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Abstract. Bigraphs are emerging as an interesting model for concurrent calculi,
like CCS, pi-calculus, and Petri nets. Bigraphs are built orthogonally on two
structures: a hierarchical place graph for locations and a link (hyper-)graph for
connections. With the aim of describing bigraphical structures, we introduce a
general framework for logics whose terms represent arrows in monoidal cate-
gories. We then instantiate the framework to bigraphical structures and obtain a
logic that is a natural composition of a place graph logic and a link graph logic.
We explore the concepts of separation and sharing in these logics and we prove
that they generalise some known spatial logics for trees, graphs and tree contexts.

1 Introduction

To describe and reason about structured, distributed, dynamic resources is one of the
main goals of global computing research. Recently, mgwatial logics in different
contexts, have been studied to fulfill this goal. The term ‘spatial, as opposed to ‘tem-
poral, refers to the use of modal operators inspecting the structure of the terms in the
considered model. Spatial logics are usually equipped with a sepécatioposition

binary operator thagplitsa term into two parts, in order to ‘talk’ about them separately.
Looking closely, we observe that the notions&parationis interpreted dterently in
different logics. In ‘separation’ logics [18], it is used to reason about dynamic update
of heap-like structures, and it &rongin that it forces names of resources in sepa-
rated components to be disjoint. As a consequence, term composition is usually par-
tially defined. In static spatial logics (e.qg., for, trees [2], graphs [4] or trees with hidden
names [5]), the separatimmposition does not require any constraint on terms, and
names are usually shared between separated parts. Similarly in dynamic spatial logics
(for, e.g., ambients [6] ot-calculus [1]), where the separation is intended only for lo-
cation in space. Context tree logic, introduced in [3], integrates the first approach above
with a spatial logic for trees. The result is a logic able to express properties of tree-
shaped structures (and contexts) with pointers, and it is used as an assertion language
for Hoare-style program specifications in a tree memory model.

Bigraphs [12, 14] are an emerging model for structures in global computing, which
can be instantiated to model several well-known examples, including CCSA417],
calculus [12], and Petri nets [16]. Bigraphs consist essentially of two graphs sharing
the same nodes. The first graph, fhace graphis tree structured and expresses a hier-
archical relationship on nodes (viz. locality in space and nesting of locations). The sec-
ond graph, théink graph is an hyper-graph and expresses a gerfaenany-to-many”
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relationship among nodes (e.g. data link, sharing of a channel). The two structures are
orthogonal, so links between nodes can cross locality boundaries. Thus, bigraphs make
clear the diference between structural separation (i.e., separation in the place graph)
and name separation (i.e., separation on the link graph).

In this paper we introduce a spatial logic for bigraphs as a natural composition of
a place graph logic (for tree contexts) and a link graph logic (for name linkings). The
main point is that a resource has a spatial structure as well as a link structure associated
to it. Suppose for instance to be describing a tree-shaped distribution of resources in
locations. We may use formulae iR (A) andPCy(A) to describe a resource in an un-
named location, respectively locatianof ‘type’ PC (e.g. a computer) whose contents
satisfy A. We can then writé®C(T) ® PC(T) to characterise terms with two unnamed
PC resources whose contents satisfy the tautological formula (i.e., with anything in-
side). Using named locations, as e.gPD,(T) ® PCy(T), we are able to express name
separation, i.e., that namasandb are diferent. Furthermore, using link expressions
we can force name-sharing between resources with formulae like:

PC,(inc ® T) ® PCh(oute ® T)

This describes tw@C with different names andb, sharing a link on a distinct name
¢, which models, e.g., a communication channel. Nangeused as inputirf) for the
first PC and as an outpub(it) for the second’C. No other names are shared and
cannot be used elsewhere inside B&s.

A bigraphical structure is, in general, a context with several holes and open links
that can be filled by composition. This means that the logic can describe contexts for
resources at no additional cost. We can then express formulaBPdik@ ® HD(id;))
that describes a modular compuRZ, whereid; represents a ‘pluggable’ hole in the
hard distHD. Contextual resources have many important applications. In particular, the
contextual nature of bigraphs is useful to specify reaction rules, but it can also be used
as a general mechanism to describe contexts of bigraphical data structures (cf. [8, 10]).

As bigraphs are establishing themselves as a truly general (meta)model of global
systems, our bigraph logiBjLog, aims at achieving the same generality as a description
language: as bigraphs specialise to particular models, we expect BiLog to specialise to
powerful logics on these. In this sense, the contribution of this paper is to propose BiLog
as a unifying language for the description of global resources. We will explore this path
in future work, fortified by the positive preliminary results obtained for semistructured
data [8] and CCS [9].

2 Aninformal introduction to Bigraphs

Bigraphs formalise distributed systems by focusing on two of their main characteristics:
locality and interconnections. A bigraph consists of a seafeswhich may be nested

in a hierarchical tree structure (the so-calf@#dce grapl), and have ports that may be
connected to each other (and to namedlriks (the so-calledink graph). Place graphs
express locality, i.e., the physical arrangement of the nodes. Link graphs are hyper-
graphs and formalise connections among nodes. The orthogonality of the two structures
dictates that nestings impose no constrain upon interconnections.
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Fig. 1. A bigraphG : (2,{x, Y,z v,w}) = (1, {X, y}).

The bigraphG of Fig. 1 represents a system where people and things interact. We
imagine two dfices with employees logged &Cs. Every entity is represented by a
node, shown with bold outlines, and every node is associated withtzol (eitherPC,

U, R1, R2). Controls represent kinds of nodes, and have fagties that determine

their number of ports. Contrd*C marks nodes representing computers, and its arity

is 3: in clockwise order, these ports represent a keyboard interacting with an employee
U, a LAN to an othePC and open to the outside network, and a plug connecting the
computer to the electrical mains office R. Employees) may communicate with each
other via the upper port in the picture. The nesting of nodes (place graph) is shown by
the inclusion of nodes into each other; the connections (link graph) are drawn like lines.

At the top level of the nesting structure sit tregions In Fig. 1 there is one sole
region (the dotted box). Inside nodes there may be ‘conteies drawn as shaded
boxes, which are uniquely identified by ordinals. In figure the hole marked by 1 repre-
sents the possibility for another us¢to get into dficeR1 and sit in front of éPC. The
hole marked by 2 represents the possibility to plug a subsystem inSideR2.

Place graphs can be seenagows over a symmetric monoidal category whose
objects are finite ordinals. We wri¢: m — nto indicate a place grapghwith mholes
andn regions. In Fig. 1, the place graph Gfis of type 2 —» 1. Given place graphs
P, Py, their compositiorP; o P, is defined only if the holes dP; are as many as the
regions ofP,, and amounts tfilling holes with regions, according to the number each
carries. The tensor produBf ® P, is not commutative, as it ‘renumbers’ regions and
holes ‘from left to right'.

Link graphs are arrows of a partial monoidal category whose objects are (finite) sets
A of names, that we assume to denumerableA link graph is an arronk — Y, with
X,Y € A. The setX represents thenner names (drawn at the bottom of the bigraph)
andY represents the set oluter names (drawn on the top). The link graph connects
ports to names or tedgesin any finite number. A link to a name @pen i.e., it may
be connected to other nodes as fir@ of composition. A link to an edge (represented
in Fig. 1 by a line between nodes)dsed as it cannot be further connected to ports.
Thus, edges angrivate or hidden, connections. The composition of link graphs W’
corresponds téinking the inner names diV with the corresponding outer namesvif
and forgetting about their identities. As a consequence, the outer nariés(césp.
inner names ofV) are not necessarily inner (resp. outer) name®oé W', and the
link graphs can perform substitution and renaming. The tensor product of link graphs
is defined in the obvious way only if their inner (resp. outer) names are disjoint.



Combining ordinals with names we obtdirterfacesi.e., pairs(m, X) wherem s
an ordinal anX is a set of names. Combining the notion of place graph and link graphs
on the same nodes we obtain the notion of bigraphs, i.e., aBowsn, X) — (n,Y).

Fig. 2. Bigraphical compositionH = G o (F; ® F»).

Fig. 2 represents a more complex situation. At the top left-hand side is the system of
Fig. 1, At the bottom left-hand side; represents a usérready to interact with C or
with some other users;, represents a user logged on its laptop, ready to communicate
with other users. The system wihh andF, represents the tensor prodiict F; @ F».
The right-hand side of Fig. 2 represents the composfHanF. The idea is to inseff
into the context. The operation is partially defined, since it requires the inner names
and the number of holes & to match the outer names and the number of regiois of
respectively. Shared names create the new links between the two structures.

3 BiLog: syntax and semantics

As place and link graphs are arrows of a (partial) monoidal category, we first introduce
a logic having monoidal categories as models and then we adapt it to model the orthog-
onal structures of place and link graphs. Each of these is expressive enough to model
and generalise (e.g. by means of contexts) well-known spatial logics. Finally we apply
the logic to model the whole structure of abstract bigraphs.

The models are categories built on a (possibly partial) monbidg(€), whose
elements are dubbedterfacesand denoted by, J. The elements of a BiLog model
are arrows on the corresponding (partial) monoid. Given a set of term constrégtors
ranged over by, the arrows are defined by the term languége=G® G’ |G o G’ |
Q. EachQin @ has atype? : | — J. For each interfacé, we assume a distinguished
constructid, : | — I. The types of constructors, together with the obvious rules [9]
determine the type of each term. Terms of type J are calledyround

We consider terms up to a structural congrueacerhich subsumes the axioms of
monoidal categories [9]. Later on, the congruence will be refined to model specialised
structures, such as place graphs or bigraphs. All axioms are required to hold only when
both sides are well typed. Throughout the paper, when usiog= we imply that both
sides are defined and we writ8)( to say thats is defined.



Table 3.1BiLog(M,®, €, 0, =, 7)
I

Q:= id;|... aconstantformula for every Q s.t. 7(Q)
AB:= F false A=B implication
id identity Q Constant for a simple term
A®B tensor product AoB composition
Ao B left comp. adjunct A—B right comp. adjunct
A®- B left prod. adjunct A-®B right prod. adjunct
GEF def never
GEA=B ¢ GE AimpliesGE B
GEQ et G=0
GEid of A.G =id,
G':A®B d:ef 1G1,G,.G=G; ® G, and G1I:AandG2|:B
G'ZAO B d=ef HGl,Gz.GEG]_OGZ and T(Gl) and G]_ I:Aand G2 E B
GEA-—B & YG'.G' E Aand 7(G’) and (G’ o G)| impliesG’ o G = B
GEA—-B & 7(G) implies YG'.G’ = Aand (G o G’')| impliesGo G’ E B
GEA® B & VG'.G' E Aand (G’ ® G)| impliesG’ @ G B
GEAw®B & YG'.G'E Aand (G® G’)] impliesGe® G B

BiLog internalises the term constructors in the style of the ambient logic [6]. Con-
structors are represented in the logic as constant formulae, while tensor product and
composition are expressed by connectives. We thus have two binary spatial operators.
This contrasts with other spatial logics, which have only one: ambient-like logics, with
parallel compositiorA | B, Separation Logic [18], with separating conjunctiar B,
and Context Tree Logic [3], with applicatiok(P). Our logic is parameterised on a
transparency predicate reflecting that not every term can be directly observed in the
logic: some are opaque and do not allow inspection of their contents. We will see that
when all terms are observable (i€G) for all G), logical equivalence corresponds to
=. Otherwise, it can be less discriminating. We assumeithand ground terms are
always transparent, andpreservess, henceg ando, in particular.

The logic BiLogM, ®, €, ©, =, 7) is formally defined in Table 3.1 and the meaning
of formulae is given in terms of a satisfaction relation. It features a logical constant
Q for eachtransparentconstructQ. The satisfaction of logical constants is simply the
congruence to the corresponding constructor. fibezontal decompositioformula
A ® B is satisfied by a term that can be decomposed as the tensor product of terms
satisfyingA andB respectively. The degree of separation enforced bgtween terms
plays a fundamental role in the various fragments of the logic (notably link graph and
place graph). Theertical decompositioformulaA o Bis satisfied by terms that can be
seen as the composition of terms satisfyfgndB. We shall see that both connectives
correspond in some cases to well known spatial connectives. We defieé toedright
adjunctsfor composition and tensor to express extensional properties. The left adjunct
A o— B expresses the property of a term to satiBfyvhenever inserted in a context
satisfyingA. Similarly, the right adjuncA — B expresses the property of a context to
satisfyB whenever filled with a term satisfying. A similar description forr— and-g®,
the adjoints oR. Observe that these collapse if the tensor is commutative in the model.



Table 3.2 Derived Operators
I

T, A V,&, & = Classical operators

A ® Aoid, Constraining the source to be |

A, ® oidyoA Constraining the target to be J

ALy (A Constraining the type to be | — J
AoyB & Aocid oB Composition with interface |

Ao—;BE A,;-B Contexts with J as target guarantee
A— BE A —-B Composing with terms with | as source guarantee
AeB & -(-A®-B) Dual of tensor product

AeB & —(-Aoc-B) Dual of composition

AeB & —(=Ao--B) Dual of composition left adjunct

A—-B % —(-A—--B) Dual of composition right adjunct

A TRART Some horizontal term satisfies A

A® £ FgAoF Every horizontal term satisfies A

Al E ToAoT Some vertical term satisfies A

A £ FeAeF Every vertical term satisfies A

=) £ Te(d Aid, @ idy) Equality between interfaces

CA E (ToA), Somewhere modality (on ground terms)
DA & $-A Anywhere modality (on ground terms)

Derived Operators And Logical Properties. In Table 3.2 we outline some interest-
ing operators that can be derived in BiLog. The operators constraining the interfaces are
self-explanatory. The ‘dual’ operators have the following semantied is satisfied by
termsG such that for every possible decompositen® G, eitherG; E AorG; E B.
For instanceA © A describes terms wherk is true in (at least) one part of eagh
decomposition. Similarly, the compositidne B expresses structural properties univer-
sally quantified on every-decomposition. Both these connectives are useful to specify
security properties or types. The adjuncts work as usual. The forradfaed”, A,
andA"° correspond to quantifications on the horizofvaitical structure of terms. The
equality between interfaceés= J is easily derivable using and®-.

We can extend the idea sfiblocation(C) defined in [7] to our terms. The inductive
definition ofC specifies thaG C G, andG’ C G if eitherG = G; ® Gy, withG’ C G;
(and symmetricaliyG' C G;) or G = G; o Gy, with 7(G;) andG’ C G,. Exploiting
this relation between ground terms, we defim@mewherenodality. Intuitively, we say
that a term satisfie$' A whenever one of its sublocations satiseRQuite surprisingly,
<>Ais expressible in the logic, as described in [9].

The lemma below states that the relatjeis well defined w.r.t. the congruence and
that the interfaces for transparent terms can be observed.

Lemma 3.1 (Type and Congruence preservation).
For every couple of term (&', it holds: GE A and G= G’ implies G E A.
For every term G, it holds: G= A _,;ifand only if G: | — J, GE A, andr(G).

BiLog induces a logical equivaleneg on terms in the usual sense, thabis= G,
if G1 E AimpliesG; E A and vice versa, for every formula

Theorem 3.2 (Logical equivalence and congruencdy.the transparency predicate is
always true, then for every term,G’, it holds: G=_ G’ ifand only if G= G'.



Place Graph Logic (PGL). Place graphs are essentially ordered lists of regions hosting
unordered labelled trees with holes. The labels of the trees correspond to céhtrols
belonging to the fixed signatutk€. We consider the monoidy +, 0) of finite ordinals

m, n. Interfaces here represent the number of holes and regions of place graphs. Place
graph terms are generated from the®t {1 : 0 —» 1,id, : n — n,join : 2 —
Lymn:mM+n—->n+mK:1—- 1forK e K}. The main structural term iK, that
represents a region containing a single node with a hole inside. Other simple terms are
placings representing trees — n with no nodes; the constructor 1 represents a barren
region;join is a mapping of two regions into ongy, is a permutation that interchanges

the firstm regions with the followingn. The structural congruence for place graph

terms is refined by the usual axioms for symmetryygf, and by the place axioms

that essentially turn the operatigmin o (_ ® _) in a commutative monoid with neutral
element 1. Hence, the places generated by composition and tensor produgt,frane
permutationsA place graph iprimeif it has typel — 1 (i.e., with a single region).

Defined the transparency predicaten each control irfC, the Place Graph Logic
PGL(K, 1) is BiLog(w, +, 0, =, K U {1, ]join, ymn}, 7). We assume theto be true foljoin
andymy. It follows from Theorem 3.2 that PGL can describe place graphs precisely. The
logic resembles a propositional spatial tree logic, like [2]. The mdiiedinces are that
PGL models contexts of trees and that the tensor product is not commutative, allowing
us to model the order of regions. We can define a commutative separationaising
and the tensor product, thgarallel composition A B £ join o (AL, ® B_1). This
separation is purely structural, and corresponds at term ley@ihte (P ® P’) thatis a
total operation on all prime place graphs.

We show that BiLog restricted to prime ground place graphs (with the always-true
transparency predicate) is equivalent to the propositional spatial tree logic of [2] (STL
in the following). The logic STL expresses properties of unordered labelled Trees
constructed from the empty tree 0, the labelled node containing affdeand the
parallel composition of tree$; | T,. It is a static fragment of the ambient logic [6]
characterised by propositional connectives, spatial connectives (BfA]0A | B), and
their adjuncts (i.e. A@a, A»> B).

In Table 3.3 we encode the tree model of STL into prime ground place graphs, and
STL operators into PGL operators. We assume a bijective encoding between labels and
controls, and associate every lalelith a distinct controlK (a). The monoidal prop-
erties of parallel composition are guaranteed by the symmetry and unit axigois.of
The equations are self-explanatory once we remark (hahe parallel composition of
STL is the structural commutative separation of P@Gil.;jtree labels can be represented
by the corresponding controls of the place graph; @ndocation and composition ad-
juncts of STL are encoded in terms of the left composition adjunct, as they add logically
expressible contexts to the tree. This encoding allows us to prove the following.

Theorem 3.3 (Encoding STL).For each tree T and formula A of STL we have that
TEs Aifandonly iff T] E ([ AD o-1-

Differently from STL, PGL can also describe structures with several holes and re-
gions. In [8] we show how PGL describes contexts of tree-shaped semistructured data.
In particular multi-contexts can be useful to specify properties of web-services. Con-
sider for instance a function taking two trees and returning the tree obtained by merging



Table 3.3Encoding STL in PGL over prime ground place graphs

I
Trees into Prime Ground Place Graphs

[0] £1 [aTI] €K@ [T] [T T] Ejoino ([T1] @ [ T21)
STL formulae into PGL formulae

[0]£1 [alAl] £K(@) o1 [A]

[FI1&F [A@a] £'K(a) -1 [ A]
[A=B]<[A]l =1[B] [AIBIE[AlI[B]

[A>B] ([ A] lid1) -1 [ B]

their roots. Such function is represented by the tgim which solely satisfies the for-
mula join. Similarly, the function that takes a tree and encapsulates it inside a node
labelledby K, is represented by the terkhand captured by the formul@. Moreover,

the formulajoin o (K ® (T o id1)) expresses all contexts of form-2 1 that place their

first argument inside K node and their second one as a sibling of such node.

Link Graph Logic (LGL). ForA a denumerable set of names, we consider the monoid

of interfaces Prsin(4), W, 0), wherePss (L) is the finite powerset operator ardis the

union on disjoint pairs of sets and undefined otherwise. The structures that arise from
such a monoid are the link graphs discussed in §2. They can describe nominal resources
common in many areas, such as object identifiers, location names in memory structures,
channel names, and ID attributes in XML documents.

Wiring terms are a structured way to map a set of inner naxnieso a set of outer
namesyY. They are generated by the constructges: {a} —» 0 and?®/x : X — a. The
closure/a hides the inner nama in the outer face. The substitutidpx associates all
the names in the setto the name. We denote wirings by, substitutions by, r, and
renamingg(i.e., bijective substitutions) hy, 3. Substitutions can be specialised in:

aZ?y;  ac<bZ¥p; a&EbZ ¥y,

Constructora represents the introduction of a naméderma « b the renaming ob to
a, and finallya & b links (or fuse)a andb in the namea.

Given a signatureé of controlsk with corresponding portar(K) we generate link
graphs from wirings and the construct§g : 0 — dwith & = ay,...,a, K € K, and
k = ar(K); K4 represents a resource of kikdwith named ports. Any ports may be
connected to other node ports via wiring compositions.

The structural congrueneefor link graphs is refined with obvious axioms for links,
modellinga-conversion and extrusion of closed names, cf. [9]. We assume the trans-
parency predicate to be true for wiring constructors.

Given the transparenayfor each control ik, the Link Graph Logic LGL{, 7) is
BiLog(Piin(A), , 0, =, K U{/a,?/x}, 7). By Theorem 3.2, LGL describes the link graphs
precisely. The logic expresses structural spatiality for resources and strong spatiality
(separation) for names, and it can therefore be viewed as a generalisation of Separation
Logic for contexts and multi-ports locations. On the other side the logic can describe
resources with local (hiddgprivate) names between resources, and in this sense the
logic is a generalisation of Spatial Graph Logic [4], considering the edges as resources.



In LGL the formulaA ® B describes a decomposition into tweparatdink graphs
(i.e., sharing no resources, names, nor connections) satisfying respeétiaaiy B.
Observe that in this case, horizontal decomposition inherits the commutativity property
from the monoidal tensor product. If we want a naate be shared between separated
resources, we need the sharing to be made explicit, and the sole way to do that is through
the link operation. We therefore need a way to first separate the names occurring in two
wirings in order to apply the tensor, and then link them back together.

As a shorthand itV : X —» Y andW : X' — Y with Y c X', we write W ]W
for (W ® idx\y) o Wand ifa = a....,a, andb = by,....b,, we writed « b for
a; « by ® ... ® a, « b, (and similarly ford & 5). It is possible to derive from
the tensor product a product with sharing@rGivenG : X —» Y andG' : X’ —» Y’
with X 0 X’ = 0, we choose a lisb (with the same length &) of fresh names. The
composition with sharing is:

G&G ®[deBl((B 4 0 C) o)

By extending this sharing to all names we can define the parallel compoGitjo@’
as a total operation. However, such an operator does not behave “well” with respect
to the composition, as shown in [15]. In addition a direct inclusion of a corresponding
connective in the logic would impact the satisfaction relation by expanding the finite
horizontal decompositions to the boundless possible name-sharing decompositions.
As a matter of fact, without name quantification it is not possible to build formulae
that explore a link, since the latter has théeet of hiding names. For this task, we
employ the name variables, ..., X, and a fresh name quantification in the style of
Nominal Logic [19].

GEWMXy, ..., %. A% 3a;...a, ¢ fn(G) UTN(A).G E A{X1,... Xn < a1...8,)

Using fresh name quantification we can define a notioé-liiked name quantifi-
cation for fresh names, whose purpose is to identify names that are linied to

dLR AR (A& X) ®id) o A

The formula above expresses that variableg denote inA names that are linked in
the term tod, and the role of§ & X) is to link the fresh nameg with &, while id
deals with names not i&. We also define aeparation-uptpnamely the decomposition
in two terms that are separated apart from the link on the specific nangsvinich
crosses the separation line.

ASBEAL X (R 4) ®id) o A) & B.

The idea of the formula above is that the shared nagrags renamed in fresh namgs

so that the product can be performed and finglylinked tod in order to actually have

the sharing. The corresponding parallel composition operator is not directly definable
using separation-upto, since we do not know a priori the name shared in arbitrary de-
compositions. However, we will show that a careful encoding is possible for the parallel
composition of spatial logics with nominal resources.



Table 3.4 Encoding Propositional SGL in LGL over two ported ground link graphs

I
Spatial Graphs into Two-ported Ground Link Graphs

[nil]x =X [ a0y Ix Z'K(@)xy & X\ {x.Y)
d
[GIGIxE[GIx®[G Ix [(»)GTx E((/x @ idxyx) © [ Gliux)) ® (X} N X)
SGL formulae into LGL formulae
[ nil Jx £'X [a(x y)Ix £K@)xy ® (X\ {xy})
[FIx£F [¢=vIxETelx=[v]x

I|[¢|¢]|xd=e'|[¢1|x§|[w]|x

We show that LGL can be seen as a contextual (and multi-edge) version of Spatial
Graph Logic (SGL) [4]. The logic SGL expresses properties of directed edge labelled
graph<G built from the empty graphil, the edge labelledfrom xtoy nodesa(x, y), the
parallel composition of graph; | G,, and the binding for local names of nodeg)G.

We consider & such that: there is a bijective function associating every edgedabel

a distinct controK (a) and the arity of every control is 2 (the ports represent the starting
and arrival node respectively). The resulting link graphs can be interpreted as contextual
edge labelled graphs and the resulting class of ground link graphs is isomorphic to the
graph model of SGL. In Table 3.4 we encode the graphs modelling SGL into ground link
graphs and SGL formulae into LGL formulae. The encoding is parametric on a finite
setX of names containing the free names of the graph under consideration. Observe
that when we force the outer face of the graphs to be a fixed finit¢, ¢bé encoding of
parallel composition is simply the separation-ug@tahered is a list of all the elements

in X. Notice also how local names are encoded into name closures (and identity).

Theorem 3.4 (Encoding SGL).For each graph G, finite set X containing(®), and
formula ¢ of the propositional fragment of SGL, we have thatg_ ¢ if and only if

[GIx E ([ #1x)o-x-

In LGL is also possible to encode the Separation Logics on heaps: names used as
identifiers of location will be forcibly separated by tensor product, while names used
for pointers will be sharetinked.

Bigraphs as a model for BiLog. We combine the structures of link graphs and place
graphs to generate dHdbstract pure) bigraphef [12]. We take as monoid the product of

link and place interfaces, i.ew(x Psin(A), ®, €) where(m, X) ® (n, X) £(m+n, X wY)

ande £'(0, 0y. We will useX for (0, X) andn for (n, 0). As constructors for bigraphical
terms we have the union of place and link graph constructors apart from the controls
K:1—- 1landKy: 0 — & which are replaced by the natscrete ionconstructor,
which we noteK; : 1 — (1, &); this is a prime bigraph containing a single node with
ports namedi and an hole inside. Bigraphical terms thus are defined w.r.t. a control
signatureX and a set of names, cf. [15] for details.

PGL excels at expressing propertiesinhamedesources, i.e., resources accessible
only by following the structure of the term. On the other hand, LGL characterises names
and their links to resources, but it has no notion of locality. A combination of them ought
to be useful to model spatial structures, either private or public. BiLog promises to be



a good (contextual) spatial logic for (semi-structured) resources with nominal links,
thanks to bigraphs’ orthogonal treatment of locality and connectivity. To witness this
we have proved in [9] that also the recently proposed Context Logic for Trees [3] can
be encoded into bigraphs. The idea of the encoding is to extend the one of STL with
contexts and identified nodes. Essentially, in [9] we show that the model of [3] is a
particular class of prime bigraphs with one port for each node and a number of holes
and regions limited to one. Since [3] is more general than separation logic, and is used
to reason about programs that manipulate tree structured memories, it is possible to
generalise separation logic as well.

4 Conclusion and future work

In this paper we moved a first step towards describing global resources by focusing on
bigraphs. Our final objective is to design a general dynamic logic able to cope uniformly
with all the models bigraphs have been proved useful for, as of today these include
CCS [17], pi-calculus [12] and Petri-nets [13, 16]. We introduced BiLog, a logic for
bigraphs (and more generally for monoidal categories), with two main spatial connec-
tives: composition and tensor product. Our main technical results are the embedding and
comparison with other spatial logics previously studied. Moreover, we have shown that
BiLog is expressive enough to internalise the somewhere modality. In 83 we observed
that the induced logical equivalence can be forced to coincide with the structural con-
gruence of terms. This property is fundamental in order to describe, query and reason
about bigraphical data structures. For a more detailed discussion we refer to [8].

In [9] we study how BiLog can deal with dynamics. A natural solution is to add
a temporalnext stepmodality basically describing bigraphs that can compttad)
according to a Bigraphical Reactive System [12]. When the transparency pretdlicate
enables the inspection of ‘dynamic’ controls, BiLogiigénsionalin the sense of [11],
namely it can observe internal structures. In several cases, notably the bigraphical sys-
tem describing CCS [17], this can be to the extent that the next step modality can be
expressed directly by using the static fragment of BiLog. Notice tteiecifies what
structure the logic can directly observe, while the next step modality, along with the spa-
tial connectives, allows to deduce the structure by observing the behaviour. It would be
interesting to investigate how the transparency predicate influences the expressiveness
and intentionality of significant fragments of the dynamic logic.

The ‘separation’ plays flierently in various fragments of the logic. For instance, in
the case oPlace Graph Logicwhere the model is the class of bigraphs without names,
the separation is purely structural and coincides with the notion of parallel composition
in Spatial Tree Logic. The separation in thiek Graph Logids disjointness of nominal
resources. Finally, foBigraph Logicit is a combination that can be seen as separation
in a structured term with nominal resources (e.g. the trees with pointers of [3] and trees
with hidden names [5]). In the paper we have not addressed logical operators for hidden
names (e.g®, H, © of ambient logic). We can encode them easily using, in particular,

W and/a. The decidability of BiLog is an open question, we are working on extending
the results of [2], and we are isolating decidable fragments of BiLog.



We are currently developing a proof theory for Bilog in order to complete the robust
logical setting provided by the model theory presented here. Besides aiming at a gen-
eralise existing proof systems, this will allow direct comparisons between BiLog and
other spatial logics also from the proof-theoretic point of view.
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