Compositional Action Refinement and
Information Flow Security*

Annalisa Bossi, Damiano Macedonio, Carla Piazza, and Sabina Rossi

Dipartimento di Informatica, Universitd Ca’ Foscari di Venezia
via Torino 155, 30172 Venezia, Italy
{bossi,mace,piazza,srossi}@dsi.unive.it

Abstract. In the design process of distributed systems we may have
to replace abstract specifications of components by more concrete speci-
fications, thus providing more detailed design information. This well-
known approach is often referred to as action refinement. In this paper
we study the relationships between action refinement, compositionality,
and information flow security within the Security Process Algebra (SPA).
In particular, we first formalize the concept of action refinement in terms
of context composition. We study the compositional properties of our
notion of refinement and provide conditions under which information
flow security properties are preserved through action refinement.

1 Introduction

It is common practice in software development of a complex system first de-
scribe it succinctly as a simple abstract specification and then refine it stepwise
to a more concrete implementation. This hierarchical specification approach has
been successfully developed for sequential systems where abstract-level instruc-
tions are expanded to finer-level descriptions until a concrete implementation is
reached (see, e.g., [25]).

In the context of process algebra, this refinement methodology amounts to
defining a mechanism for replacing abstract actions with more concrete pro-
cesses. We adopt the terminology action refinement to refer to this stepwise
development of systems specified as terms of a process algebra. We refer to [18]
for a survey on the state of the art of action refinement in process algebra.

In this paper we model action refinement as a function Ref taking as ar-
guments an action r to be refined, a system description E on a given level of
abstraction and an interpretation of the action 7 on this level by a more compli-
cated process F' on a lower abstraction level. The refined process is obtained as
context, composition as described by the following simple example.

Let E be the process r.b.0 + ¢.0 and r be the action we intend to refine by
the process F' = a1.a2.0. The refined process, denoted by Ref(r, E, F), will be

* This work has been partially supported by the MURST project “Modelli formali per
la sicurezza” and the EU Contract IST-2001-32617 “Models and Types for Security
in Mobile Distributed Systems” (MyThS).

the process T.aj.as.b.0 + ¢.0. We obtain it by context composition as E'[F'[b.0]]
where E'[X] is the context 7.X + ¢.0 while F'[Y] is the context a;.as.Y.

In practice, we follow the static syntactic approach to action refinement (see,
e.g., [21]) reformulating it in terms of context composition. This characterization
allows us to prove compositional properties of our notion of refinement by ex-
ploiting properties of open terms. Compositional properties are fundamental in
the stepwise development of complex systems. They allow us to refine different
sub-components of the system, while guaranteeing that the final result does not
depend on the order in which the refinements are applied.

In system development, it is important to consider security related issues
from the very beginning. Indeed, considering security only at the final step could
lead to a poor protection or, even worst, could make it necessary to restart the
development from scratch. On the other hand, taking into account security from
the abstract specification level, better integrates it in the whole development
process, possibly driving some implementation choices.

A security-aware stepwise development requires that the security properties
of interest are preserved during the development steps, until a concrete (i.e.,
implementable) specification is obtained. Following this approach the security
properties are guaranteed, and thus verified, by construction.

In this paper we first provide general conditions under which our notion of
action refinement preserves security properties. Then we consider a bisimulation-
based information flow security property named P_BNDC' (Persistent Bisimula-
tion-based non Deducibility on Compositions) [13]. We show how to both in-
stantiate and extend the general results in the case of P_BNDC obtaining com-
putable conditions ensuring that P_BNDC is preserved under action refinement.

The paper is organized as follows. In Section 2 we recall some basic notions of
the SPA language. In Section 3 we define our notion of action refinement. Section
4 is devoted to the analysis of the compositional properties of our refinement.
Some general results about the preservation of properties under refinement are
presented in Section 5 and further analyzed in Subsection 5.1 for the security
property P_BND(C'. Finally, in Section 6 we discuss related works and draw some
conclusions.

2 Basic Notions

We assume the reader familiar with the basic notions of Milner’s CCS [20]. The
Security Process Algebra (SPA) [11] is a variation of CCS where the set of visible
actions is partitioned into two security levels, high and low, in order to specify
multilevel systems. SPA syntax is based on the same elements as CCS, i.e.: a set
L = TUO of visible actions where I = {a,b,...} is a set of input actions and
O = {a,b,...} is a set of output actions; a special action 7 which models internal
computations, not visible outside the system; a function = : £ — L, such that
a=a,forallae L. Act = LU {7} is the set of all actions. The set of visible
actions is partitioned into two sets, H and L, of high security actions and low

Prefix -

aFE— FE

E, 5 E} Ey 5 E)
Sum
Ei+E, 5 E} Ei+E, % E}
E S E B S Bl ESE B SE,
Parallel
Ei|E> 5 E{|Es Ei|Es 5 E\|E) Ei|E> 5 E}|E)
o ESE)
Restriction — ifadvw
E\v3 E'\v
ESE
Relabelling S T e
E[f] =" E'[f]
) TlrecZ.T[Z]] & E'
Recursion

recZ.T[Z] % E'

Fig. 1. The operational rules for SPA

security actions such that H = H and L = L. The syntax of SPA terms is:

T:=0|Z|aT|T+T|T|T|T\v|T[f]|recZ.T

where Z is a variable, a € Act, v C L, f: Act — Act is such that f(I) = f(I) for
lel, f(r)= 1, f(H)CHU{r},and f(L) C LU{T}.

A SPA process is a SPA term without free variables. We denote by £ the set
of all SPA processes.

The distinction between high and low security actions does not affect the
operational semantics of SPA processes (see Figure 1) with respect to the cor-
responding CCS one . We denote by (£, Act, —) the Labelled Transition System
(LTS) which identifies it. We use the notations: E % E’ to denote the transi-
tion labelled by a from E to E', E == E' to denote any sequence of transitions

T a

E(5)* 5 (5)*E' where (5)* denotes a (possibly empty) sequence of 7 labelled

transitions, and £ == E' which stands for E == E' if a € £, and for E(5)*E’
ifa=r.

The concept of observation equivalence is used to establish equalities among
processes and it is based on the idea that two systems have the same semantics
if and only if they cannot be distinguished by an external observer. This is
obtained by defining an equivalence relation over £ equating two processes when
they are indistinguishable. In this paper we consider the relations named weak
bisimulation, ~p, and strong bisimulation, ~p, defined by Milner for CCS [20].

They equates two processes if they are able to mutually simulate their behavior
step by step. Weak bisimulation does not care about internal 7 actions while
strong bisimulation does. For the sake of completeness, we report its definition.

Definition 1 (Weak Bisimulation). A symmetric binary relation R C € x &
over processes is a weak bisimulation if (E, F) € R implies, for all a € Act, if

E % E', then there exists F' such that F == F' and (E',F') € R.
Two processes E, F € £ are weakly bisimilar, denoted by E ~p F, if there
exists a weak bisimulation R containing the pair (E,F).

The relation ~p is the largest weak bisimulation and it is an equivalence relation.
Strong bisimulation [20] is similar to weak bisimulation, but it considers also T

actions. To do that it is sufficient use — instead of == in the above definition.

We apply the standard notions of free and bound (occurrences of) variables
in a SPA term. More precisely, all the occurrences of the variable Z in recZ.T
are bound; while Z is free in a term T if there is an occurrence of Z in T which
is not bound. A SPA term with free variables can be seen as an environment
with holes (the free occurrences of its variables) in which other SPA terms can
be inserted. The result of this substitution is still a SPA term, which could be a
process. For instance, in the term h.0|(l.X + 7.0) we can replace the variable X
with the process h.0 obtaining the process h.0|(l.h.0 4+ 7.0); or we can replace X
by the term a.Y obtaining the term £.0|(l.a.Y + 7.0). When we consider a SPA
term as an environment we call it context.

Definition 2 (Contexts). A SPA context is a SPA term in which free variables
may occur.

Given a context C, we use the notation C[Y1,...,Y,] to stress the fact that
we are interested only in the free occurrences of the variables Yp,...,Y, in C.
The term C[T},...,T,] is obtained from C[Y7,...,Y,] by replacing all the free
occurrences of Yy,...,Y, with the terms T7,...,T,, respectively. For instance,
we can write C[X] = h.0[(l.X +7.0) or D[X] = (I.X +7.0)|Y or C'[X] = Yh.0.
Hence, the notation C[h.0] stands for h.0[(I.h.0 + 7.0), while D[h.0] = (I.h.0 +
7.0)|Y and C'[h.0] = Y'|h.0. Note that the notation C[Y7,...,Y,,] implies neither
that all the variables Y7,...,Y,, occur free in the context nor that they include

all the variables occurring free in the context.
Following [20] we extend binary relations on processes to contexts as follows.

Definition 3 (Relations on Contexts). Let R be a binary relation over pro-
cesses, i.e., a subset of € x E. Let C and D be two contexts and {Y1,...,Y,} be

a set of variables which include all the free variables of C and D. We say that
CRDif ClEy,...,Ey] R D[Ey,...,E,] for all set of processes {E1, ..., Ep}.

In the case of weak bisimulation, applying the above definition we have that two
contexts are weakly bisimilar if all the processes obtained by instantiating their
variables are pair-wise bisimilar. For instance, using our notation, the contexts
ClX] =a.X + 7Y and D[X] = a.7.X + 7.Y are weakly bisimilar since for all
E F e Eitholdsa.E+7.F ~p a.7.E+7.F. Notice that not all the free variables

of C and D were explicit in the notation C[X] and D[X]. However, Definition 3
requires the instantiation of all their free variables.

Weak bisimulation is not a congruence, i.e., if two contexts C[X] and D[X]
are weakly bisimilar, and two processes E and F are weakly bisimilar, then
C[E] and DI[F] are not necessarily weakly bisimilar. For instance, 0 ~p 7.0, but
0 + a.0 is not weakly bisimilar to 7.0 + a.0. However, weak bisimulation is a
congruence over the guarded SPA language, whose terms are defined as:

T:=0|Z|aT|aT+aT|T|IT|T\v|T[f]]|recZT.

In order to prove that weak bisimulation is a congruence over the guarded SPA
we introduce the following technical lemma to deal with the recursive operator.

Lemma 1. Let C[Z, Xy,...,X,] and D[Z,X1,...,X,] be two contexts of the
guarded SPA such that C|Z,X1,...,X,| =g D[Z,X1,...,X,], then

recZ.C[Z,X1,...,X,] ~p recZ.D[Z, X1, ..., X,].

Proof. Without loss of generality we can assume that C[Z] and D[Z] have at
most the free variable Z. The general case follows from Definition 3.

From the hypothesis we have that C[Z] ~p D[Z]. Let us define the relation
S on terms of the guarded SPA as follows:

S = {(G[recZ.C[Z]],G[recZ.D[Z]]) | G[X] context of the guarded SPA,
which contains at most one variable }.

It will be enough to show that S is a weak bisimulation up to ~p. From this it
follows recZ.C[Z] ~p recZ.D|[Z], by taking G = X. In particular, we prove that

If GlrecZ.C[Z]] == P then there exist Q, Q' terms of the guarded SPA
s.t. GlrecZ.D[Z]] == Q ~p Q', with (P,Q") € S.

The converse follows by the symmetry of S.

We prove the claim by induction on the depth d of the inference used to
obtain G[recZ.C[Z]] - P.

Base: d = 0.
If GlrecZ.C[Z]] % P with an inference of depth 0, then the rule “Prefix”
has been applied, and G[Z] = a.G'[Z], so P = G'[recZ.C[Z]], and G’ is a
context in the guarded SPA. Hence, also G[recZ.D[Z]] = a.G'[recZ.D[Z]] -
G'lrecZ.D|[Z]] and we have that (G'[recZ.C[Z]], G'[recZ.D|[Z]]) € S, as required.

Induction. We proceed by cases on the structure of the context G:

— G € &, is a SPA process. We have G[recZ.C[Z]] = G[recZ.D[Z]] = G, hence
we immediately obtain the thesis.
— G = X. Then recZ.C[Z] == P has been deduced by applying the “Recur-

sion” rule at the last step. So C[recZ.C[Z]] = P with a shorter inference.
Hence, by induction there exist @, Q' terms of the guarded SPA, such that

ClrecZ.D[Z]] == Q ~p Q' with (P,Q') € S. But also C[Z] ~p D[Z] and
thus D[recZ.D[Z]] = Q" ~p Q. Since D[recZ.D[Z]| ~p recZ.D|Z], we
have that recZ.D[Z] == Q"' with Q" ~p Q" ~5 Q ~p Q'.

- G = a1.G1 + a2.Gy. Then ay1.Gi[recZ.C|Z]] + a2.GalrecZ.C[Z]] 5 P by
applying the “Sum” in the last step. So, there exists ¢ = 1,2 such that
a;.Gi[recZ.C[Z]] & P. Hence, it must be P = G;[recZ.C[Z]], with G; con-
text on the guarded SPA. By applying the same rules, G[recZ.D[Z]] ==
Q = GirecZ.D[Z]], and (P,Q) € S.

— G =Gy \v. Then Gy[recZ.C[Z]]\v = P by applying the rule “Restriction”
in the last step. So, P = P'\ v, a ¢ v and G1[recZ.C[Z]] % P’ by a shorter
inference. By induction on Gj, there exist @, Q' in the guarded SPA such
that Gy[recZ.D[Z]] == Q ~p Q' with (E',Q') € S. Hence, we conclude
GilrecZ.D[Z]|\v == Q \ v, with Q \ v ~p Q' \ v and (P,Q" \v) € S
by construction of S. In fact, (P',Q') € S implies that there exists a
context H[Z], with only a free variable Z, such that P' = H[recZ.C[Z]]
and Q' = HlrecZ.D[Z]]. Hence, P = P'\ v = H[recX.C[X]] \ v and
Q' \v = HrecX.D[X]] \ v.

— G = G4[f]. Then Gi[recZ.C[Z]][f] = P by applying the rule “Relabelling”

in the last step. So, P = P'[f], a = f(a'), and G1[recZ.C|Z]] 2 p by a
shorter inference. By induction there exist the terms @, Q' in the guarded

SPA, such that it holds Gi[recZ.D[Z]] = Q ~p Q' with (P',Q') € S

Hence, we conclude Gi[recZ.D[Z]][f] fle) Q[f], with Q[f] =B Q'[f] and
(P,Q'[f]) € S by construction.

— G = recY.G1[X,Y]. Then recY.Gi[recZ.C[Z],Y] % P by applying the rule
“Recursion” in the last step. So, Gi[recZ.C[Z],recY.G[recZ.C|Z]]] = P

with a shorter inference. Hence, by induction there exist the terms @, @ in

the guarded SPA such that Gi[recZ.D[Z],recY.G[recZ.D[Z]]] == Q ~p
Q' with (P,Q") € S. Since

Gi[recZ.D[Z],recY.G1[recZ.D|Z]|]| =g recY.Gi|recZ.D[Z],Y]

we conclude that Gy[recZ.D[Z],recY.Gy[recZ.D[Z]]] N Q" ~p Q~p Q.
a

Lemma 2. Let C[X4,...,X,], Er, F1,..., E,, F, be contexts of the guarded SPA.
If E; ~g F;, fori=1,...,n, then

C[El,,En] B C[Fl,,Fn]

Proof. If E ~p F, then it is immediate to prove that a.F ~pg a.F. If E; ~p F;
for ¢ = 1,2, then al.El + a2.E2 "B al.Fl + CLQ.FQ. If Ez B Fz for ¢ = 1,2,
then Ey|Ey ~p Fi|F>. If E ~p F, then E\ v ~p F\ v and E[f] =p F[f]. If
E[Z] ~p F|Z], then recZ.E[Z] ~p recZ.F|Z] by Lemma 1. Hence, we proved
the thesis for the contexts a.X,a.X + b.Y, X|Y, X \ v, X[f],recZ.X. If C[X]
is a more complex context, then we proceed by induction on the structure of
C. C[X] = C'[Cy[X],...,Ck[X]], with C",C1,...,Cy satisfying the inductive

hypothesis. By inductive hypothesis we have that C;[F] ~p C; [F], hence by in-
ductive hypothesis we have that C'[C1[E],...,Cy[E]] = C'[Ci[E],...,C[E]],
i.e., the thesis. O

Theorem 1. Let C[Xy,...,Xp],D[X1,...,Xp], Er, F1,...,E,, F,, be guarded
SPA contexts. If E; ~p F;, fori=1,...,n,and C =g D, then C[E;,...,E,] ~p
D|Fy,...,F,].

Proof.
C|Ey,...,Ey] =g C[F1,...,F,] by Lemma 2
~p D[F}y,...,F,] since C =g D.
O

Strong bisimulation is a congruence with respect to all the contexts, i.e., if C ~p
D and E, ~B FZ‘, then C[El, o .,E] ~B D[Fl e ,Fn]

In general a property P is nothing but a class of processes, i.e., the class of
processes which satisfy P. We extend this concept to contexts as follows.

Definition 4 (P-contexts). Let P be a class of processes and C[Xy, ..., X,]
be a context whose free variables are in {X1,...,Xp}. C[X1,...,X,] is said to
be a P-context if for all Ey,...,E, € P it holds that C[Ey,...,E,] € P.

3 Action Refinement

It is standard practice in software development to obtain the final program start-
ing from an abstract, possibly not executable, specification by successive refine-
ments steps. Abstract operations are replaced by more detailed programs which
can be further refined, until a level is reached where no more abstractions occur.

In the context of process algebra, this stepwise development amounts to in-
terpreting actions on a higher level of abstraction by more complicated processes
on a lower level. This is obtained by introducing a mechanism to translate ac-
tions into processes. There are several ways to do this. We adopt the syntactic
approach and define the refinement step as a syntactic process transformation.
Given a process E in which there is an occurrence of an abstract action r the
idea is to refine E by replacing r with a process F'. This requires to introduce a
suitable operation which realizes the necessary links from the parts of E which
precede an occurrence of r and the parts of E which follow that occurrence. In
other words we have to hook F' to E, whenever an action r occurs.

To define this transformation we need some definitions and some syntactical
operations. We first introduce the concepts of free, bound and refinable actions.

Definition 5 (Free, Bound and Refinable actions). Let T be a SPA term.
The set of free actions of T, denoted by f(T) in inductively defined as follows:

free(0) = 0; free(Z) =0 where Z is a variable;
free(a.T) = {a} U free(T); free(Th + T») = free(Ty) U free(T5);
free(Th|Ts) = free(Ty) U free(Ts); free(T \ v) = free(T) \ v;

free(T[f]) = free(T)\ {a | f(a) #a}; free(recZ.T) = free(T).

An action occurring in T is said to be bound if it is not free. We denote by b(T')
the set of bound actions of T. An action r is said to be refinable in T if it does
not occur bound in T and T does not occur in T.

Then we define the set of the parts of E which syntactically follow the outer-
most occurrences of an action r, and the context E{r} which represents the part
of E before the outermost occurrences of r.

Definition 6 (EQr and E{r}). Let E be a SPA term and r be an action
occurring in E. The set of terms EQr is inductively defined as follows:

0@r = 0; ZQr = {);

(r.T)ar ={T}; (a.TY@Qr =TQr, ifa #r;
(T + Tr)Qr = T1Qr U Tx@Qr; (Ty|T2)Qr = T1Qr U TrQr;
(T'\ v)@r = TQr; (T[f])@r = Tar,
(recZ.T)Qr = TQr.

Let EQr ={T\,...,T,} and X1,,..., X, be variables which do not occur in E.
The context E{r} is inductively defined as follows:

0{r} =0; Z{r} = Z;

(rTY{r} =1.Xr; (a.T){r} =a.(T{r}), ifa#r;
(Ty + To){r} = Tui{r} + To{r}; (Ti|T2){r} = Ti{r}|To{r};
(T\o){r} = (T{r}) \ v (TIfDAr} = (T{rHIf];
(recZ.T){r} = recZ.(T{r}).

Ezample 1.

— Let E = r.0]a.0. We have that EQr is {0} and E{r} is 7.X¢]a.0.

— Let E = (a.r.0 4+ b.r.cr.a.0) | r.0. The set EQr contains two processes
and is equal to {0,c.r.a.0}. Note that the term c.r.a.0 in EQr contains an
occurrence of r. The context E{r} is (a.7.Xo + b.7. X r.a.0) | 7.-X0. The set
of the free variables of E{r} is exactly {Xr | T € EQr}.

— Let E = recZ.(a.Z+7r.Z). We have that EQr is {Z} and E{r} isrecZ.(a.Z +
7.X 7). In this case EQ@r has only one element which is not a process.

Definition 7 (FY). Let F be a term and Y be a variable not occurring in F.
FY s the context obtained by replacing each occurrence of 0 in F with Y.

The refinement of an action r in a term E with a term F' is obtained by
successive context composition as follows.

Definition 8 (Refinement of r in E with F'). Let E be a term, r € Act an
action refinable in E, and F' be a term which can refine r in E, that is, such that
b(E)N free(F) = 0 and r and 7 do not occur in F. Let Y be a variable which
does not occur neither in E nor in E{r}. Let EQr = {Ty,...,T,}. The partial
refinement ParRef (r, E, F) of r in E with F is defined as

ParRef (r, E,F) = E{r}[FY[T\],..., FY[T.]].

3

The refinement Ref (r, E, F) of r in E with F is

— ParRef°(r, E,F) = E, if r does not occur in E;

— ParRef*(r, E, F) = ParRef (r, E, F), if r occurs once in E;

— ParRef™" (r, E,F) = ParRef(r, ParRef™(r, E,F),F), if r occurs n + 1
times in E.

Intuitively EQr are the parts of £ which syntactically follow the occurrences
of the action r, while E{r} is the part of E which precedes the r’s. The holes
X7’s in E{r} serve to hook the refinement F'. Similarly the free variable ¥ of
FY serves to hook the elements of EQr after the execution of F. The partial
refinement ParRef (r, E, F) replaces in E as many occurrences as possible of r
with F. When one occurrence of r is followed by another occurrence of r (e.g.,
r.a.r.0) the partial refinement replaces only the first occurrence. Hence in order
to replace all the occurrences in the worst case it is necessary to compute the
partial refinement n times, where n is the number of occurrences of r in E. This
is equivalent to say that our definition introduces a partial order between the
occurrences of r, and it replaces the r’s following this partial order. We would
obtain the same result by arbitrarily choosing at each step one occurrence of r
replacing it with F', and going on until there are no more occurrences of r.

Notice that even if E is a process EQr can be a set of terms with free variables
(see Example 1), while the X7’s are always the only free variables occurring in
E{r}. Hence, if E is a process, then Ref(r, E, F) is a process.

Example 2. We consider again the three processes of Example 1.

— Let E = r.0/a.0 and F' = b;.b2.0. The refinement Ref(r, E, F) is equal to
ParRef (r, E, F') and it is the process (7.b1.52.0)]a.0. It is worth noticing that
in the refined process the action a can be performed before the expansion of
action r is finished. In fact, our refinement is not atomic.

— Let E = (a.r.0 + b.r.cr.a.0) | r.0 and F = e.f.0. The partial refinement
ParRef (r, E, F) is the the process E' = a.7.e.f.0 + b.T.e.f.c.r.a.0) | T.e.f.0.
Since the context E'{r} is (a.7.e.f.0+b.7.e.f.c.7.X4.0) | T.€.f.0, Ref(r, E, F')
is ParRef (r,E',F) = a.t.e.f.0 + b.T.e.f.c.T.e.f.a.0) | T.e.f.0.

— Let E =recZ.(a.Z +r.Z) and F = b.c.0. The refinement Ref(r, E, F) is the
process recZ.(a.Z + 1.b.c.Z).

Notice that the refinement Ref (r, E, F) is defined only if r is refinable in E
and F' can refine r in E. From now on when we write Ref (r, E, F') we always
tacitly assume that r, E, and F are such that the refinement is defined. Similarly,
when we write EQr or E{r} we assume that r is refinable in E.

The refinement introduced in Definition 8 is based on syntactic substitutions
of subterms in SPA language. It is worth noticing that it is not the straightest
syntactic substitution: the action r is substituted by 7.F and not by F. Thus,
for instance, Ref(r,7.0 + a.b.0,¢.0 + d.0) is 7.(c.0 + d.0) + a.b.0 instead of ¢.0 +
d.0 4+ a.b.0. Our choice is motivated by the idea that the implementation of an
abstract action r by means of a more complex process F' requires first calling F
and then executing it. This choice has also the nice consequence of preserving
guarded terms. In fact, it is easy to prove that if £ is a guarded term then also

E{r} is guarded. This property would not hold if X7 instead of 7.X7 would be
used to abstract the action r.

As many other syntactic refinements (see [18]) our refinement is not atomic
and it does not preserve all semantic properties. In particular, it preserves neither
weak nor strong bisimulation, as shown by the following example.

Ezample 3.

— Let Ey = r.0/a.0 and E> = r.a.0 4+ a.r.0. E; and E, are strongly bisimilar.
Let F = b.c.0. We have that Ref(r, E1,F) and Ref(r, Es, F') are not even
weakly bisimilar. In particular, the first process can perform the sequence of
actions b.a.c.0, while the second cannot.

— Let E = a.r.b.c.0, F; = d.0le.0 and F> = d.e.0 + e.d.0. We have that F}
and Fy are strongly bisimilar, but Ref(r, E, F) is not strongly bisimilar to
Ref(r, E, F»).

However, exploiting Theorem 5 (see next section) we get the following result.

Theorem 2. Let E,F,F, be terms. If FY ~p FEY, then Ref(r,E,F,) ~p
Ref(r,E,Fy). If E, F\, Fy are terms of the guarded SPA and FY ~p FY, then
Ref(r,E, F1) ~p Ref (r, E, F3).

Proof. By induction on the structure of E.

If either E = Z or E = 0, we immediately get the thesis.
If E=r.Ey, then

Ref(r,r.Ey, Fy) = by Theorem 5

7.FY [Ref(r,Ey,F\)] ~p since F} ~p Fy

7.FY [Ref(r,Ey1,F1)] ~p by induction

T.F) [Ref(r,Er,)] = by Theorem 5

R@f(’l“, ’I‘.El s FQ)

If £= E1 + Ez, then

Ref(r, By + Eq,) = by Theorem 5
Ref(r,E1,F1) + Ref(r,Ey, F1) ~g by induction
Ref(r,E1,Fy) + Ref(r,Ey, F5) = by Theorem 5
Ref(r, Ey + Eq, FY)

The other cases are similar.

The second part of the thesis follows similarly exploiting also Theorem 1. O

Moreover even if from E; ~p Es we do not get that ParRef(r,E1,F) ~p
ParRef (r, Es, F) (see Example 3) we can preserve the equivalence provided that
it holds also between the contexts Ey{r} and E>{r}.

Theorem 3. Let Ey, Es, F be terms. If Ey{r} ~p Ex{r}, then it holds that
ParRef (r,Ey,F) ~pg ParRef (r, E5, F). If Ey, E> are terms of the guarded SPA
and E1{r} =p Ex{r}, then ParRef(r,E,,F) ~p ParRef(r, Es, F).

Proof. The first part of the thesis follows from the fact that ~p is a congruence.
The second part of the thesis follows from Theorem 1. O

10

It is worth noticing that we cannot change the statement by considering Ref
instead of ParRef. It can be Ref(r,Ei,F){r} +p Ref(r,Es, F){r} even if
ParRef (r, Ey, F) ~g ParRef (r, E5, F'). For instance taking the processes E; =
r.(r.0|a.0), By = r.(a.r.0+7.a.0) and F' = b.c.0 we have that ParRef (r, E\, F) ~p
ParRef (r, E5, F'), but the contexts ParRef (r, E1, F){r} and ParRef(r, E, F){r}
are not bisimilar. Thus, we cannot iterate the above reasoning. We could avoid
this problem by adding the constraint that no element in EQr contains r.

By applying both the above results we immediately get the corollary below.

Corollary 1. Let Ey, By, Fy, and Fy be terms. If E1{r} ~p Ex{r} and FY ~p
FY, then ParRef(r, By, F\) ~p ParRef (r, Eo, F5). If E1, Eo, Fy, Fy are terms of
the guarded SPA such that E1{r} ~p Ex{r} and F\Y ~p F), then it holds
ParRef (r, Ey, F1) =p ParRef(r, E5, F5).

4 Action Refinement and Compositionality

At any fixed abstraction level during the top-down development of a program,
it is unrealistic to think that there is just one action to be refined at that level.
Usually, different abstract actions coexist, all of them have to be refined, and
we do not want to worry about the specific ordering in which the refinements
occur. This is guaranteed only if the refinement operation enjoys compositional
properties. Here we show some of the compositional properties of our refinement.
First we show that our refinement is local to the components in which the
action to be refined occurs. This is a consequence of the following theorem.

Theorem 4. Let Ey,...,E, and F be terms. Let C[Zy,...,Zy,] be a context
with no occurrences of v and 7. It holds

Ref(r,C[Ey, ..., B,].F) = C[Ref(r,Ey,F),..., Ref(r, En, F)].

Proof. We consider the case n = 1, the other cases are similar. The theorem,
in this case, follows from the following claim by choosing m as the number of
occurrences of r in E.

Claim. For every m > 0, it holds C[ParRef™(r, E, F)] = ParRef™(r,C[E], F).

Proof. The proof follows by induction on m. The base m = 0 is trivial. The
case m > 1 of the inductive step is a consequence of functional composition. To
handle the case m = 1 we proceed by induction on the structure of C.

If C = Z, then we immediately have the thesis.

fC=0C + 02, then

ClParRef(r,E,F)| = C1[ParRef(r,E, F)| + Cy[ParRef(r, E, F)]
= ParRef(r,Ci[E],F) 4+ ParRef(r,C3[E|, F),

this last applying the definition of refinement is syntactically equivalent to
ParRef(r,C[E], F), i.e., we have the thesis. All the other cases are similar. O

11

Hence, if we have a term G which is of the form E;|Es|...|E, and the
action r occurs only in F; it is sufficient to apply the refinement to F; to obtain
Ref(r, G, F) = El‘E2| A |R6f(7“, Ei, F)| A ‘En

Ezample 4. Let us consider the process G = recV.(a.V +recW.(a.W +r.W)). We
can decompose it into C[Z] = recV (a.V + Z) and E = recW.(a.W + r. W) and
apply the refinement to E. For instance, if F' = b.c.0 we get that Ref(r, E, F) =
recW.(a.W+7.b.c.W). Hence, Ref (r,G, F) = recV.(a.V+recW.(a.W +1.b.c.W)).

Instead of applying directly the definition of refinement it is possible to com-
pute the refinement by induction on the structure of the process E to be refined,
as shown by the following theorem.

Theorem 5. Let E and F' be terms.

Ref(r,0, F) =0;

Ref(r, Z, F) =7,

Ref(r,r.E, F) = 7.FY[Ref(r, E, F)];

Ref (r,a.E, F) =a.Ref(r,E,F), ifa#r;

Ref(r,Ey|E2, F) = Ref(r, Eq, F)|Ref (r, Es, F);
Ref (r,E[f],F) = Ref(r,E, F)|[f};
RefrE\v F) = Ref(r,E,F)\v;

Ref (r,recZ.E1, F) = recZ.Ref (r, E1, F).

(r,
E
Ref (r, E4 +E2,F) Ref (r, E1, F) + Ref (r, Es, F);
(
(r,
(

Proof. First, we prove the following Claim.
Claim. Let n > 0. Then,

ParRef"(r,a.E,F) = a.ParRef™(r,E, F), if a # 1;

ParRef"(r,Ey + E5, F) = ParRef”(r, E\,F)+ ParRef"(r, Es, F);
ParRef"(r,E, | e2, F) = ParRef™(r, E1, F) | ParRef"(r, E2, F');
ParRef"(r, E[f}, F) = ParRef"(r, E, F)|f};

ParRef"(r,E\ v, F) = ParRef™(r,E,F) \ v;

ParRef"(r,recZ. El,F) =recZ.ParRef"(r,E1, F);

ParRef "t (r,r.E,F) = 7.FY[ParRef"(r, E, F)].

NOUUE N

Proof. Properties from 1 to 6 follow from the Claim inside the proof of Theorem
4. In order to prove the last one we proceed by induction on n > 1.

Base n = 1.

ParRef(r,m.E,F) = r.FY[E] since .E{r} = 7.Xg
= 1.FY[Ref(r,E, F)] since r does not occur in E.

Inductive step, let n > 2.

ParRef"(r,r.E, F) = ParRef(r, ParRef"'(r,r.E, F), F)
= ParRef" (r, ParRef(r,r.E,F),F) by funct. composition
= ParRef" (r,7.FY[E], F) since r.E{r} = 7.Xp
= r.FY[ParRef" (r,E,F)] by point 1.

12

Our theorem follows by choosing n as the number of occurrences of r in E. 0O

If we need to refine two actions in a process E, then the order in which we apply
the refinements does not matter.

Theorem 6. Let E be a term. Let Fy; and Fy be two terms with no occurrences
of r1, T2, T1, and Ta.

Ref(r2aRef(TlaE=Fl)aF2) = RGf(T‘l,Ref(T'2,E,F2),F1)-

Proof. We proceed by induction on the structure of E.

Base. The cases 0 and X are trivial.

Inductive step. The more interesting case is r1.FE

Ref(ra, Ref(r1,r1.E, F1), Fy)

= Ref(ry, 7.FY [Ref(r1, E, F1)], F) by Theorem 5

= 1.Ref(ra, FY [Ref(r1, E, F1)], F») by Theorem 5

= 7.FY[Ref(ry, Ref(r1, E, F}), Fy) by Theorem 4, since ry is not in F}
= 7.FY[Ref(r1, Ref(rs, E, F5), F}) by induction

= Ref(r1,m1.Ref(rs, E, F3), F1) by Theorem 5

= Ref(r1,Ref(ra2,7m1.E, F3), Fy) by Theorem 5

The case r9.E is symmetric. All the other cases have to be treated in the same
way by applying Theorem 5. Let us only see the case E; + Es
Ref(ra, Ref(r1, Ey + E», F1), F3)
= Ref(ra, Ref(r1, E1, Fy) + Ref(r1, Ea, F1), F»)
= Ref(ra, Ref(r1, E1, F1), F») + Ref(ro, Ref(r1, Ea, Fy), F»)
= Ref(r1, Ref(ra, En, F»), F1) + Ref(r1, Ref(ra, E2, F»), F1) by induction
= Ref(r1, Ref(ra, By + Ea, Fh), F1)
O

Ezxample 5. Let E = r1.a.0 + r2.b.r2.0, F; = b.0 and F;, = ¢.0. We have that
Ref (ry, Ref (r1, E, F\), Fy) = ParRef?(ry, 7.0.0.0 4+ r9.b.7,.0, F) =

ParRef (ra, ParRef (19, 7.0.a.0 + 79.b.72.0, F), F5) = 7.b.a.0 + .c.b.7.c.0 =

Ref (r1,71.0.0 + 1.c.b.7.c.0, F}) = Ref (r1, ParRef*(ry, E,), F}) =

Ref(rlz Ref(r27 E: F2): Fl)

Moreover, we can refine r1 in E using F; and r5 in F} using F5 independently
from the order in which the refinements are applied.
First we extend Theorem 4.

Lemma 3. Let C[Zy,...,Z,] be a context. Let Ey, ..., E,, F be terms.

Ref(r,C[E1,...,E,],F) = Ref(r,C,F)[Ref(r,E\,F),...,Ref(r, En, F)].

Proof. We prove the thesis by induction on the structure of C in the case n = 1.
The general case is similar.

If C has no occurrences of Z, then we immediately have the thesis.

If C = Z, then we have the thesis.

13

If C = a.D[Z] with a # r, then
Ref(r,a.D[E], F)
a.Ref(r,D[E],F

by Theorem 5
by induction

a.Ref(r,D,F)[Ref(r,E,F)]= by Theorem 5
Ref(r,a.D, F)[Ref(r,E, F)]

If C = r.D[Z], then

Ref(r,r.D[E],F) = by Theorem 5
7. FY[Ref(r,D|E],F)] = by induction

7. FY[Ref(r,D,F)[Ref(r,E,F)]]= by Theorem 5
Ref(r,r.D,F)[Ref(r, E, F)]
If C = H[Z] + K[Z], then

Ref(r, HE]+ K[E],F) = by Theorem 5
Ref(r,H[E], F) + Ref(r, K[E], F) = by induction
Ref(r,H,F)[Ref(r,E,F)|+ Ref(r,K,F)[Ref(r,E,F)]= by Theorem 5
Ref(r,H + K, F)[Ref(r,E, F)]

All the other cases are similar. 0

We need also the following technical lemma.

Lemma 4. Let E, Fy, F5 be terms such that F> has no occurrences of r1 and 7.

Ref(ra, ParRef(r1,m.E, Fy), Fy) =
ParRef(r1, Ref(ra,r1.E, Fy), Ref(ra, Fi, F3)).

Proof. We first prove the following claim.

Claim.
Ref(r,FY @) = Ref(r,F,G)Y

Proof. By induction on the structure of F.
The only interesting case is F' = r.H.
Ref(r,r.HY ,G) = by Theorem 5
7.G?[Ref(r, HY ,@)] by induction
7.G?[Ref(r,H,G)Y] by Def. of FY
(r.G?[Ref(r,H,G))Y = by Theorem 5
Ref(r,r.H,G)Y

<o

We are now ready to prove the lemma.
Ref(TQ,PaTRef(T1,7“1-E,F1),F2) = by Def. of ParRef
Ref(ry, 7.F) [E], Fy) = by Lemma 3
Ref(r2,7F1 By)[Ref(ro, E, Fy)] = by Theorem 5
T.Ref(ra, FY ,F2)[R€f(7“2,E F2)] = by the above claim
T.Ref(rs, F1, F5)Y [Ref(rs, E, Fy)] = by Def. of ParRef
ParRef(r1,r1.Ref(rs, E, FQ) ef(rq F,))= by Theorem 5
ParRef(r1, Ref(ra,r1.E, Fy), €f(T2,F1,F2))

Theorem 7. Let E, Fy, F5 be terms such that r1 and 7y do not occur in F5.
Ref(r2,Ref(r1,E,F1),F2) = Ref(rl,Ref(r2,E,F2),Ref(r2,Fl,F2)).

Proof. We proceed by induction on the structure of the term E.

The cases 0, Z,G1 + G2, G1|G2, G[f], G\v,recZ.G, a.G, with a # r; immediately
follows from Theorems 4 and 5.

Let £ =r..G.

Ref(r2, Ref(rl, Tl.G, Fl), FQ) =

by Theorem 5

Ref(ra, 7.FY [Ref(r1,G, F})], Fy) =

by Lemma 3

Ref(ra, 7.FY , Fy)[Ref(ra, Ref(r1,G, Fy), Fy)] =

by induction

Ref(r2, T.Fly, FQ)[R@f(T‘l, Ref(r2, G, Fg), Ref(r2, Fl, F2))]
by Theorem 4

Ref(r1, Ref(ra, 7.FY , Fy)[Ref(ra2, G, Fy)], Ref(ra, Fi, Fy))
by Lemma 3

Ref(ri, Ref(ra, 7.FY[G], F2), Ref(ra, F1, F3)) =

by Def. of ParRef

Ref(ri, Ref(ro, ParRef(r1,r1.G, F1), F2), Ref(r2, F1, Fy)) =

by Lemma 4

Ref(r1, ParRef(r1, Ref(ro,m1.G, Fy), Ref(ra, F1, F3)), Ref(ra, Fy, F»)) =
by Def. of Ref

Ref(r1, Ref(ra,r1.G, Fy), Ref(ra, Fi, Fy))

ad

Ezample 6. Let E = r1.a.0 + a.r,.0, F; = b.ry0 and F» = ¢.0. We have
Ref (ra, Ref (r1, E, F1), F5) = Ref (ro,7.b.r2.a.0+a.r2.0, Fy) = 7.b.7.c.a.0+a.7.c.0
= Ref(r1,71.0.0 + a.7.c.0,b.7.¢.0) = Ref(r1, Ref (ra, E, Fy), Ref (ra, F1, F3)).

5 Action Refinement and Security Properties

Let P be a generic property, i.e., a class of processes. It is immediate to prove
that the partial refinement applied to P-contexts preserves P.

Theorem 8. Let P be a class of processes. Let E and F' be processes. If E{r}
and FY are P-contexts and EQr is a set of P processes, then ParRef(r, E,F)
15 a P process.

Proof. Since FY is a P-context, Y is the only free variable in it, and EQr is
a set of P process, we have that {FY[T]|T € EQr} is a set of P processes.
Hence, since E{r} is a P-context with only the Xr,’s as free variables, we get
that ParRef(r, E,F) = E{r}[FY[T}],..., FY[T,]] is a P-process. 0

Notice that the above theorem cannot be applied when EQr is not a set of
processes, i.e., when in EQr there is a term with a free variable (see Example

15

2). This means that we have no general results when r occurs inside a recursive
loop. Moreover, Theorem 8 is limited to the partial refinement, since the fact that
ParRef(r, E, F) is in P does not imply that ParRef (r, E, F){r} is a P-context.
In order to obtain a more general result we introduce the following definition.

Definition 9 (P-refinable contexts). Let P be a class of processes. A class
C of contexts is said to be a class of P-refinable contexts if:

— C is a class of P-contexts;
—if C,D € C, then C[D] € C;
— if C € C, then CQr U {C{r}} C C where r is refinable in C.

Theorem 9. Let P be a class of processes and C be a class of P-refinable con-
texts. Let E and F be processes. If E,F € C, then Ref(r, E,F) is a P process
and it is in C.

Proof. Since E € C we have that EQr U {E{r}} C C. From the fact that C is
closed under composition we get the thesis. O

In order to apply either Theorem 8 or Theorem 9 we need to be able to char-
acterize classes of P-contexts. This problem has been considered in[4,5] where
some security properties have been considered and classes of contexts with nice
properties have been identified. Moreover, in order to apply Theorem 9 we need
to characterize classes of P-refinable contexts. In the following subsection we
analyze one of the security property considered in[4, 5] , namely P_BNDC', and
we show how to apply (and generalize) Theorems 8 and 9.

5.1 Preserving P_.BNDC under Refinement

Information flow security in a multilevel system aims at guaranteeing that no
high level (confidential) information is revealed to users running at low security
levels [14,11,19,22,23], even in the presence of any possible malicious process.
Persistent Bisimulation Non Deducibility on Composition (P_-BNDC, for short)
[13], is an information flow security property suitable to analyze processes in
completely dynamic hostile environments, i.e., environments which can be dy-
namically reconfigured at run-time. The notion of P_BNDC ' is based on the idea
of Non-Interference [15] and requires that every state which is reachable by the
system still satisfies a basic Non-Interference property. In this paper we present
P_BNDC by exploiting an unwinding characterization of it (see [2]).
We first introduce the notion of weak bisimulation on low security actions.

Definition 10 (Weak Bisimulation on Low Actions). A symmetric binary
relation R C € X £ over processes is a weak bisimulation on low security actions
if (E,F) € R implies, for alla € LU{r}, if E % E', then there exists F' such
that F == F' and (E',F') € R.

Two processes B, F € £ are weakly bisimilar on low security actions, de-
noted by E =% F, if there exists a weak bisimulation on low security actions R
containing the pair (E, F).

16

The definition of P_.BND(' in terms of unwinding condition requires that all
the high security actions can be locally simulated by a sequence of 7 actions.

Definition 11 (P_BNDC). A process E is P_.BNDC' if for all E' reachable
from E (i.e., ES ... E') and for all h € H if F' X E", then E' = E"
with E" \ H ~p5 E" \ H.

Ezample 7. Let | € L and h € H. The process h.l.h.0 + 7.1.0 is P_.BNDC'. The
process h.l.0 is not P_.BNDC'.

The decidability of P_.BNDC has been proved in [13] and an efficient (poly-
nomial) algorithm has been presented in [12]. In [2], a proof system which allows
us to incrementally build P_BNDC' processes has been obtained by exploiting
the unwinding characterization of P_BNDC'.

The compositional properties of P_.BNDC allows us to syntactically charac-
terize two classes of P_BND(C-contexts.

Definition 12 (The classes C' and C).

— (' is the class of contexts containing: the process 0; Z, where Z is a variable;
ZiEI 1;.C; + Zje](hj'Dj + T.Dj), with l; € LU {7‘}, hj € H, Ci,Dj € C;
C\ v, C[f], and recZ.C, with C € C'.

— C is the class of contexts containing: all the P_BNDC' processes; Z, where Z
is a variable; > ;1 1;.Ci+ 3 ;c;(h;.Dj+7.D;), withl; € LU{r}, h; € H,
Ci,D; € C; C\v, C[f], and recZ.C, with C € C.

Lemma 5. C' and C are classes of P_BNDC -contexts.

Proof. We prove that C' is a class of P_BND(C-contexts.

The only interesting case is the case of recursion.

We have to prove that for all C € C', for all Ey,...,E, € P_.BNDC,
C|E:,...,E,] € P.BNDC. Since if E ~p F, then E € P_BNDC if and only
if F € P.BNDC, we can prove that a process equivalent to C[E,...,E,] is
P_BNDC.

Since the parallel composition is not used in C’, we can push the restrictions
and the renamings inside until we reach a variable. In fact (E; + E») \ v ~p
Ey\v+ E>\v and (recZ.E)\ v ~p recZ.(E \ v) (see Lemma 7 in [6]).

Moreover, by applying some transformations on the renamings we can per-
mute them with all the restrictions, in order to push the renamings inside. Hence,
we can transform C into D, where D is built using the following productions

B := X | B\v| B[f]
D:=B | Zie[lle + ZjeJ(hj'Dj + T.Dj)

with I; € LU {7} and h; € H. The context D is strongly bisimilar to C', hence
it is sufficient to prove that D[En,..., E,] is P.BNDC.

The process D[Ey,...,E,] can be seen as G[Fy,..., F,], where G is built
only using variables and sums of the form >, ; l;.Gi +3_,c ;(h;.G; +7.G;) and
F; is of the form E;[f]\ v for some f and v. Since the E;’s are P_.BNDC, the
F;’s are P_.BNDC'. Since G is built using only variables and sums we have that
if G[Fy,..., F,] reaches a process G', then two cases are possible:

17

— @ reaches G and G' = G[F, ..., F,);
— there exists ¢ such that F; reaches G'.

In the second case, since F; is P_.BNDC we immediately get that if G’ LN G",

then G’ = G", with G" ~% G". In the first case if G[Fy,..., F,] LN G", two
cases are possible:

~GAhGanda = GlFy,...,Fy];
— there exists ¢ such that F; LYeZ)

Again in the second case we get the thesis, since F; is P_.BNDC'. In the firs case
we get the thesis since by construction G = G, and G” ~L G’[Fh oo Bl

We prove that C is a class of P_BNDC-contexts.

The thesis immediately follows from the fact that each context in C is noth-
ing but a context of C' in which some variables have already been replaced by
P_BNDC processes. O

Both C’ and C are decidable classes of contexts. In particular, the decidability
of C is a consequence of the fact that P_.BNDC is decidable (see [13,12]).

Since the class C is closed under composition of contexts we obtain the fol-
lowing result. Notice that it is not a consequence of Theorem 8, since EQr can
now contain terms with free variables.

Corollary 2. Let E and F be processes. If EQr U {E{r}, F¥} C C, then
ParRef(r,E,F) € P_.BNDC.

Proof. Since E{r}, EQr, and FY are in C we have that ParRef(r,E,F) is in
C. Hence by Theorem 5, ParRef(r, E, F) is a P_.BNDC-context. Since E is a
process ParRef(r, E, F) is a process, i.e., it is a P_.BNDC process. |

The following lemma allows us to instantiate Theorem 9 in the case of
P_BNDC.

Lemma 6. C' is a class of P_.BNDC -refinable contexts.

Proof. By Lemma 5 we have that C' is a class of P_BNDC-contexts.

It is immediate to prove that C’ is closed under composition.

By definition of C' we have that if C € C, then CQr C C'.

The fact that if C' € C, then C{r} € C is a consequence of the fact that we
replace r with 7.Y', hence all the sums remain guarded. O

Corollary 3. Let E,F be processes. If E,FY € C', then Ref(r,E,F) is a
P_BNDC process and it is in C'.

Proof. This is a consequence of Theorem 9 and Lemma 6. O

We conclude this section by reporting an example adapted from [18].

18

Ezample 8. Let us consider a distributed data base which can take two values
and which can be both queried and updated. In particular, the high level user
can query it (qry:, gry2), while the low level user can only update it (upds,
upds). Hence qry;, qrys € H and upd;, upds € L. We can model the data base
with the following SPA process

E =recZ.(qry1.Z +updy . Z + 1.2+
upds.recW.(qrys W + upds W + 7.W + upd; . Z)).

The process E is in C'. We can now refine the update actions by requiring
that each update is requested and confirmed, i.e., we refine upd; using F; =
reqi.cnfi.0 and upds using Fy = reqs.cnfs.0, where req;,enfi,reqs,enfs are

low security level actions. We obtain the process Ref(r2, Ref(r1, E, F1), Fy) is

recZ.(qry1.Z +req.enfi.Z + 1.2+
reqa.cnfo.recW.(qrys W + reqs.cnfo. W + 7.W + reqi.cnfi.2)).

Since F} and F) are in C', by Corollary 3, Ref(rs, Ref(ri, E,F}),F) is a
P_BNDC process.

6 Conclusions and Related Works

In this paper we study the relations between action refinement, compositionality,
and information flow security within the Security Process Algebra (SPA).

We formalize the notion of action refinement in terms of context composi-
tion. This approach allows us to exploit properties of open terms to individuate
conditions under which security properties can be preserved under action refine-
ment. In particular, we consider the security property P_.BNDC and show how
it can be preserved under action refinement.

Action refinement has been extensively studied in the literature. There are
essentially two interpretations of action refinement: semantic and syntactic (see
[16]). In the semantic interpretation an explicit refinement operator, written
E[r — F], is introduced in the semantic domain used to interpret the terms
of the algebra. The semantics of E[r — F] models the fact that r is an action
of E to be refined by process F. In the syntactic approach, the same situation
is modelled by syntactically replacing r by F in E. The replacement can be
static, i.e., before execution, or dynamic, i.e., r is replaced as soon as it occurs
while executing E. In order to correctly formalize the replacement, the process
algebra is usually equipped with an operation of sequential composition (rather
than the more standard action prefix), as, e.g., in ACP, since otherwise it would
not be closed under the necessary syntactic substitution. Our approach to ac-
tion refinement follows the static, syntactic interpretation. However, the use of
context, composition to realize the refinement allows us to keep the original SPA
language without introducing a sequential composition operator for processes.

Action refinement is also classified as atomic or non-atomic. Atomic refine-
ment is based on the view that actions are atomic and their refinements should

19

in some sense preserve this atomicity (see, e.g.,[]9,7,17]). On the other hand,
non-atomic refinement takes the view that atomicity is always relative to the
current level of abstraction and may, in a sense, be destroyed by the refinement
(see, e.g., [1,10,24]). In this paper we follow the non-atomic approach. Actually,
this approach is on the whole more popular then the former.

In the literature the term refinement is also used to indicate any transforma-
tion of a system that can be justified because the transformed system implements
the original one on the same abstraction level, by being more nearly executable,
for instance more deterministic. The implementation relation is expressed in
terms of pre-orders such as trace inclusion or various kinds of simulation. Many
papers in this tradition can be found in [8]. The relations between this form of
refinement and information flow security have been studied in [3].

References

1. L. Aceto and M. Hennessy. Adding action refinement to a finite process algebra.
Information and Computation, 115(2):179-247, 1994,

2. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. A Proof System for Information
Flow Security. In M. Leuschel, editor, Logic Based Program Development and
Transformation, volume 2664 of LNCS, pages 199-218. Springer-Verlag, 2003.

3. A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Refinement Operators and In-
formation Flow Security. In Proc. of the International Conference on Software
Engineering and Formal Methods (SEFM’038). IEEE Comp. Soc. Press, 2003. To
appear.

4. A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Secure Contexts for Confidential
Data. In Proc. of the 16th IEEE Computer Security Foundations Workshop, pages
14-28. IEEE Computer Society Press, 2003.

5. A. Bossi, D. Macedonio, C. Piazza, and S. Rossi. Information Flow Security and
Recursive Systems. In Italian Conference on Theoretical Computer Science, LNCS.
Springer-Verlag, 2004. To appear.

6. A. Bossi, D. Macedonio, C. Piazza, and S. Rosssi. Secure Contexts for Informa-
tion Flow Security. Technical Report CS-2002-18, Dipartimento di Informatica,
Universita Ca’ Foscari di Venezia, Italy, 2002.

7. G. Boudol. Atomic actions. Bulletin of the EATCS, 38:136-144, 1989.

8. J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors. Stepwise Refinement
of Distributed Systems, Models, Formalisms, Correctness, REX Workshop, Mook,
The Netherlands, May 29 - June 2, 1989, Proceedings, volume 430 of Lecture Notes
in Computer Science. Springer, 1990.

9. J. W. de Bakker and E. P. de Vink. Bisimulation semantics for concurrency with
atomicity and action refinement. Fundamenta Informaticae, 20(1/2/3):3-34, 1994.

10. P. Degano and R. Gorrieri. A causal operational semantics of action refinement.
Information and Computation, 122(1):97-119, 1995.

11. R. Focardi and R. Gorrieri. Classification of Security Properties (Part I. Infor-
mation Flow). In R. Focardi and R. Gorrieri, editors, Foundations of Security
Analysis and Design, volume 2171 of LNCS. Springer-Verlag, 2001.

12. R. Focardi, C. Piazza, and S. Rossi. Proof Methods for Bisimulation based Infor-
mation Flow Security. In A. Cortesi, editor, Proc. of Int. Workshop on Verification,
Model Checking and Abstract Interpretation, volume 2294 of LNCS, pages 16-31.
Springer-Verlag, 2002.

20

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

R. Focardi and S. Rossi. Information Flow Security in Dynamic Contexts. In
Proc. of the IEEE Computer Security Foundations Workshop (CSFW’02), pages
307-319. IEEE Comp. Soc. Press, 2002.

S. N. Foley. A Universal Theory of Information Flow. In Proc. of the IEEE
Symposium on Security and Privacy, pages 116-122. IEEE Comp. Soc. Press, 1987.
J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proc.
of the IEEE Symposium on Security and Privacy, pages 11-20. IEEE Comp. Soc.
Press, 1982.

U. Goltz, R. Gorrieri, and A. Rensink. Comparing syntactic and semantic action
refinement. Information and Computation, 125(2):118-143, 1996.

R. Gorrieri, S. Marchetti, and U. Montanari. A?CCS: Atomic actions for CCS.
Theoretical Computer Science, 72(2-3):203-223, 1990.

R. Gorrieri and A. Rensink. Action Refinement. Technical Report UBLCS-99-09,
University of Bologna (Italy), 1999.

J. McLean. Security Models and Information Flow. In Proc. of the IEEE Sympo-
stum on Security and Privacy, pages 180-187. IEEE Comp. Soc. Press, 1990.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

M. Nielsen, U. Engberg, and K. S. Larsen. Fully Abstract Models for a Process Lan-
guage with Refinement. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
editors, Proc. of the Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency, School/Workshop, volume 354 of LNCS, pages 523-548.
Springer-Verlag, 1989.

C. O’Halloran. A Calculus of Information Flow. In Proc. of the European Sympo-
sium on Research in Security and Privacy, pages 180-187. AFCET, 1990.

G. Smith and D. M. Volpano. Secure Information Flow in a Multi-threaded Imper-
ative Language. In Proc. of ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’98), pages 355-364. ACM Press, 1998.

R. J. van Glabbeek and U. Goltz. Refinement of actions and equivalence notions
for concurrent systems. Acta Informatica, 37(4/5):229-327, 2001.

N. Wirth. Program development by stepwise refinement. Communications of the
ACM, 14(4):221-227, 1971.

21

