distributed Computation’,
EU IHP ‘Marie Curie’ HPMT-CT-2001-00290.

1

Context tree logic, recently introduced in [5], integrates the first approach above
with spatial logics for trees. The resulting logic is able to express properties of tree-
shaped structures (and contexts) with pointers, and it is used as an assertion language
for Hoare-style program specifications in a tree memory model.

Bigraphs are an emerging model for structures in global computing, which can
be instantiated to model several well-known examples, including theπ-calculus, the
ambient calculus and Petri nets [19]. Bigraphs consist essentially of a tree-structured
place graph – representing the ambient-like nesting of locations – coupled with a link
(hyper-)graph on the same nodes – representing theπ-calculus-like communication
channels. Such structure has recently been axiomatized in categorical terms and by
means of a term algebra in [20]. In [16], we build on such bi-structural nature to
introduce a ‘contextual spatial logic’ for bigraphs built on two orthogonal sublogics:

• aplace graph logic, to express properties of resource locations;

• a link graph logic, to express connections between resources (or, more precisely,
resource names).

For this reason, we name the formalismBilogic. Bilogic is interesting for at least two
reasons. Firstly, the place graph logic is a generalization of bothspatial logicsand
context-treelogic. Secondly, it captures at the same time both the notion of structural
and of strong separation. In particular, we are able to express a notion ofseparation-
upto that specifies which names must (or should) be shared. In addition, we are cur-
rently undertaking to extend Bilogic with temporal modalities, so as to model bigraph-
ical reactive systems (BRS) and therefore generalize dynamic spatial logics (as, e.g.,
the Ambient Logic). Thus, Bilogic and its subcalculi are very general and promising
as logics to talk about resources with names.

XML data are essentially tree-shaped resources, and have been modelled with un-
ordered labelled tree in [6] where an important connection between semistructured data
and mobile ambients was uncovered. Starting fromloc. cit., several works on spatial
logic for semistructured data and XML have been proposed (e.g. [7, 17, 8]). Among
these, a query language on semistructured data based on Ambient Logic was studied
in [9] and implemented in [12, 15]. The present paper enriches over such model of tree-
shaped data by adding links on resource names, so as to obtain a more general model
for semistructured data and XML (which, as a matter of fact, it is closer to the standard
OEM model). A similar step was taken in [11], which we improve upon by making
use of the well-studied categorical structure of bigraph, which internalize the notion
of link and makes the difference between strong and structural separation explicit. In
addition, bigraphs naturally model XML contexts: we thus obtain with no additional
effort a logic to describe XML contexts which can be interpreted as web services or
XML transformations.

Here we focus on the applications of bigraphical logics to XML data. In particular,
we first show how XML data (and, more generally, contexts or positive web services)
can be interpreted as a bigraph. Equipped with such ‘bigraphical’ representation of
XML data and contexts, we then give a gentle introduction to different fragments of
Bilogic and show how they can be applied to describe and reason about XML. The

2

G

21

x y z v

x y

Fig. 1. Questa e’ biLogPic1

G

g

G◦g21

x

y

y z

z v

v

x

x

x y

x y

x

1 2

Fig. 2. Questa e’ biLogPic2

Figure 1: Bigraph G

contribution of the paper is therefore to identify (fragments of) Bilogic as a suitable
formalism for semistructured data, and illustrate its expressiveness by means of se-
lected examples.

Structure of the paper. In §2 we recall the basic notions of bigraphs; for a fuller ex-
position the reader is referred to [19];§3 shows how to interpret XML contexts as
bigraphs, while§4 illustrates several examples.

2 Bigraphs

We give a crush introduction to bigraphs [19]. We restrict our attention exclusively to
abstract pure bigraph, whose algebraic axiomatization has been provided in [20].

The bigraphG in Fig.1 is a structure built on two orthogonal graphs over the same
group of nodes, shown here with bold outlines. Nodes may be nested in a hierarchi-
cal tree structure (theplace graph, shown as the inclusion of a node in another), and
haveports that may be connected bylinks (the link graph, shown as edges connecting
nodes). The nesting of nodes imposes no constrain upon the linkage of their ports,
hence the orthogonality of the structures.

Every node of the place graph has acontrol, which represent what kind of node it
is and itsarity, i.e., an ordinal telling the number of ports and marking them unam-
biguously. In the Figures 1 and 2, arity is one for oval shaped nodes, two for the round
ones, three for the triangular one.

At the top level of the nesting structure are theroots. in the figure there is a unique
root, shown as a dotted outline. In general however there may be multiple roots. Inside
a node there may beholes, shown as shaded boxes in the figure, which formalizecon-
texts. Roughly speaking, a place graph is a list of (unordered) trees that can haveholes
as leaves. Place graphs are characterized by a couple of ordinals, written asm→ n,
denoting respectively the number of holes and the number of roots in the bigraph. The
use of ordinals allows us to mark holes and roots uniquely.

The link graph is characterized by a couple of set of namesX → Y. The setX
represents theinner names(drawn in the figure below the bigraph) andY represent
the set ofouter names(drawn above the bigraph). The link graph connects a port to
a name or anedge. In Fig. 1 an edge is represented by a line between nodes. Ports
can be associated both to names and to edge, in any finite number. A link to a name is

3

G

21

x y z v

x y

Fig. 1. Questa e’ biLogPic1

G

g

G◦g21

x

y

y z

z v

v

x

x

x y

x y

x

1 2

Fig. 2. Questa e’ biLogPic2Figure 2: Bigraphical composition

openand may be connected to other nodes in case of composition between bigraphs.
A link to an edge isclosedand cannot be connected to other ports. The role of names
becomes clearer after introducing the composition operator of bigraphs.

The right hand side of Fig. 2 represents thecomposition G◦g between the two
bigraphsG andg described on the left hand side. The main idea is to insertg into
the contextG. The operation is partially defined, since it requires the inner names
and the number of holes ofG to match to the number of roots and the outer names ofg
respectively. Shared names create the new links between the two structures. Intuitively,
compositionfirst places root region ofg in the proper hole ofG andthen joins equal
inner names ofG and outer names ofg. In particular note the edge connecting the inner
namesy,z in G, its presence produces a link between two internal nodes ofg after the
composition.

As explained in [19], the tensor product⊗of bigraphs is defined only if they do not
have common inner names or outer names. By relating names to resources, the tensor
can be seen a separation operator: the product puts the place graphs one next to the
other (in order), obtaining a graph with more roots and holes, and operates the disjoint
union between inner names and outer names of the place graphs.

3 Modelling XML Contexts as Bigraphs

As proved in [20], the class of bigraphs can be axiomatized using a small set of ele-
ments. We recall the constructions below, and then relate it to XML. In our formal-
ization, XML data are bigraphs with no holes (i.e.,ground), while those with holes
represent XML contexts.

The main constituent of a bigraph is thediscrete ion K~a, which represents a node
with one root and containing one hole. The hole can be filled with other ions in order
to build a more complex tree-structure. The ion’s control isK, with arity ar(K) = |~a|,

4

and every port ofK~a is linked to a name in the (ordered) list of names~a. Every name
in ~a represent an outer name of the bigraph. Thinking in terms of XML data, a ion is
seen as atag with someattributes. Since arity is an ordinal, it is possible to identify
the ports unambiguously and it is easy to associate them to attributes. We assume one
designed port to be associated to a (unique) name used to identify the element, as an
ID attribute. Other ports may be linked to other nodes’ID names, so acting effectively
asIDREFs, or to internal edges connected to internal nodes, representing the general
attributes of the element. Embedding a ion into the hole of another ion, represents the
inclusion of the corresponding elements.

The basic place graphs are 1,idn andmerge. Term 1 is the empty single rooted
bigraph, it is the empty XML document;idn is a context withn holes,n roots and no
internal node. It behaves like a neutral XML context if composed with a compatible
XML document. Termmergeachieves the merging of two bigraphs: it consists of two
holes, one root and no links. By composing merge with the product of two single-
rooted XML documents we obtain a XML document whose single root has the two
component documents as children.

The basic components of a link graph are (a ← b), (a ⇔ b) and /a. Operator
(a ← b) represents renaming, and in the context of our interpretation of XML, it acts
on ID attributes. Operator (a⇔ b) associates nameb to namea: whena represent an
ID andb a IDREF, then (a ⇔ b) makesb a reference toa. Finally, /a makes namea
private, and allows nodes to be joined to one another in closed links. This operator will
be used in our encoding of XML to express a link between attributes and their values.

In the presence of (unfilled) holes, terms representcontextsfor XML data, i.e., doc-
uments with holes to be filled by XML data: composition acts by inserting documents
in such holes. The tensor is defined only if the names appearing in the two compo-
nents are disjoint. Therefore, any reference ‘going across’ must be created after the
product. Note that since link graphs in general perform substitution and renaming, the
outer names ofg may not be outer names ofG◦g. This may happen either because
they are renamed or because an edge has been added to the structure as effect of the
composition, which makes the linkprivate, i.e., without an externally-visible name.

The parent-child relationship on nodes in bigraphs does not capture order among
children of the same node. So bigraphs can be seen as a (ordered) list of unordered
(contexts of) trees connected through links. This model can be used for XML data
whose document order is not relevant. Such documents arise for instance in XML
encodings of relational databases [2], in the integration of semi-structured database
sources, or in the case of distributed XML documents in a P2P environment [22] (in
the latter case the document order is not defined).

The importance of the underlying hierarchical structure in XML, and the fact that
links are used sporadically only for modelling relations between nodes, suggests the
bigraphical model as a good model for XML documents. We interpret these documents
as ground bigraphs by using the encoding explained below. The encoding is trivial in
case the tree contains no attribute, when we can in fact easily map the tree structure of
XML elements into the place graph by associating controls to tags and values. In this
case, there is no link between nodes, all controls have arity zero, and the XML file is
completely modelled by the place graph only (in a kind of ambient like formalism [6]).

In the case of elements with attributes, we need names to represent XML links

5

between elements (e.g., likeID-IDREF relationships), and edges to represent elements’
attributes. We consider theIDs used in XML data as names in bigraphs. The encoding
is defined by assuming two functions on values:

• Kval(v), mapping the valuev to a ground bigraph corresponding to a single rooted
node with no outer names, no nodes and no holes inside.

• Kval(v)a, mapping the valuev to a ground bigraph corresponding to a single
rooted node with outer namea, no nodes and no holes inside.

The former function is used actually to encode values with bigraphs, the latter is auxil-
iary and encodes values linked to attributes.

Moreover we associate tags with ions. We assume a classKtag of controls. We
consider a tagt and firs we observe that the listAtt of its attributes is finite and ordered,
hence we associate the list to an ordinal #Att, and the elements of the list are identified
by their position. Then we associatet with Ktag(t,#Att)~u, that is a ion with control
Ktag(t,#Att) ∈ Ktag and arity #Att. The vector~u indicates the names connected to the
control; we assume the names in~u to be theIDs associated to the attributes inAtt.

A value attribute is encoded as a value inside the node and connected to the port
whose position marks the corresponding attribute. Identifiers (likeID) and links (like
IDREF) attributes have a special interpretation. They becomenamesof the tag and can
be connected with other names in order to model references. As mentioned before, the
connection is performed by using the link graphs constructors: (a ⇔ b), to create a
reference, and/a, to create a closed connection for attributes. The general definition
for the encoding is formalized in Tab. 1

Table 3.1.XML documents as ground bigraphs

(|v|)
def
= Kval(v) value

(|v|)a
def
= Kval(v)a value linked to an attribute namea

(|~v|)~b
def
= (|v1 |)b1 ⊗. . .⊗ (|vn |)bn with ~v = v1 . . . vn and~b = b1 . . . bn

(| ∅ |)
def
= 1 empty tree

(|T |)
def
= /~a ◦σ◦Ktag(t, k+ p+ 1)u,~u,~b ◦mergen+k((|~v|)~b ⊗α1◦(|T1 |)⊗. . .⊗αn◦(|Tn |))

whit T = 〈t, ID = u, ~a = ~u, ~b = ~v 〉T1, ...,Tn 〈/t〉 XML tree
~a = a1 . . . ak link attributes
~u = u1 . . . uk names
~b = b1 . . . bp value attributes
~v = v1 . . . vk values
αi renaming the names ofTi into fresh names
σ = α−1

1 ∪ . . . ∪ α
−1
n inverse renaming

/~a
def
= /a1 ⊗. . .⊗ /ap closure of the names in~a

mergen+k merging amongn+ k bigraphs (definable frommerge)

6

In the table above, the encoding of values is simply the functionKval(). The auxiliary
encoding of values linked to attributes is given byKval()a. Term 1 corresponds to the
empty tree. The core of the translation is the encoding of (non empty) trees. Here, the
role of mergeis to group together the (encodings of the) set of children ofT and the
(encodings of the) values linked to attributes. In this case, values linked to attributes are
associate with a name. Observe in the encoding the use the renamingsαi to guarantee
the product is defined, since it requires the names to be distinct. We choose fresh
names, i.e., not appearing inT, and we obtain the renamingsαi by combining different
operators such as (a ← b). The obtained bigraph is single rooted, hence it fits in the
ion associated to the tagt. After the composition with the ion, we have to rename
the names in order to formalize all the references, finally we need to close the link
between the root and the evaluations of the values linked to attributes. The renaming
is obtaining by considering the inverse ofαi (definable by using operators such as
(a ← b) and (a ⇔ b)), and the closure is obtained by combining the closure of every
name associated to an attribute.

Example.As an example of the encoding of XML trees into bigraphs, we consider a
database that stores scientific papers and information about their authors. We focus on
the fragment quoted in the document below.

<authors>

<author name="Conf" n="ID2" coauth="ID5">

<Address n="ID1">"."</Address>

<Phon n="ID3">"."</Phon>

</author>

<author name="Sass" n="ID5" coauth="ID7">

<Address n="ID4">"."</Address>

<Phon n="ID6">"."</Phon>

</author>

<author name="Mace" n=ID7>

<Address n="ID8">"."</Address>

<Phon n="ID10">"."</Phon>

</author>

</authors>

TagAuthor has an identifier,IDi , a link to another author,coauth, that is anIDREF
attribute, and a general attribute,name. The encoding is illustrated in Fig. 3. Every tag
Author is associated to a control of arity three. Exploiting the order of the ports, we
identify a port with the corresponding XML attribute unambiguously. In the picture we
assume the ports ordered clockwise. The first port corresponds to the general attribute
name, and is connected by a close link (an edge) to a value. The second one corresponds
to the identifier,ID, and is connected to an outer name. The final attribute corresponds
to the reference ,coauth, and is connected to a name that correspond to anotherAuthor
tag.

More generally a bigraph can be seen as a context for unordered XML data, just
because there can be holes in it. So in the previous example we can imagine to put holes
in place of some node. This yields a context that can be interpreted as a contextual

7

Conf

Sass

Mace• •

• •

• •

ID1

Authors

Author

Author

Author

Add

Add

Add
Phon

Phon

Phon

ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9 ID10

Fig. 1. Questa e’ biLogPic3Figure 3: XML encoding

XML document, a function (Web service) that takes a list of XML files and returns
their composition in context, by fitting every file in the relative position (as marked by
its position on the list). In this way we can model Web services, besides plain XML
documents. In order to model the order of XML elements, we would need to add a
notion of ordered locality, i.e., to consider molecules with an ordered ”list” of holes,
and extend the theory of bigraphs accordingly to this notion.

4 Bilogics for XML Contexts

In [16] we introduced Bilogic for bigraphical structures. In§3 we have shown that
XML (unordered) data and contexts can be modelled as a bigraphical structures. This
section briefly introduces Bilogic, and explains how it can be used for describing,
querying and reasoning about XML. In particular, we analyze three possible cases:

• Logics for place graphs to model XML data and contexts withoutIDs;

• Logics fordiscrete bigraphs(essentially trees with unique identifiers) for XML
with IDs, but without links;

• Bigraphical logics for XML withIDs and links.

4.1 XML without IDs

As mentioned previously, without attributes – or anyway handling them as children
elements themselves – XML amounts to unordered labelled tree. In [6] the author
shows that such a model has some similarities with ambient calculus terms, building
on which [9] introduces a query language for semistructured data based on Ambient

8

Logic. In [16] we show that the static fragment of ambient logic (STL) can be easily
extended to the Place Graph Logic (PGL in the following) to model general contexts
of tree-shaped resources. In particular PGL can describe place graphs, that is bigraphs
without links, and so it can be used to talk about XML contexts (without attributes)
using the encoding we defined in the previous section. We briefly present here some
operators of PGL, and we informally show their semantics in the XML case. (Some of
connectives are derived; the reader is referred to [16] for the details.)

Table 4.1.PGL: Place Graph Logic (some operators)

A, B ::= formulas
F false
A⇒ B implication
1 empty single rooted bigraph
idn identity onn number of holes (even zero)
A⊗B decomposing in two place graphs one next to the other
A ◦s B possibles-holes filling ofA with a place graphs satisfyingB
A ◦−sB if inserted in a contextA (with s holes) thenB
K[A] the moleculeK containig something satisfyingA
A | B decomposing in two trees whose merge is the current model

F andA⇒ B are the standard propositional operators (the other propositional connec-
tivesT, ¬,∧,∨,⇔ are derived as usual). There are spatial constants1, merge, andidn

denoting a singleton place graph (interpreted as a single XML context). We interpret1
to be the empty XML context,merge the context merging two XML contexts in one,
while id is the identity context, which transforms XML trees to themselves. The two
spatial operatorsA⊗B andA ◦s B express two ways of composing contexts. The first
is horizontaland produces a (ordered and separated) pair of contexts one next to the
other. The second one isvertical and corresponds to fill thes holes of a context sat-
isfying A with the context satisfyingB. They are both non commutative. Then, there
are ambient-like operators for trees:K[A] is the context that inserts a new root labelled
K in the top of a single XML context satisfied byA, andA | B (parallel composition)
denotes contexts obtained by merging the tree contexts satisfyingA andB in a single
root. Note that, since parallel composition performs a merge of the contexts, it provides
a commutative monoid with1 as neutral element. An interesting connective isA ◦−sB,
which essentially expresses that whenever the current model is inserted inside a XML
s-ary context satisfyingA, then the resulting context satisfiesB.

In general, models of PGL arepositivefunctions fromm to n that given a list of
m XML contexts produces a list ofn XML contexts. By ‘positive’ we mean that they
can only add structure to the parameters, and not remove or replace parts of them. In
this sense, XML contexts are viewed as positive XML Web services that take XML
documents (possibly with calls to other Web services, so that they effectively are XML
contexts), and return XML documents. This is similar to the model of Positive Active
XML proposed in [1], but with a remarkable difference: since our model does not
handle ordered trees, we cannot restrict attention to functions between XML (active)
documents. We need to use withlist of parameters and alist of resulting contexts. To

9

understand better the idea, consider the Web service below.

wb : K1[id1] | K2[merge◦id2]

It takes three trees and puts the first inside a node labelledK1, merges the second and
third trees and puts the result inside a node labelledK2, and finally produces the parallel
composition of the two resulting trees. We need ordered parameters to put the right root
in the right hole. A Web service like this can be solely identified by a characteristic
formula (corresponding to the tree), but more generally a formula likeK1[id1] | T can
match all Web services having at least one hole and decomposable as a node of arity
one labelledK1 in parallel to something else. In this sense a notion oftype for Web
services arises. Similarly to [13], where the spatial tree logic is used to describe XML
types and constraints, we can use PGL to formalize Web service types and constraints.

Since also XML (active) documents are contexts, we can actually use the PGL to
describe Active XML documents and Web service in an unique framework. In ad-
dition, we can use an approach like TQL [9] to query Active XML documents and
Web service, and eventually use types to avoid Web service useless invocations. To
make the idea more precise, with reference to the previous example, take a query
wb◦ (T1⊗T2⊗T3) |= K1[X] | T, which essentially determines all contexts reachable
from the result of the Web service invocation through a path/K1. If we know that the
type ofwb is K1[id1] | K2[T] we can avoid to evaluate the web service by observing
that (K1[id1] | K2[T]) ◦−3K1[X] | T, and so:

wb◦(T1⊗T2⊗T3) |= K1[X] | K2[T] ⇐⇒ T1 |= id◦X.

4.2 XML Contexts with ID

In the previous section we focused on the place structure only. Since logic and model
have no way to directly identify resources, it is only possible to access a resource
through navigation. A different approach is possible when the XML document has
identifiers for and pointers to elements. In this case, the tree model can be seen as an
extension of a heap memory model in which locations are referred to by names. Such
names are intrinsically separated by the tensor product, which is defined only on struc-
tures which disjoint name sets. We can see such models as discrete bigraphs, i.e., place
graphs with named resources but no name sharing between different resources. A logic
for these is introduced in [16] as an extension of the PGL with named (identified) con-
trols Kx and renamings (x← y). Such a logic is able to express properties of (contexts
of) resources that can be accessed in two ways: as usual, by navigation through the tree
structure, and by using names controls as pointers.

The logic essentially adds two operators to PGL:

K~a for named nodes;

(a← b) for renaming these names.

The ionK~a has a list of names, although in the case of XML with identifiers and no
links only one name is needed. Thus, we writeKx to denote the node (with an hole)
inside labelledK with name identifierx, and the formulaKx denotes this XML context

10

only. The rename (a ← b) is needed in order to map names of different sources to
different identifiers (e.g., (x ← y)◦Ky = Kx). The tensor product now constraints the
models to be separated both in locality and in names, i.e., when we writeA⊗B we mean
that the models satisfyingA andB have disjoint sets of identifiers (that is disjoint outer
faces). On the other hand the compositionA◦ sB is defined when the inner face ofA
and outer face ofB coincide.

With this logic we have two ways to address separation: by means of the tensor
product, or by using the composition. For example we can think to encode a heap-like
structure as (x1 7→ a1) # ... # (xn 7→ an) in two ways:

• horizontally, as a one level forestK(a1)x1◦1⊗. . .⊗K(an)xn◦1;

• vertically, as a lineK(a1)x1 ◦ . . .◦K(an)xn ◦1. (This matches with [5], where
separation logic can be expressed using composition only.)

whereK(ai)xi is a ion associated to anai , and 1 fills the holes.
While the first approach can be lifted to a commutative monoid if we use the merge

operation, the latter cannot be interpreted in a commutative way directly. In this sense
discrete bigraphs are more general than heaps of the form above (as used in [23, 21]).
We believe we can extend the result of [16], viz. the encoding of Context Tree Logics
on unidentified nodes into PGL, to Discrete Bigraphs Logics, so as to model the entire
Context Tree Logic of [5], including identifiers. Thus, this logic can also be used to
reason about programs in tree-shaped memory models.

4.3 XML Contexts with Links

In order to model sharing of names between resources and treat structures with point-
ers, we have to extend the logic of discrete bigraph with a notion of sharing. The
sharing is obtained in bigraphs through links between names of resources. In our case,
we have encoded identifiers as tag names andIDREFs as pointers to names in the same
document. In [16] we have introduced a logic for general bigraphs as a composition
of a link graph logic and a place graph spatial logic. Such a combination is very ex-
pressive, and induces a hiding operator for local/private/hidden names. For the present
application to XML this is only needed for the encoding of value attributes. On the
other hand, we require a notion of separating conjunction with sharing, in order to
express properties like: “The author of paper X has a relationship with the author of
paper Y.” In fact, this property expresses separation on resources (different authors of
different papers), but sharing on linked names. Such operator is explicitly introduced
in [16] by using the tensor product of Bilogic, the renaming function and thefreshness
operator of nominal logics. The main idea is that a link between names can be seen
as a separation between separated names that are then linked by means of substitution.
In [14, 8] a notion of link similar to this is hidden in the model because the ambient-like
operation shares names by default (which may be the main reason for undecidability
of logics with abstract names).

11

5 Conclusions

In the paper we have sketched the application of Bilogic to describe and reason about
XML data. This is however not the main reason why Bilogic and bigraphs are interest-
ing for XML and other global resources in general. Bigraphs were introduced basically
to model dynamic concurrent systems (cf. [18]), where they are used as a contextual
way to specificy reaction rules. We believe that Bilogic, inheriting the flexibility and
universality of such model, will help creating a general logic framework uniformly ap-
plicable to several actual calculi. The study of the case of XML was initiated here, and
in the future we plan to extending to more sophisticated semistructured data models.

Acknowledgment We would like to thank Philippe Bidinger, Robin Milner and Peter
O’Hearn for useful discussions. A special thank to Carlo Sartiani.

References

[1] S. Abiteboul, O. Benjelloun, and T.Milo. Positive active xml. InProc. of PODS
2004, 2004.

[2] S. Abiteboul, P. Buneman, and D. Suciu.Data on the Web: from relations to
semistructured data. Morgan Kaufmann, 1999.

[3] L. Caires and L. Cardelli. A spatial logic for concurrency (Part I). InProc. of
Theoretical Aspects of Computer Software; 4th International Symposium, TACS
2001, volume 2215 ofLNCS, pages 1–37. Springer-Verlag, 2001.

[4] C. Calcagno, L. Cardelli, and A. D. Gordon. Deciding validity in a spatial logic
for trees. InProc. of ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI’03), 2003.

[5] C. Calcagno, P. Gardner, and U. Zarfaty. A context logic for tree update. In Proc.
of LRPP 2004, revised version to appear in POPL 2005.

[6] L. Cardelli. Describing semistructured data.SIGMOD Record, Database Princi-
ples Column, 30(4), 2001.

[7] L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In
Proc. of ICALP, volume 2380 ofLNCS, page 597. Springer-Verlag, 2002.

[8] L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden labels. In
Proc. of FOSSACS ’03, volume 2620 ofLNCS, pages 216–232. Springer-Verlag,
2003.

[9] L. Cardelli and G. Ghelli. Tql: A query language for semistructured data based
on the ambient logic.Mathematical Structures in Computer Science, 14:285–327,
2004.

[10] L. Cardelli and A. D. Gordon. Ambient logic. To appear in Mathematical Struc-
tures in Computer Science.

12

[11] L. Cardelli, P.Gardner, and G. Ghelli. Querying trees with pointers. Unpublished
notes.

[12] G. Conforti, O. Ferrara, and G. Ghelli. TQL Algebra and its Implementation
(Extended Abstract). InProc. of IFIP TCS, pages 422–434. Kluwer Academic
Publishers, 2002.

[13] G. Conforti and G. Ghelli. Spatial logics to reason about semistructured data. In
Proc. of SEBD 2003: Eleventh Italian Symposium on Advanced Database Sys-
tems. Rubettino Editore, 2003.

[14] G. Conforti and G. Ghelli. Decidability of freshness, undecidability of revelation.
In Foundations of Software Science and Computation Structures, FOSSACS 2004,
pages 105–120. Springer, 2004.

[15] G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi, and C. Sartiani. The
Query Language TQL. InProc. of 5th International Workshop on Web and
Databases (WebDB 2002), 2002.

[16] G. Conforti, D. Macedonio, and V. Sassone. Bilogics: Spatial-nominal log-
ics for bigraphs (extended abstract). Submitted for publication. Available from
http://www.di.unipi.it/∼confor/publications.html, October 2004.

[17] Silvano Dal Zilio and Denis Lugiez. A logic you can count on. InPOPL 2004 –
31st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2004.

[18] O. H. Jensen and R. Milner. Bigraphs and transitions. InProc. of the 30th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages
38–49. ACM Press, 2003.

[19] O. H. Jensen and R. Milner. Bigraphs and mobile processes (revised). Technical
Report UCAM-CL-TR-580. University of Cambridge, February 2004.

[20] R. Milner. Axioms for bigraphical structure. Technical Report UCAM-CL-TR-
581. University of Cambridge, February 2004.

[21] Peter O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. InIn Proc. of CSL, volume 2142 ofLNCS,
pages 1–19. Springer-Verlag, 2001.

[22] Sigmod record volume 3 number 1, 2004. special topic section on peer to peer
data management, 2004.

[23] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proc. LICS’02, pages 55–74. IEEE Computer Society, 2002.

13

