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Abstract. Bigraphs are emerging as an interesting model for concurrent calculi,
like CCS, pi-calculus, and Petri nets. Bigraphs are built orthogonally on two
structures: a hierarchical place graph for locations and a link (hyper-)graph for
connections. With the aim of describing bigraphical structures, we introduce a
general framework for logics whose terms represent arrows in monoidal cate-
gories. We then instantiate the framework to bigraphical structures and obtain a
logic that is a natural composition of a place graph logic and a link graph logic.
We explore the concepts of separation and sharing in these logics and we prove
that they generalise some known spatial logics for trees, graphs and tree contexts.

1 Introduction

To describe and reason about structured, distributed, dynamic resources is one of the
main goals of global computing research. Recently, manyspatial logics, in different
contexts, have been studied to fulfill this goal. The term ‘spatial,’ as opposed to ‘tem-
poral,’ refers to the use of modal operators inspecting the structure of the terms in the
considered model. Spatial logics are usually equipped with a separation/composition
binary operator thatsplitsa term into two parts, in order to ‘talk’ about them separately.
Looking closely, we observe that the notion ofseparationis interpreted differently in
different logics. In ‘separation’ logics [18], it is used to reason about dynamic update
of heap-like structures, and it isstrong in that it forces names of resources in sepa-
rated components to be disjoint. As a consequence, term composition is usually par-
tially defined. In static spatial logics (e.g., for, trees [2], graphs [4] or trees with hidden
names [5]), the separation/composition does not require any constraint on terms, and
names are usually shared between separated parts. Similarly in dynamic spatial logics
(for, e.g., ambients [6] orπ-calculus [1]), where the separation is intended only for lo-
cation in space. Context tree logic, introduced in [3], integrates the first approach above
with a spatial logic for trees. The result is a logic able to express properties of tree-
shaped structures (and contexts) with pointers, and it is used as an assertion language
for Hoare-style program specifications in a tree memory model.

Bigraphs [12, 14] are an emerging model for structures in global computing, which
can be instantiated to model several well-known examples, including CCS [17],π-
calculus [12], and Petri nets [16]. Bigraphs consist essentially of two graphs sharing
the same nodes. The first graph, theplace graph, is tree structured and expresses a hier-
archical relationship on nodes (viz. locality in space and nesting of locations). The sec-
ond graph, thelink graph, is an hyper-graph and expresses a generic“many-to-many”
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relationship among nodes (e.g. data link, sharing of a channel). The two structures are
orthogonal, so links between nodes can cross locality boundaries. Thus, bigraphs make
clear the difference between structural separation (i.e., separation in the place graph)
and name separation (i.e., separation on the link graph).

In this paper we introduce a spatial logic for bigraphs as a natural composition of
a place graph logic (for tree contexts) and a link graph logic (for name linkings). The
main point is that a resource has a spatial structure as well as a link structure associated
to it. Suppose for instance to be describing a tree-shaped distribution of resources in
locations. We may use formulae likePC(A) andPCx(A) to describe a resource in an un-
named location, respectively locationx, of ‘type’ PC (e.g. a computer) whose contents
satisfyA. We can then writePC(T) ⊗ PC(T) to characterise terms with two unnamed
PC resources whose contents satisfy the tautological formula (i.e., with anything in-
side). Using named locations, as e.g. inPCa(T) ⊗ PCb(T), we are able to express name
separation, i.e., that namesa andb are different. Furthermore, using link expressions
we can force name-sharing between resources with formulae like:

PCa(inc ⊗ T)
c
⊗ PCb(outc ⊗ T)

This describes twoPC with different names,a andb, sharing a link on a distinct name
c, which models, e.g., a communication channel. Namec is used as input (in) for the
first PC and as an output (out) for the secondPC. No other names are shared andc
cannot be used elsewhere inside thePCs.

A bigraphical structure is, in general, a context with several holes and open links
that can be filled by composition. This means that the logic can describe contexts for
resources at no additional cost. We can then express formulae likePCa(T ⊗ HD(id1))
that describes a modular computerPC, whereid1 represents a ‘pluggable’ hole in the
hard discHD. Contextual resources have many important applications. In particular, the
contextual nature of bigraphs is useful to specify reaction rules, but it can also be used
as a general mechanism to describe contexts of bigraphical data structures (cf. [8, 10]).

As bigraphs are establishing themselves as a truly general (meta)model of global
systems, our bigraph logic,BiLog, aims at achieving the same generality as a description
language: as bigraphs specialise to particular models, we expect BiLog to specialise to
powerful logics on these. In this sense, the contribution of this paper is to propose BiLog
as a unifying language for the description of global resources. We will explore this path
in future work, fortified by the positive preliminary results obtained for semistructured
data [8] and CCS [9].

2 An informal introduction to Bigraphs

Bigraphs formalise distributed systems by focusing on two of their main characteristics:
locality and interconnections. A bigraph consists of a set ofnodes, which may be nested
in a hierarchical tree structure (the so-calledplace graph), and have ports that may be
connected to each other (and to names) bylinks (the so-calledlink graph). Place graphs
express locality, i.e., the physical arrangement of the nodes. Link graphs are hyper-
graphs and formalise connections among nodes. The orthogonality of the two structures
dictates that nestings impose no constrain upon interconnections.
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Fig. 1.A bigraphG : 〈2, {x, y, z, v,w}〉 → 〈1, {x, y}〉.

The bigraphG of Fig. 1 represents a system where people and things interact. We
imagine two offices with employees logged onPCs. Every entity is represented by a
node, shown with bold outlines, and every node is associated with acontrol (eitherPC,
U, R1, R2). Controls represent kinds of nodes, and have fixedarities that determine
their number of ports. ControlPC marks nodes representing computers, and its arity
is 3: in clockwise order, these ports represent a keyboard interacting with an employee
U, a LAN to an otherPC and open to the outside network, and a plug connecting the
computer to the electrical mains of officeR. EmployeesU may communicate with each
other via the upper port in the picture. The nesting of nodes (place graph) is shown by
the inclusion of nodes into each other; the connections (link graph) are drawn like lines.

At the top level of the nesting structure sit theregions. In Fig. 1 there is one sole
region (the dotted box). Inside nodes there may be ‘context’holes, drawn as shaded
boxes, which are uniquely identified by ordinals. In figure the hole marked by 1 repre-
sents the possibility for another userU to get into officeR1 and sit in front of aPC. The
hole marked by 2 represents the possibility to plug a subsystem inside officeR2.

Place graphs can be seen asarrows over a symmetric monoidal category whose
objects are finite ordinals. We writeP : m→ n to indicate a place graphP with mholes
andn regions. In Fig. 1, the place graph ofG is of type 2→ 1. Given place graphs
P1, P2, their compositionP1 ◦ P2 is defined only if the holes ofP1 are as many as the
regions ofP2, and amounts tofilling holes with regions, according to the number each
carries. The tensor productP1 ⊗ P2 is not commutative, as it ‘renumbers’ regions and
holes ‘from left to right’.

Link graphs are arrows of a partial monoidal category whose objects are (finite) sets
Λ of names, that we assume to bedenumerable. A link graph is an arrowX → Y, with
X,Y ⊆ Λ. The setX represents theinner names (drawn at the bottom of the bigraph)
andY represents the set ofouter names (drawn on the top). The link graph connects
ports to names or toedges, in any finite number. A link to a name isopen, i.e., it may
be connected to other nodes as an effect of composition. A link to an edge (represented
in Fig. 1 by a line between nodes) isclosed, as it cannot be further connected to ports.
Thus, edges areprivate, or hidden, connections. The composition of link graphsW ◦W′

corresponds tolinking the inner names ofW with the corresponding outer names ofW′

and forgetting about their identities. As a consequence, the outer names ofW′ (resp.
inner names ofW) are not necessarily inner (resp. outer) names ofW ◦ W′, and the
link graphs can perform substitution and renaming. The tensor product of link graphs
is defined in the obvious way only if their inner (resp. outer) names are disjoint.



Combining ordinals with names we obtaininterfaces, i.e., pairs〈m,X〉 wherem is
an ordinal andX is a set of names. Combining the notion of place graph and link graphs
on the same nodes we obtain the notion of bigraphs, i.e., arrowsG : 〈m,X〉 → 〈n,Y〉.
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Fig. 2.Bigraphical composition,H ≡ G ◦ (F1 ⊗ F2).

Fig. 2 represents a more complex situation. At the top left-hand side is the system of
Fig. 1, At the bottom left-hand sideF1 represents a userU ready to interact with aPC or
with some other users,F2 represents a user logged on its laptop, ready to communicate
with other users. The system withF1 andF2 represents the tensor productF = F1 ⊗ F2.
The right-hand side of Fig. 2 represents the compositionG ◦ F. The idea is to insertF
into the contextG. The operation is partially defined, since it requires the inner names
and the number of holes ofG to match the outer names and the number of regions ofF,
respectively. Shared names create the new links between the two structures.

3 BiLog: syntax and semantics

As place and link graphs are arrows of a (partial) monoidal category, we first introduce
a logic having monoidal categories as models and then we adapt it to model the orthog-
onal structures of place and link graphs. Each of these is expressive enough to model
and generalise (e.g. by means of contexts) well-known spatial logics. Finally we apply
the logic to model the whole structure of abstract bigraphs.

The models are categories built on a (possibly partial) monoid (M,⊗, ε), whose
elements are dubbedinterfacesand denoted byI , J. The elements of a BiLog model
are arrows on the corresponding (partial) monoid. Given a set of term constructorsΘ,
ranged over byΩ, the arrows are defined by the term languageG ::= G ⊗ G′ | G ◦ G′ |
Ω. EachΩ in Θ has a typeΩ : I → J. For each interfaceI , we assume a distinguished
constructidI : I → I . The types of constructors, together with the obvious rules [9]
determine the type of each term. Terms of typeε → J are calledground.

We consider terms up to a structural congruence≡, which subsumes the axioms of
monoidal categories [9]. Later on, the congruence will be refined to model specialised
structures, such as place graphs or bigraphs. All axioms are required to hold only when
both sides are well typed. Throughout the paper, when using= or≡ we imply that both
sides are defined and we write (G)↓ to say thatG is defined.



Table 3.1.BiLog(M,⊗, ε, Θ,≡, τ)

Ω ::= id I | . . . a constant formula for every Ω s.t. τ(Ω)
A, B ::= F false A⇒ B implication

id identity Ω Constant for a simple term
A ⊗ B tensor product A ◦ B composition
A� B left comp. adjunct A( B right comp. adjunct
A ⊗− B left prod. adjunct A −⊗ B right prod. adjunct

G |= F def
= never

G |= A⇒ B def
= G |= A implies G |= B

G |= Ω def
= G ≡ Ω

G |= id def
= ∃I .G ≡ idI

G |= A ⊗ B def
= ∃G1,G2.G ≡ G1 ⊗ G2 and G1 |= A and G2 |= B

G |= A ◦ B def
= ∃G1,G2.G ≡ G1 ◦ G2 and τ(G1) and G1 |= A and G2 |= B

G |= A� B def
= ∀G′.G′ |= A and τ(G′) and (G′ ◦ G)↓ implies G′ ◦ G |= B

G |= A( B def
= τ(G) implies ∀G′.G′ |= A and (G ◦ G′)↓ implies G ◦ G′ |= B

G |= A ⊗− B def
= ∀G′.G′ |= A and (G′ ⊗ G)↓ implies G′ ⊗ G |= B

G |= A −⊗ B def
= ∀G′.G′ |= A and (G ⊗ G′)↓ implies G ⊗ G′ |= B

BiLog internalises the term constructors in the style of the ambient logic [6]. Con-
structors are represented in the logic as constant formulae, while tensor product and
composition are expressed by connectives. We thus have two binary spatial operators.
This contrasts with other spatial logics, which have only one: ambient-like logics, with
parallel compositionA | B, Separation Logic [18], with separating conjunctionA ∗ B,
and Context Tree Logic [3], with applicationK(P). Our logic is parameterised on a
transparency predicateτ, reflecting that not every term can be directly observed in the
logic: some are opaque and do not allow inspection of their contents. We will see that
when all terms are observable (i.e.τ(G) for all G), logical equivalence corresponds to
≡. Otherwise, it can be less discriminating. We assume thatidI and ground terms are
always transparent, andτ preserves≡, hence⊗ and◦, in particular.

The logic BiLog(M,⊗, ε, Θ,≡, τ) is formally defined in Table 3.1 and the meaning
of formulae is given in terms of a satisfaction relation. It features a logical constant
Ω for eachtransparentconstructΩ. The satisfaction of logical constants is simply the
congruence to the corresponding constructor. Thehorizontal decompositionformula
A ⊗ B is satisfied by a term that can be decomposed as the tensor product of terms
satisfyingA andB respectively. The degree of separation enforced by⊗ between terms
plays a fundamental role in the various fragments of the logic (notably link graph and
place graph). Thevertical decompositionformulaA ◦ B is satisfied by terms that can be
seen as the composition of terms satisfyingA andB. We shall see that both connectives
correspond in some cases to well known spatial connectives. We define theleft andright
adjunctsfor composition and tensor to express extensional properties. The left adjunct
A � B expresses the property of a term to satisfyB whenever inserted in a context
satisfyingA. Similarly, the right adjunctA( B expresses the property of a context to
satisfyB whenever filled with a term satisfyingA. A similar description for⊗− and−⊗,
the adjoints of⊗. Observe that these collapse if the tensor is commutative in the model.



Table 3.2.Derived Operators

T, ∧, ∨,⇔, ⇐, ¬ Classical operators
AI

def
= A ◦ id I Constraining the source to be I

A→J
def
= idJ ◦ A Constraining the target to be J

AI→J
def
= (AI )→J Constraining the type to be I → J

A ◦I B def
= A ◦ id I ◦ B Composition with interface I

A�J B def
= A→J � B Contexts with J as target guarantee

A(I B def
= AI ( B Composing with terms with I as source guarantee

A	 B def
= ¬(¬A ⊗ ¬B) Dual of tensor product

A • B def
= ¬(¬A ◦ ¬B) Dual of composition

A� B def
= ¬(¬A� ¬B) Dual of composition left adjunct

A� B def
= ¬(¬A( ¬B) Dual of composition right adjunct

A∃⊗ def
= T ⊗ A ⊗ T Some horizontal term satisfies A

A∀⊗ def
= F 	 A	 F Every horizontal term satisfies A

A∃◦ def
= T ◦ A ◦ T Some vertical term satisfies A

A∀◦ def
= F • A • F Every vertical term satisfies A

I = J def
= T ⊗ (idε ∧ idI ⊗− idJ) Equality between interfaces

◊ A def
= (T ◦ A)ε Somewhere modality (on ground terms)

◊ A def
= ¬ ◊¬A Anywhere modality (on ground terms)

Derived Operators And Logical Properties. In Table 3.2 we outline some interest-
ing operators that can be derived in BiLog. The operators constraining the interfaces are
self-explanatory. The ‘dual’ operators have the following semantics:A	B is satisfied by
termsG such that for every possible decompositionG1 ⊗ G2 eitherG1 |= A or G2 |= B.
For instance,A 	 A describes terms whereA is true in (at least) one part of each⊗-
decomposition. Similarly, the compositionA• B expresses structural properties univer-
sally quantified on every◦-decomposition. Both these connectives are useful to specify
security properties or types. The adjuncts work as usual. The formulaeA∃⊗, A∀⊗, A∃◦,
andA∀◦ correspond to quantifications on the horizontal/vertical structure of terms. The
equality between interfacesI = J is easily derivable using⊗ and⊗−.

We can extend the idea ofsublocation(v) defined in [7] to our terms. The inductive
definition ofv specifies thatG v G, andG′ v G if eitherG ≡ G1 ⊗ G2, with G′ v G1

(and symmetricallyG′ v G2) or G ≡ G1 ◦ G2, with τ(G1) andG′ v G2. Exploiting
this relation between ground terms, we define asomewheremodality. Intuitively, we say
that a term satisfies◊A whenever one of its sublocations satisfiesA. Quite surprisingly,
◊A is expressible in the logic, as described in [9].

The lemma below states that the relation|= is well defined w.r.t. the congruence and
that the interfaces for transparent terms can be observed.

Lemma 3.1 (Type and Congruence preservation).
For every couple of term G,G′, it holds: G |= A and G≡ G′ implies G′ |= A.
For every term G, it holds: G|= AI→J if and only if G: I → J, G |= A, andτ(G).

BiLog induces a logical equivalence=L on terms in the usual sense, that isG1 =L G2

if G1 |= A impliesG2 |= A and vice versa, for every formulaA.

Theorem 3.2 (Logical equivalence and congruence).If the transparency predicate is
always true, then for every term G,G′, it holds: G=L G′ if and only if G≡ G′.



Place Graph Logic (PGL). Place graphs are essentially ordered lists of regions hosting
unordered labelled trees with holes. The labels of the trees correspond to controlsK
belonging to the fixed signatureK . We consider the monoid (ω,+,0) of finite ordinals
m,n. Interfaces here represent the number of holes and regions of place graphs. Place
graph terms are generated from the setΘ = {1 : 0 → 1, idn : n → n, join : 2 →
1, γm,n : m+ n → n + m,K : 1 → 1 for K ∈ K}. The main structural term isK, that
represents a region containing a single node with a hole inside. Other simple terms are
placings, representing treesm→ n with no nodes; the constructor 1 represents a barren
region;join is a mapping of two regions into one;γm,n is a permutation that interchanges
the firstm regions with the followingn. The structural congruence≡ for place graph
terms is refined by the usual axioms for symmetry ofγm,n and by the place axioms
that essentially turn the operationjoin ◦ ( ⊗ ) in a commutative monoid with neutral
element 1. Hence, the places generated by composition and tensor product fromγm,n are
permutations. A place graph isprime if it has typeI → 1 (i.e., with a single region).

Defined the transparency predicateτ on each control inK , the Place Graph Logic
PGL(K , τ) is BiLog(ω,+,0,≡,K∪{1, join, γm,n}, τ). We assume theτ to be true forjoin
andγm,n. It follows from Theorem 3.2 that PGL can describe place graphs precisely. The
logic resembles a propositional spatial tree logic, like [2]. The main differences are that
PGL models contexts of trees and that the tensor product is not commutative, allowing
us to model the order of regions. We can define a commutative separation usingjoin
and the tensor product, theparallel composition A| B def

= join ◦ (A→1 ⊗ B→1). This
separation is purely structural, and corresponds at term level tojoin ◦ (P ⊗ P′) that is a
total operation on all prime place graphs.

We show that BiLog restricted to prime ground place graphs (with the always-true
transparency predicate) is equivalent to the propositional spatial tree logic of [2] (STL
in the following). The logic STL expresses properties of unordered labelled treesT
constructed from the empty tree 0, the labelled node containing a treea[T], and the
parallel composition of treesT1 | T2. It is a static fragment of the ambient logic [6]
characterised by propositional connectives, spatial connectives (i.e., 0,a[A], A | B), and
their adjuncts (i.e.,A@a, A . B).

In Table 3.3 we encode the tree model of STL into prime ground place graphs, and
STL operators into PGL operators. We assume a bijective encoding between labels and
controls, and associate every labela with a distinct controlK(a). The monoidal prop-
erties of parallel composition are guaranteed by the symmetry and unit axioms ofjoin.
The equations are self-explanatory once we remark that:(i) the parallel composition of
STL is the structural commutative separation of PGL;(ii) tree labels can be represented
by the corresponding controls of the place graph; and(iii) location and composition ad-
juncts of STL are encoded in terms of the left composition adjunct, as they add logically
expressible contexts to the tree. This encoding allows us to prove the following.

Theorem 3.3 (Encoding STL).For each tree T and formula A of STL we have that
T |=S L A if and only if[[ T ]] |= ([[ A ]])0→1.

Differently from STL, PGL can also describe structures with several holes and re-
gions. In [8] we show how PGL describes contexts of tree-shaped semistructured data.
In particular multi-contexts can be useful to specify properties of web-services. Con-
sider for instance a function taking two trees and returning the tree obtained by merging



Table 3.3.Encoding STL in PGL over prime ground place graphs

Trees into Prime Ground Place Graphs
[[ 0 ]] def

= 1 [[ a[T] ]] def
= K(a) ◦ [[ T ]] [[ T1 | T2 ]] def

= join ◦ ([[ T1 ]] ⊗ [[ T2 ]])

STL formulae into PGL formulae
[[ 0 ]] def

= 1 [[ a[A] ]] def
= K (a) ◦1 [[ A ]]

[[ F ]] def
= F [[ A@a ]] def

= K (a)�1 [[ A ]]
[[ A⇒ B ]] def

= [[ A ]] ⇒ [[ B ]] [[ A | B ]] def
= [[ A ]] | [[ B ]]

[[ A . B ]] def
= ([[ A ]] | id1)�1 [[ B ]]

their roots. Such function is represented by the termjoin, which solely satisfies the for-
mula join . Similarly, the function that takes a tree and encapsulates it inside a node
labelledby K, is represented by the termK and captured by the formulaK . Moreover,
the formulajoin ◦ (K ⊗ (T ◦ id1)) expresses all contexts of form 2→ 1 that place their
first argument inside aK node and their second one as a sibling of such node.

Link Graph Logic (LGL). ForΛ a denumerable set of names, we consider the monoid
of interfaces (Pfin(Λ),], ∅), wherePfin( ) is the finite powerset operator and] is the
union on disjoint pairs of sets and undefined otherwise. The structures that arise from
such a monoid are the link graphs discussed in §2. They can describe nominal resources
common in many areas, such as object identifiers, location names in memory structures,
channel names, and ID attributes in XML documents.

Wiring terms are a structured way to map a set of inner namesX into a set of outer
namesY. They are generated by the constructors:/a : {a} → ∅ anda/X : X → a. The
closure/a hides the inner namea in the outer face. The substitutiona/X associates all
the names in the setX to the namea. We denote wirings byω, substitutions byσ, τ, and
renamings(i.e., bijective substitutions) byα, β. Substitutions can be specialised in:

a def
=

a/∅; a← b def
=

a/{b}; a⇔ b def
=

a/{a,b}.

Constructora represents the introduction of a namea, terma← b the renaming ofb to
a, and finallya⇔ b links (or fuse)a andb in the namea.

Given a signatureK of controlsK with corresponding portsar(K) we generate link
graphs from wirings and the constructorK~a : ∅ → ~a with ~a = a1, . . . ,ak, K ∈ K , and
k = ar(K); K~a represents a resource of kindK with named ports~a. Any ports may be
connected to other node ports via wiring compositions.

The structural congruence≡ for link graphs is refined with obvious axioms for links,
modellingα-conversion and extrusion of closed names, cf. [9]. We assume the trans-
parency predicateτ to be true for wiring constructors.

Given the transparencyτ for each control inK , the Link Graph Logic LGL(K , τ) is
BiLog(Pfin(Λ),], ∅,≡,K∪{/a, a/X}, τ). By Theorem 3.2, LGL describes the link graphs
precisely. The logic expresses structural spatiality for resources and strong spatiality
(separation) for names, and it can therefore be viewed as a generalisation of Separation
Logic for contexts and multi-ports locations. On the other side the logic can describe
resources with local (hidden/private) names between resources, and in this sense the
logic is a generalisation of Spatial Graph Logic [4], considering the edges as resources.



In LGL the formulaA ⊗ B describes a decomposition into twoseparatelink graphs
(i.e., sharing no resources, names, nor connections) satisfying respectivelyA and B.
Observe that in this case, horizontal decomposition inherits the commutativity property
from the monoidal tensor product. If we want a namea to be shared between separated
resources, we need the sharing to be made explicit, and the sole way to do that is through
the link operation. We therefore need a way to first separate the names occurring in two
wirings in order to apply the tensor, and then link them back together.

As a shorthand ifW : X → Y andW′ : X′ → Y′ with Y ⊂ X′, we write [W′]W
for (W′ ⊗ idX′\Y) ◦ W and if ~a = a1, . . . ,an and~b = b1, . . . ,bn, we write~a ← ~b for
a1 ← b1 ⊗ . . . ⊗ an ← bn (and similarly for~a ⇔ ~b). It is possible to derive from
the tensor product a product with sharing on~a. GivenG : X → Y andG′ : X′ → Y′

with X ∩ X′ = ∅, we choose a list~b (with the same length as~a) of fresh names. The
composition with sharing~a is:

G
~a
⊗ G′ def

= [~a⇔ ~b](([~b← ~a] ◦ G) ⊗ G′)

By extending this sharing to all names we can define the parallel compositionG | G′

as a total operation. However, such an operator does not behave “well” with respect
to the composition, as shown in [15]. In addition a direct inclusion of a corresponding
connective in the logic would impact the satisfaction relation by expanding the finite
horizontal decompositions to the boundless possible name-sharing decompositions.

As a matter of fact, without name quantification it is not possible to build formulae
that explore a link, since the latter has the effect of hiding names. For this task, we
employ the name variablesx1, ..., xn and a fresh name quantification in the style of
Nominal Logic [19].

G |= Nx1, . . . , xn.A
def
= ∃a1 . . . an < fn(G) ∪ fn(A).G |= A{x1, . . . xn← a1 . . . an}

Using fresh name quantification we can define a notion of~a-linked name quantifi-
cation for fresh names, whose purpose is to identify names that are linked to~a:

~aL ~x.A def
= N~x. ((~a⇔ ~x) ⊗ id) ◦ A.

The formula above expresses that variables in~x denote inA names that are linked in
the term to~a, and the role of (~a ⇔ ~x) is to link the fresh names~x with ~a, while id
deals with names not in~a. We also define aseparation-upto, namely the decomposition
in two terms that are separated apart from the link on the specific names in~a, which
crosses the separation line.

A
~a
⊗ B def
= ~aL ~x. (((~x← ~a) ⊗ id) ◦ A) ⊗ B.

The idea of the formula above is that the shared names~a are renamed in fresh names~x,
so that the product can be performed and finally~x is linked to~a in order to actually have
the sharing. The corresponding parallel composition operator is not directly definable
using separation-upto, since we do not know a priori the name shared in arbitrary de-
compositions. However, we will show that a careful encoding is possible for the parallel
composition of spatial logics with nominal resources.



Table 3.4.Encoding Propositional SGL in LGL over two ported ground link graphs

Spatial Graphs into Two-ported Ground Link Graphs
[[ nil ]] X

def
= X [[ a(x, y) ]] X

def
= K(a)x,y ⊗ X \ {x, y}

[[ G | G′ ]] X
def
= [[ G ]] X

~a
⊗ [[ G′ ]] X [[ (νx)G ]] X

def
= ((/x ⊗ idX\{x}) ◦ [[ G ]] {x}∪X)) ⊗ ({x} ∩ X)

SGL formulae into LGL formulae
[[ nil ]] X

def
= X [[ a(x, y) ]] X

def
= K (a)x,y ⊗ (X \ {x, y})

[[ F ]] X
def
= F [[ φ⇒ ψ ]] X

def
= [[ φ ]] X ⇒ [[ ψ ]] X

[[ φ | ψ ]] X
def
= [[ φ ]] X

~a
⊗ [[ ψ ]] X

We show that LGL can be seen as a contextual (and multi-edge) version of Spatial
Graph Logic (SGL) [4]. The logic SGL expresses properties of directed edge labelled
graphsG built from the empty graphnil, the edge labelleda from x toynodesa(x, y), the
parallel composition of graphsG1 | G2, and the binding for local names of nodes (νx)G.
We consider aK such that: there is a bijective function associating every edge labela to
a distinct controlK(a) and the arity of every control is 2 (the ports represent the starting
and arrival node respectively). The resulting link graphs can be interpreted as contextual
edge labelled graphs and the resulting class of ground link graphs is isomorphic to the
graph model of SGL. In Table 3.4 we encode the graphs modelling SGL into ground link
graphs and SGL formulae into LGL formulae. The encoding is parametric on a finite
set X of names containing the free names of the graph under consideration. Observe
that when we force the outer face of the graphs to be a fixed finite setX, the encoding of
parallel composition is simply the separation-upto~a, where~a is a list of all the elements
in X. Notice also how local names are encoded into name closures (and identity).

Theorem 3.4 (Encoding SGL).For each graph G, finite set X containing fn(G), and
formulaφ of the propositional fragment of SGL, we have that G|=GL φ if and only if
[[ G ]] X |= ([[ φ ]] X)∅→X.

In LGL is also possible to encode the Separation Logics on heaps: names used as
identifiers of location will be forcibly separated by tensor product, while names used
for pointers will be shared/linked.

Bigraphs as a model for BiLog. We combine the structures of link graphs and place
graphs to generate all(abstract pure) bigraphsof [12]. We take as monoid the product of
link and place interfaces, i.e. (ω×Pfin(Λ),⊗, ε) where〈m,X〉 ⊗ 〈n,X〉 def

= 〈m+ n,X ] Y〉
andε def

= 〈0, ∅〉. We will useX for 〈0,X〉 andn for 〈n, ∅〉. As constructors for bigraphical
terms we have the union of place and link graph constructors apart from the controls
K : 1 → 1 andK~a : ∅ → ~a, which are replaced by the newdiscrete ionconstructor,
which we noteK~a : 1 →

〈
1, ~a
〉
; this is a prime bigraph containing a single node with

ports named~a and an hole inside. Bigraphical terms thus are defined w.r.t. a control
signatureK and a set of namesΛ, cf. [15] for details.

PGL excels at expressing properties ofunnamedresources, i.e., resources accessible
only by following the structure of the term. On the other hand, LGL characterises names
and their links to resources, but it has no notion of locality. A combination of them ought
to be useful to model spatial structures, either private or public. BiLog promises to be



a good (contextual) spatial logic for (semi-structured) resources with nominal links,
thanks to bigraphs’ orthogonal treatment of locality and connectivity. To witness this
we have proved in [9] that also the recently proposed Context Logic for Trees [3] can
be encoded into bigraphs. The idea of the encoding is to extend the one of STL with
contexts and identified nodes. Essentially, in [9] we show that the model of [3] is a
particular class of prime bigraphs with one port for each node and a number of holes
and regions limited to one. Since [3] is more general than separation logic, and is used
to reason about programs that manipulate tree structured memories, it is possible to
generalise separation logic as well.

4 Conclusion and future work

In this paper we moved a first step towards describing global resources by focusing on
bigraphs. Our final objective is to design a general dynamic logic able to cope uniformly
with all the models bigraphs have been proved useful for, as of today these include
CCS [17], pi-calculus [12] and Petri-nets [13, 16]. We introduced BiLog, a logic for
bigraphs (and more generally for monoidal categories), with two main spatial connec-
tives: composition and tensor product. Our main technical results are the embedding and
comparison with other spatial logics previously studied. Moreover, we have shown that
BiLog is expressive enough to internalise the somewhere modality. In §3 we observed
that the induced logical equivalence can be forced to coincide with the structural con-
gruence of terms. This property is fundamental in order to describe, query and reason
about bigraphical data structures. For a more detailed discussion we refer to [8].

In [9] we study how BiLog can deal with dynamics. A natural solution is to add
a temporalnext stepmodality basically describing bigraphs that can compute (react)
according to a Bigraphical Reactive System [12]. When the transparency predicateτ
enables the inspection of ‘dynamic’ controls, BiLog is ‘intensional’ in the sense of [11],
namely it can observe internal structures. In several cases, notably the bigraphical sys-
tem describing CCS [17], this can be to the extent that the next step modality can be
expressed directly by using the static fragment of BiLog. Notice thatτ specifies what
structure the logic can directly observe, while the next step modality, along with the spa-
tial connectives, allows to deduce the structure by observing the behaviour. It would be
interesting to investigate how the transparency predicate influences the expressiveness
and intentionality of significant fragments of the dynamic logic.

The ‘separation’ plays differently in various fragments of the logic. For instance, in
the case ofPlace Graph Logic, where the model is the class of bigraphs without names,
the separation is purely structural and coincides with the notion of parallel composition
in Spatial Tree Logic. The separation in theLink Graph Logicis disjointness of nominal
resources. Finally, forBigraph Logicit is a combination that can be seen as separation
in a structured term with nominal resources (e.g. the trees with pointers of [3] and trees
with hidden names [5]). In the paper we have not addressed logical operators for hidden
names (e.g.®, H,© of ambient logic). We can encode them easily using, in particular,

Nand/a. The decidability of BiLog is an open question, we are working on extending
the results of [2], and we are isolating decidable fragments of BiLog.



We are currently developing a proof theory for Bilog in order to complete the robust
logical setting provided by the model theory presented here. Besides aiming at a gen-
eralise existing proof systems, this will allow direct comparisons between BiLog and
other spatial logics also from the proof-theoretic point of view.
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