
Compositional A
tion Re�nement andInformation Flow Se
urity?Annalisa Bossi, Damiano Ma
edonio, Carla Piazza, and Sabina RossiDipartimento di Informati
a, Universit�a Ca' Fos
ari di Veneziavia Torino 155, 30172 Venezia, Italyfbossi,ma
e,piazza,srossig�dsi.unive.itAbstra
t. In the design pro
ess of distributed systems we may haveto repla
e abstra
t spe
i�
ations of
omponents by more
on
rete spe
i-�
ations, thus providing more detailed design information. This well-known approa
h is often referred to as a
tion re�nement. In this paperwe study the relationships between a
tion re�nement,
ompositionality,and information
ow se
urity within the Se
urity Pro
ess Algebra (SPA).In parti
ular, we �rst formalize the
on
ept of a
tion re�nement in termsof
ontext
omposition. We study the
ompositional properties of ournotion of re�nement and provide
onditions under whi
h information
ow se
urity properties are preserved through a
tion re�nement.1 Introdu
tionIt is
ommon pra
ti
e in software development of a
omplex system �rst de-s
ribe it su

in
tly as a simple abstra
t spe
i�
ation and then re�ne it stepwiseto a more
on
rete implementation. This hierar
hi
al spe
i�
ation approa
h hasbeen su

essfully developed for sequential systems where abstra
t-level instru
-tions are expanded to �ner-level des
riptions until a
on
rete implementation isrea
hed (see, e.g., [25℄).In the
ontext of pro
ess algebra, this re�nement methodology amounts tode�ning a me
hanism for repla
ing abstra
t a
tions with more
on
rete pro-
esses. We adopt the terminology a
tion re�nement to refer to this stepwisedevelopment of systems spe
i�ed as terms of a pro
ess algebra. We refer to [18℄for a survey on the state of the art of a
tion re�nement in pro
ess algebra.In this paper we model a
tion re�nement as a fun
tion Ref taking as ar-guments an a
tion r to be re�ned, a system des
ription E on a given level ofabstra
tion and an interpretation of the a
tion r on this level by a more
ompli-
ated pro
ess F on a lower abstra
tion level. The re�ned pro
ess is obtained as
ontext
omposition as des
ribed by the following simple example.Let E be the pro
ess r:b:0 +
:0 and r be the a
tion we intend to re�ne bythe pro
ess F � a1:a2:0. The re�ned pro
ess, denoted by Ref (r; E; F), will be? This work has been partially supported by the MURST proje
t \Modelli formali perla si
urezza" and the EU Contra
t IST-2001-32617 \Models and Types for Se
urityin Mobile Distributed Systems" (MyThS).

the pro
ess �:a1:a2:b:0+
:0. We obtain it by
ontext
omposition as E0[F 0[b:0℄℄where E0[X ℄ is the
ontext �:X +
:0 while F 0[Y ℄ is the
ontext a1:a2:Y .In pra
ti
e, we follow the stati
 synta
ti
 approa
h to a
tion re�nement (see,e.g., [21℄) reformulating it in terms of
ontext
omposition. This
hara
terizationallows us to prove
ompositional properties of our notion of re�nement by ex-ploiting properties of open terms. Compositional properties are fundamental inthe stepwise development of
omplex systems. They allow us to re�ne di�erentsub-
omponents of the system, while guaranteeing that the �nal result does notdepend on the order in whi
h the re�nements are applied.In system development, it is important to
onsider se
urity related issuesfrom the very beginning. Indeed,
onsidering se
urity only at the �nal step
ouldlead to a poor prote
tion or, even worst,
ould make it ne
essary to restart thedevelopment from s
rat
h. On the other hand, taking into a

ount se
urity fromthe abstra
t spe
i�
ation level, better integrates it in the whole developmentpro
ess, possibly driving some implementation
hoi
es.A se
urity-aware stepwise development requires that the se
urity propertiesof interest are preserved during the development steps, until a
on
rete (i.e.,implementable) spe
i�
ation is obtained. Following this approa
h the se
urityproperties are guaranteed, and thus veri�ed, by
onstru
tion.In this paper we �rst provide general
onditions under whi
h our notion ofa
tion re�nement preserves se
urity properties. Then we
onsider a bisimulation-based information
ow se
urity property named P BNDC (Persistent Bisimula-tion-based non Dedu
ibility on Compositions) [13℄. We show how to both in-stantiate and extend the general results in the
ase of P BNDC obtaining
om-putable
onditions ensuring that P BNDC is preserved under a
tion re�nement.The paper is organized as follows. In Se
tion 2 we re
all some basi
 notions ofthe SPA language. In Se
tion 3 we de�ne our notion of a
tion re�nement. Se
tion4 is devoted to the analysis of the
ompositional properties of our re�nement.Some general results about the preservation of properties under re�nement arepresented in Se
tion 5 and further analyzed in Subse
tion 5.1 for the se
urityproperty P BNDC . Finally, in Se
tion 6 we dis
uss related works and draw some
on
lusions.2 Basi
 NotionsWe assume the reader familiar with the basi
 notions of Milner's CCS [20℄. TheSe
urity Pro
ess Algebra (SPA) [11℄ is a variation of CCS where the set of visiblea
tions is partitioned into two se
urity levels, high and low, in order to spe
ifymultilevel systems. SPA syntax is based on the same elements as CCS, i.e.: a setL = I [O of visible a
tions where I = fa; b; : : :g is a set of input a
tions andO = f�a;�b; : : :g is a set of output a
tions; a spe
ial a
tion � whi
h models internal
omputations, not visible outside the system; a fun
tion �� : L ! L, su
h that��a = a, for all a 2 L. A
t = L [f�g is the set of all a
tions. The set of visiblea
tions is partitioned into two sets, H and L, of high se
urity a
tions and low2

Pre�x �a:E a! ESum E1 a! E01E1 +E2 a! E01 E2 a! E02E1 +E2 a! E02Parallel E1 a! E01E1jE2 a! E01jE2 E2 a! E02E1jE2 a! E1jE02 E1 !̀ E01 E2 �̀! E02E1jE2 �! E01jE02Restri
tion E a! E0E n v a! E0 n v if a 62 vRelabelling E a! E0E[f ℄ f(a)! E0[f ℄Re
ursion T [re
Z:T [Z℄℄ a! E0re
Z:T [Z℄ a! E0Fig. 1. The operational rules for SPAse
urity a
tions su
h that H = H and L = L. The syntax of SPA terms is:T ::= 0 j Z j a:T j T + T j T jT j T n v j T [f ℄ j re
Z:Twhere Z is a variable, a 2 A
t , v � L, f : A
t! A
t is su
h that f(�l) = f(l) forl 2 L, f(�) = � , f(H) � H [f�g, and f(L) � L [f�g.A SPA pro
ess is a SPA term without free variables. We denote by E the setof all SPA pro
esses.The distin
tion between high and low se
urity a
tions does not a�e
t theoperational semanti
s of SPA pro
esses (see Figure 1) with respe
t to the
or-responding CCS one . We denote by (E ;A
t ;!) the Labelled Transition System(LTS) whi
h identi�es it. We use the notations: E a! E0 to denote the transi-tion labelled by a from E to E0, E a=) E0 to denote any sequen
e of transitionsE(�!)� a! (�!)�E0 where (�!)� denotes a (possibly empty) sequen
e of � labelledtransitions, and E â=) E0 whi
h stands for E a=) E0 if a 2 L, and for E(�!)�E0if a = � .The
on
ept of observation equivalen
e is used to establish equalities amongpro
esses and it is based on the idea that two systems have the same semanti
sif and only if they
annot be distinguished by an external observer. This isobtained by de�ning an equivalen
e relation over E equating two pro
esses whenthey are indistinguishable. In this paper we
onsider the relations named weakbisimulation, �B , and strong bisimulation, �B , de�ned by Milner for CCS [20℄.3

They equates two pro
esses if they are able to mutually simulate their behaviorstep by step. Weak bisimulation does not
are about internal � a
tions whilestrong bisimulation does. For the sake of
ompleteness, we report its de�nition.De�nition 1 (Weak Bisimulation). A symmetri
 binary relation R � E �Eover pro
esses is a weak bisimulation if (E;F) 2 R implies, for all a 2 A
t, ifE a! E0, then there exists F 0 su
h that F â=) F 0 and (E0; F 0) 2 R.Two pro
esses E;F 2 E are weakly bisimilar, denoted by E �B F , if thereexists a weak bisimulation R
ontaining the pair (E;F).The relation�B is the largest weak bisimulation and it is an equivalen
e relation.Strong bisimulation [20℄ is similar to weak bisimulation, but it
onsiders also �a
tions. To do that it is suÆ
ient use a! instead of â=) in the above de�nition.We apply the standard notions of free and bound (o

urren
es of) variablesin a SPA term. More pre
isely, all the o

urren
es of the variable Z in re
Z:Tare bound ; while Z is free in a term T if there is an o

urren
e of Z in T whi
his not bound. A SPA term with free variables
an be seen as an environmentwith holes (the free o

urren
es of its variables) in whi
h other SPA terms
anbe inserted. The result of this substitution is still a SPA term, whi
h
ould be apro
ess. For instan
e, in the term h:0j(l:X + �:0) we
an repla
e the variable Xwith the pro
ess �h:0 obtaining the pro
ess h:0j(l:�h:0+ �:0); or we
an repla
e Xby the term a:Y obtaining the term h:0j(l:a:Y + �:0). When we
onsider a SPAterm as an environment we
all it
ontext.De�nition 2 (Contexts). A SPA
ontext is a SPA term in whi
h free variablesmay o

ur.Given a
ontext C, we use the notation C[Y1; : : : ; Yn℄ to stress the fa
t thatwe are interested only in the free o

urren
es of the variables Y1; : : : ; Yn in C.The term C[T1; : : : ; Tn℄ is obtained from C[Y1; : : : ; Yn℄ by repla
ing all the freeo

urren
es of Y1; : : : ; Yn with the terms T1; : : : ; Tn, respe
tively. For instan
e,we
an write C[X ℄ � h:0j(l:X+ �:0) or D[X ℄ � (l:X+ �:0)jY or C 0[X ℄ � Y jh:0.Hen
e, the notation C[�h:0℄ stands for h:0j(l:�h:0+ �:0), while D[�h:0℄ � (l:�h:0+�:0)jY and C 0[�h:0℄ � Y jh:0. Note that the notation C[Y1; : : : ; Yn℄ implies neitherthat all the variables Y1; : : : ; Yn o

ur free in the
ontext nor that they in
ludeall the variables o

urring free in the
ontext.Following [20℄ we extend binary relations on pro
esses to
ontexts as follows.De�nition 3 (Relations on Contexts). Let R be a binary relation over pro-
esses, i.e., a subset of E � E. Let C and D be two
ontexts and fY1; : : : ; Yng bea set of variables whi
h in
lude all the free variables of C and D. We say thatC RD if C[E1; : : : ; En℄ R D[E1; : : : ; En℄ for all set of pro
esses fE1; : : : ; Eng.In the
ase of weak bisimulation, applying the above de�nition we have that two
ontexts are weakly bisimilar if all the pro
esses obtained by instantiating theirvariables are pair-wise bisimilar. For instan
e, using our notation, the
ontextsC[X ℄ � a:X + �:Y and D[X ℄ � a:�:X + �:Y are weakly bisimilar sin
e for allE;F 2 E it holds a:E+�:F �B a:�:E+�:F . Noti
e that not all the free variables4

of C and D were expli
it in the notation C[X ℄ and D[X ℄. However, De�nition 3requires the instantiation of all their free variables.Weak bisimulation is not a
ongruen
e, i.e., if two
ontexts C[X ℄ and D[X ℄are weakly bisimilar, and two pro
esses E and F are weakly bisimilar, thenC[E℄ and D[F ℄ are not ne
essarily weakly bisimilar. For instan
e, 0 �B �:0, but0 + a:0 is not weakly bisimilar to �:0 + a:0. However, weak bisimulation is a
ongruen
e over the guarded SPA language, whose terms are de�ned as:T ::= 0 j Z j a:T j a:T + a:T j T jT j T n v j T [f ℄ j re
Z:T:In order to prove that weak bisimulation is a
ongruen
e over the guarded SPAwe introdu
e the following te
hni
al lemma to deal with the re
ursive operator.Lemma 1. Let C[Z;X1; : : : ; Xn℄ and D[Z;X1; : : : ; Xn℄ be two
ontexts of theguarded SPA su
h that C[Z;X1; : : : ; Xn℄ �B D[Z;X1; : : : ; Xn℄, thenre
Z:C[Z;X1; : : : ; Xn℄ �B re
Z:D[Z;X1; : : : ; Xn℄:Proof. Without loss of generality we
an assume that C[Z℄ and D[Z℄ have atmost the free variable Z. The general
ase follows from De�nition 3.From the hypothesis we have that C[Z℄ �B D[Z℄. Let us de�ne the relationS on terms of the guarded SPA as follows:S = f(G[re
Z:C[Z℄℄; G[re
Z:D[Z℄℄) jG[X ℄
ontext of the guarded SPA;whi
h
ontains at most one variable g:It will be enough to show that S is a weak bisimulation up to �B . From this itfollows re
Z:C[Z℄ �B re
Z:D[Z℄, by taking G � X . In parti
ular, we prove thatIf G[re
Z:C[Z℄℄ a�! P then there exist Q;Q0 terms of the guarded SPAs.t. G[re
Z:D[Z℄℄ ba=) Q �B Q0, with (P;Q0) 2 S:The
onverse follows by the symmetry of S.We prove the
laim by indu
tion on the depth d of the inferen
e used toobtain G[re
Z:C[Z℄℄ a�! P .Base: d = 0.If G[re
Z:C[Z℄℄ a�! P with an inferen
e of depth 0, then the rule \Pre�x"has been applied, and G[Z℄ � a:G0[Z℄, so P � G0[re
Z:C[Z℄℄, and G0 is a
ontext in the guarded SPA. Hen
e, also G[re
Z:D[Z℄℄ � a:G0[re
Z:D[Z℄℄ a�!G0[re
Z:D[Z℄℄ and we have that (G0[re
Z:C[Z℄℄; G0[re
Z:D[Z℄℄) 2 S, as required.Indu
tion. We pro
eed by
ases on the stru
ture of the
ontext G:{ G 2 E , is a SPA pro
ess. We have G[re
Z:C[Z℄℄ � G[re
Z:D[Z℄℄ � G, hen
ewe immediately obtain the thesis.{ G � X . Then re
Z:C[Z℄ a�! P has been dedu
ed by applying the \Re
ur-sion" rule at the last step. So C[re
Z:C[Z℄℄ a�! P with a shorter inferen
e.Hen
e, by indu
tion there exist Q;Q0 terms of the guarded SPA, su
h thatC[re
Z:D[Z℄℄ ba=) Q �B Q0 with (P;Q0) 2 S: But also C[Z℄ �B D[Z℄ andthus D[re
Z:D[Z℄℄ ba=) Q00 �B Q. Sin
e D[re
Z:D[Z℄℄ �B re
Z:D[Z℄, wehave that re
Z:D[Z℄ ba=) Q000 with Q000 �B Q00 �B Q �B Q0.5

{ G � a1:G1 + a2:G2. Then a1:G1[re
Z:C[Z℄℄ + a2:G2[re
Z:C[Z℄℄ a! P byapplying the \Sum" in the last step. So, there exists i = 1; 2 su
h thatai:Gi[re
Z:C[Z℄℄ a! P . Hen
e, it must be P � Gi[re
Z:C[Z℄℄, with Gi
on-text on the guarded SPA. By applying the same rules, G[re
Z:D[Z℄℄ ba=)Q � Gi[re
Z:D[Z℄℄, and (P;Q) 2 S.{ G � G1 n v. Then G1[re
Z:C[Z℄℄ n v a! P by applying the rule \Restri
tion"in the last step. So, P � P 0 n v, a =2 v and G1[re
Z:C[Z℄℄ a! P 0 by a shorterinferen
e. By indu
tion on G1, there exist Q;Q0 in the guarded SPA su
hthat G1[re
Z:D[Z℄℄ ba=) Q �B Q0 with (E0; Q0) 2 S. Hen
e, we
on
ludeG1[re
Z:D[Z℄℄ n v ba=) Q n v, with Q n v �B Q0 n v and (P;Q0 n v) 2 Sby
onstru
tion of S. In fa
t, (P 0; Q0) 2 S implies that there exists a
ontext H [Z℄, with only a free variable Z, su
h that P 0 � H [re
Z:C[Z℄℄and Q0 � H [re
Z:D[Z℄℄. Hen
e, P � P 0 n v � H [re
X:C[X ℄℄ n v andQ0 n v � H [re
X:D[X ℄℄ n v.{ G � G1[f ℄. Then G1[re
Z:C[Z℄℄[f ℄ a! P by applying the rule \Relabelling"in the last step. So, P � P 0[f ℄, a = f(a0), and G1[re
Z:C[Z℄℄ a0! P 0 by ashorter inferen
e. By indu
tion there exist the terms Q;Q0 in the guardedSPA, su
h that it holds G1[re
Z:D[Z℄℄ ba0=) Q �B Q0 with (P 0; Q0) 2 SHen
e, we
on
lude G1[re
Z:D[Z℄℄[f ℄ [f(a0)=) Q[f ℄, with Q[f ℄ �B Q0[f ℄ and(P;Q0[f ℄) 2 S by
onstru
tion.{ G � re
Y:G1[X;Y ℄. Then re
Y:G1[re
Z:C[Z℄; Y ℄ a! P by applying the rule\Re
ursion" in the last step. So, G1[re
Z:C[Z℄; re
Y:G1[re
Z:C[Z℄℄℄ a! Pwith a shorter inferen
e. Hen
e, by indu
tion there exist the terms Q;Q inthe guarded SPA su
h that G1[re
Z:D[Z℄; re
Y:G1[re
Z:D[Z℄℄℄ ba=) Q �BQ0 with (P;Q0) 2 S: Sin
eG1[re
Z:D[Z℄; re
Y:G1[re
Z:D[Z℄℄℄ �B re
Y:G1[re
Z:D[Z℄; Y ℄we
on
lude that G1[re
Z:D[Z℄; re
Y:G1[re
Z:D[Z℄℄℄ ba=) Q00 �B Q �B Q0.utLemma 2. Let C[X1; : : : ; Xn℄; E1; F1; : : : ; En; Fn be
ontexts of the guarded SPA.If Ei �B Fi, for i = 1; : : : ; n, thenC[E1; : : : ; En℄ �B C[F1; : : : ; Fn℄:Proof. If E �B F , then it is immediate to prove that a:E �B a:F . If Ei �B Fifor i = 1; 2, then a1:E1 + a2:E2 �B a1:F1 + a2:F2. If Ei �B Fi for i = 1; 2,then E1jE2 �B F1jF2. If E �B F , then E n v �B F n v and E[f ℄ �B F [f ℄. IfE[Z℄ �B F [Z℄, then re
Z:E[Z℄ �B re
Z:F [Z℄ by Lemma 1. Hen
e, we provedthe thesis for the
ontexts a:X; a:X + b:Y;X jY;X n v;X [f ℄; re
Z:X . If C[�X ℄is a more
omplex
ontext, then we pro
eed by indu
tion on the stru
ture ofC. C[�X℄ � C 0[C1[�X℄; : : : ; Ck[�X℄℄, with C 0; C1; : : : ; Ck satisfying the indu
tive6

hypothesis. By indu
tive hypothesis we have that Ci[�E℄ �B Ci[�F ℄, hen
e by in-du
tive hypothesis we have that C 0[C1[�E℄; : : : ; Ck[�E℄℄ �B C 0[C1[�E℄; : : : ; Ck[�E℄℄,i.e., the thesis. utTheorem 1. Let C[X1; : : : ; Xn℄; D[X1; : : : ; Xn℄; E1; F1; : : : ; En; Fn be guardedSPA
ontexts. If Ei �B Fi, for i = 1; : : : ; n, and C �B D, then C[E1; : : : ; En℄ �BD[F1; : : : ; Fn℄:Proof. C[E1; : : : ; En℄ �B C[F1; : : : ; Fn℄ by Lemma 2�B D[F1; : : : ; Fn℄ sin
e C �B D: utStrong bisimulation is a
ongruen
e with respe
t to all the
ontexts, i.e., if C �BD and Ei �B Fi, then C[E1; : : : ; En℄ �B D[F1; : : : ; Fn℄.In general a property P is nothing but a
lass of pro
esses, i.e., the
lass ofpro
esses whi
h satisfy P . We extend this
on
ept to
ontexts as follows.De�nition 4 (P-
ontexts). Let P be a
lass of pro
esses and C[X1; : : : ; Xn℄be a
ontext whose free variables are in fX1; : : : ; Xng. C[X1; : : : ; Xn℄ is said tobe a P-
ontext if for all E1; : : : ; En 2 P it holds that C[E1; : : : ; En℄ 2 P.3 A
tion Re�nementIt is standard pra
ti
e in software development to obtain the �nal program start-ing from an abstra
t, possibly not exe
utable, spe
i�
ation by su

essive re�ne-ments steps. Abstra
t operations are repla
ed by more detailed programs whi
h
an be further re�ned, until a level is rea
hed where no more abstra
tions o

ur.In the
ontext of pro
ess algebra, this stepwise development amounts to in-terpreting a
tions on a higher level of abstra
tion by more
ompli
ated pro
esseson a lower level. This is obtained by introdu
ing a me
hanism to translate a
-tions into pro
esses. There are several ways to do this. We adopt the synta
ti
approa
h and de�ne the re�nement step as a synta
ti
 pro
ess transformation.Given a pro
ess E in whi
h there is an o

urren
e of an abstra
t a
tion r theidea is to re�ne E by repla
ing r with a pro
ess F . This requires to introdu
e asuitable operation whi
h realizes the ne
essary links from the parts of E whi
hpre
ede an o

urren
e of r and the parts of E whi
h follow that o

urren
e. Inother words we have to hook F to E, whenever an a
tion r o

urs.To de�ne this transformation we need some de�nitions and some synta
ti
aloperations. We �rst introdu
e the
on
epts of free, bound and re�nable a
tions.De�nition 5 (Free, Bound and Re�nable a
tions). Let T be a SPA term.The set of free a
tions of T , denoted by f (T) in indu
tively de�ned as follows:free(0) = ;; free(Z) = ; where Z is a variable;free(a:T) = fag [free(T); free(T1 + T2) = free(T1) [free(T2);free(T1jT2) = free(T1) [free(T2); free(T n v) = free(T) n v;free(T [f ℄) = free(T) n fa j f(a) 6= ag; free(re
Z:T) = free(T):7

An a
tion o

urring in T is said to be bound if it is not free. We denote by b(T)the set of bound a
tions of T . An a
tion r is said to be re�nable in T if it doesnot o

ur bound in T and �r does not o

ur in T .Then we de�ne the set of the parts of E whi
h synta
ti
ally follow the outer-most o

urren
es of an a
tion r, and the
ontext Efrg whi
h represents the partof E before the outermost o

urren
es of r.De�nition 6 (E�r and Efrg). Let E be a SPA term and r be an a
tiono

urring in E. The set of terms E�r is indu
tively de�ned as follows:0�r = ;; Z�r = ;;(r:T)�r = fTg; (a:T)�r = T�r; if a 6= r;(T1 + T2)�r = T1�r [T2�r; (T1jT2)�r = T1�r [T2�r;(T n v)�r = T�r; (T [f ℄)�r = T�r;(re
Z:T)�r = T�r:Let E�r = fT1; : : : ; Tng and XT1 ; : : : ; XTn be variables whi
h do not o

ur in E.The
ontext Efrg is indu
tively de�ned as follows:0frg = 0; Zfrg = Z;(r:T)frg = �:XT ; (a:T)frg = a:(Tfrg); if a 6= r;(T1 + T2)frg = T1frg+ T2frg; (T1jT2)frg = T1frgjT2frg;(T n v)frg = (Tfrg) n v; (T [f ℄)frg = (Tfrg)[f ℄;(re
Z:T)frg = re
Z:(Tfrg):Example 1.{ Let E � r:0ja:0. We have that E�r is f0g and Efrg is �:X0ja:0.{ Let E � (a:r:0 + b:r:
:r:a:0) j r:0. The set E�r
ontains two pro
essesand is equal to f0;
:r:a:0g. Note that the term
:r:a:0 in E�r
ontains ano

urren
e of r. The
ontext Efrg is (a:�:X0 + b:�:X
:r:a:0) j �:X0. The setof the free variables of Efrg is exa
tly fXT j T 2 E�rg.{ Let E � re
Z:(a:Z+r:Z). We have that E�r is fZg and Efrg is re
Z:(a:Z+�:XZ). In this
ase E�r has only one element whi
h is not a pro
ess.De�nition 7 (F Y). Let F be a term and Y be a variable not o

urring in F .F Y is the
ontext obtained by repla
ing ea
h o

urren
e of 0 in F with Y .The re�nement of an a
tion r in a term E with a term F is obtained bysu

essive
ontext
omposition as follows.De�nition 8 (Re�nement of r in E with F). Let E be a term, r 2 A
t ana
tion re�nable in E, and F be a term whi
h
an re�ne r in E, that is, su
h thatb(E) \ free(F) = ; and r and �r do not o

ur in F . Let Y be a variable whi
hdoes not o

ur neither in E nor in Efrg. Let E�r = fT1; : : : ; Tng. The partialre�nement ParRef (r; E; F) of r in E with F is de�ned asParRef (r; E; F) = Efrg[F Y [T1℄; : : : ; F Y [Tn℄℄:The re�nement Ref (r; E; F) of r in E with F is8

{ ParRef 0(r; E; F) = E, if r does not o

ur in E;{ ParRef 1(r; E; F) = ParRef (r; E; F), if r o

urs on
e in E;{ ParRef n+1(r; E; F) = ParRef (r;ParRef n(r; E; F); F), if r o

urs n + 1times in E.Intuitively E�r are the parts of E whi
h synta
ti
ally follow the o

urren
esof the a
tion r, while Efrg is the part of E whi
h pre
edes the r's. The holesXT 's in Efrg serve to hook the re�nement F . Similarly the free variable Y ofF Y serves to hook the elements of E�r after the exe
ution of F . The partialre�nement ParRef (r; E; F) repla
es in E as many o

urren
es as possible of rwith F . When one o

urren
e of r is followed by another o

urren
e of r (e.g.,r:a:r:0) the partial re�nement repla
es only the �rst o

urren
e. Hen
e in orderto repla
e all the o

urren
es in the worst
ase it is ne
essary to
ompute thepartial re�nement n times, where n is the number of o

urren
es of r in E. Thisis equivalent to say that our de�nition introdu
es a partial order between theo

urren
es of r, and it repla
es the r's following this partial order. We wouldobtain the same result by arbitrarily
hoosing at ea
h step one o

urren
e of rrepla
ing it with F , and going on until there are no more o

urren
es of r.Noti
e that even if E is a pro
ess E�r
an be a set of terms with free variables(see Example 1), while the XT 's are always the only free variables o

urring inEfrg. Hen
e, if E is a pro
ess, then Ref (r; E; F) is a pro
ess.Example 2. We
onsider again the three pro
esses of Example 1.{ Let E � r:0ja:0 and F � b1:b2:0. The re�nement Ref (r; E; F) is equal toParRef (r; E; F) and it is the pro
ess (�:b1:b2:0)ja:0. It is worth noti
ing thatin the re�ned pro
ess the a
tion a
an be performed before the expansion ofa
tion r is �nished. In fa
t, our re�nement is not atomi
.{ Let E � (a:r:0 + b:r:
:r:a:0) j r:0 and F � e:f:0. The partial re�nementParRef (r; E; F) is the the pro
ess E0 � a:�:e:f:0+ b:�:e:f:
:r:a:0) j �:e:f:0.Sin
e the
ontext E0frg is (a:�:e:f:0+b:�:e:f:
:�:Xa:0) j �:e:f:0, Ref (r; E; F)is ParRef (r; E0; F) = a:�:e:f:0+ b:�:e:f:
:�:e:f:a:0) j �:e:f:0.{ Let E � re
Z:(a:Z + r:Z) and F � b:
:0. The re�nement Ref (r; E; F) is thepro
ess re
Z:(a:Z + �:b:
:Z).Noti
e that the re�nement Ref (r; E; F) is de�ned only if r is re�nable in Eand F
an re�ne r in E. From now on when we write Ref (r; E; F) we alwaysta
itly assume that r, E, and F are su
h that the re�nement is de�ned. Similarly,when we write E�r or Efrg we assume that r is re�nable in E.The re�nement introdu
ed in De�nition 8 is based on synta
ti
 substitutionsof subterms in SPA language. It is worth noti
ing that it is not the straightestsynta
ti
 substitution: the a
tion r is substituted by �:F and not by F . Thus,for instan
e, Ref (r; r:0+ a:b:0;
:0+ d:0) is �:(
:0+ d:0) + a:b:0 instead of
:0+d:0 + a:b:0. Our
hoi
e is motivated by the idea that the implementation of anabstra
t a
tion r by means of a more
omplex pro
ess F requires �rst
alling Fand then exe
uting it. This
hoi
e has also the ni
e
onsequen
e of preservingguarded terms. In fa
t, it is easy to prove that if E is a guarded term then also9

Efrg is guarded. This property would not hold if XT instead of �:XT would beused to abstra
t the a
tion r.As many other synta
ti
 re�nements (see [18℄) our re�nement is not atomi
and it does not preserve all semanti
 properties. In parti
ular, it preserves neitherweak nor strong bisimulation, as shown by the following example.Example 3.{ Let E1 � r:0ja:0 and E2 � r:a:0 + a:r:0. E1 and E2 are strongly bisimilar.Let F � b:
:0. We have that Ref (r; E1; F) and Ref (r; E2; F) are not evenweakly bisimilar. In parti
ular, the �rst pro
ess
an perform the sequen
e ofa
tions b:a:
:0, while the se
ond
annot.{ Let E � a:r:b:
:0, F1 � d:0je:0 and F2 � d:e:0 + e:d:0. We have that F1and F2 are strongly bisimilar, but Ref (r; E; F1) is not strongly bisimilar toRef (r; E; F2).However, exploiting Theorem 5 (see next se
tion) we get the following result.Theorem 2. Let E;F1; F2 be terms. If F Y1 �B F Y2 , then Ref (r; E; F1) �BRef (r; E; F2). If E;F1; F2 are terms of the guarded SPA and F Y1 �B F Y2 , thenRef (r; E; F1) �B Ref (r; E; F2).Proof. By indu
tion on the stru
ture of E.If either E � Z or E � 0, we immediately get the thesis.If E � r:E1, thenRef(r; r:E1; F1) � by Theorem 5�:F Y1 [Ref(r; E1; F1)℄ �B sin
e F Y1 �B F Y2�:F Y2 [Ref(r; E1; F1)℄ �B by indu
tion�:F Y2 [Ref(r; E1; F2)℄ � by Theorem 5Ref(r; r:E1; F2)If E � E1 +E2, thenRef(r; E1 +E2; F1) � by Theorem 5Ref(r; E1; F1) +Ref(r; E2; F1) �B by indu
tionRef(r; E1; F2) +Ref(r; E2; F2) � by Theorem 5Ref(r; E1 +E2; F2)The other
ases are similar.The se
ond part of the thesis follows similarly exploiting also Theorem 1. utMoreover even if from E1 �B E2 we do not get that ParRef (r; E1; F) �BParRef (r; E2; F) (see Example 3) we
an preserve the equivalen
e provided thatit holds also between the
ontexts E1frg and E2frg.Theorem 3. Let E1; E2; F be terms. If E1frg �B E2frg, then it holds thatParRef (r; E1; F) �B ParRef (r; E2; F). If E1; E2 are terms of the guarded SPAand E1frg �B E2frg, then ParRef (r; E1; F) �B ParRef (r; E2; F).Proof. The �rst part of the thesis follows from the fa
t that �B is a
ongruen
e.The se
ond part of the thesis follows from Theorem 1. ut10

It is worth noti
ing that we
annot
hange the statement by
onsidering Refinstead of ParRef . It
an be Ref (r; E1; F)frg 6�B Ref (r; E2; F)frg even ifParRef (r; E1; F) �B ParRef (r; E2; F). For instan
e taking the pro
esses E1 �r:(r:0ja:0), E2 � r:(a:r:0+r:a:0) and F � b:
:0we have that ParRef (r; E1; F) �BParRef (r; E2; F), but the
ontexts ParRef (r; E1; F)frg and ParRef (r; E2; F)frgare not bisimilar. Thus, we
annot iterate the above reasoning. We
ould avoidthis problem by adding the
onstraint that no element in E�r
ontains r.By applying both the above results we immediately get the
orollary below.Corollary 1. Let E1, E2, F1, and F2 be terms. If E1frg �B E2frg and F Y1 �BF Y2 , then ParRef (r; E1; F1) �B ParRef (r; E2; F2). If E1; E2; F1; F2 are terms ofthe guarded SPA su
h that E1frg �B E2frg and F Y1 �B F Y2 , then it holdsParRef (r; E1; F1) �B ParRef (r; E2; F2).4 A
tion Re�nement and CompositionalityAt any �xed abstra
tion level during the top-down development of a program,it is unrealisti
 to think that there is just one a
tion to be re�ned at that level.Usually, di�erent abstra
t a
tions
oexist, all of them have to be re�ned, andwe do not want to worry about the spe
i�
 ordering in whi
h the re�nementso

ur. This is guaranteed only if the re�nement operation enjoys
ompositionalproperties. Here we show some of the
ompositional properties of our re�nement.First we show that our re�nement is lo
al to the
omponents in whi
h thea
tion to be re�ned o

urs. This is a
onsequen
e of the following theorem.Theorem 4. Let E1; : : : ; En and F be terms. Let C[Z1; : : : ; Zn℄ be a
ontextwith no o

urren
es of r and �r. It holdsRef (r; C[E1; : : : ; En℄; F) � C[Ref (r; E1; F); : : : ;Ref (r; En; F)℄:Proof. We
onsider the
ase n = 1, the other
ases are similar. The theorem,in this
ase, follows from the following
laim by
hoosing m as the number ofo

urren
es of r in E.Claim. For everym � 0, it holds C[ParRefm(r; E; F)℄ � ParRefm(r; C[E℄; F):Proof. The proof follows by indu
tion on m. The base m = 0 is trivial. The
ase m > 1 of the indu
tive step is a
onsequen
e of fun
tional
omposition. Tohandle the
ase m = 1 we pro
eed by indu
tion on the stru
ture of C.If C � Z, then we immediately have the thesis.If C � C1 + C2, thenC[ParRef(r; E; F)℄ � C1[ParRef(r; E; F)℄ + C2[ParRef(r; E; F)℄� ParRef(r; C1[E℄; F) + ParRef(r; C2[E℄; F);this last applying the de�nition of re�nement is synta
ti
ally equivalent toParRef(r; C[E℄; F), i.e., we have the thesis. All the other
ases are similar. ut11

Hen
e, if we have a term G whi
h is of the form E1jE2j : : : jEn and thea
tion r o

urs only in Ei it is suÆ
ient to apply the re�nement to Ei to obtainRef (r;G; F) � E1jE2j : : : jRef (r; Ei; F)j : : : jEn.Example 4. Let us
onsider the pro
essG � re
V:(a:V +re
W:(a:W+r:W)). We
an de
ompose it into C[Z℄ � re
V (a:V + Z) and E � re
W:(a:W + r:W) andapply the re�nement to E. For instan
e, if F � b:
:0 we get that Ref (r; E; F) �re
W:(a:W+�:b:
:W). Hen
e, Ref (r;G; F) � re
V:(a:V +re
W:(a:W+�:b:
:W)).Instead of applying dire
tly the de�nition of re�nement it is possible to
om-pute the re�nement by indu
tion on the stru
ture of the pro
ess E to be re�ned,as shown by the following theorem.Theorem 5. Let E and F be terms.Ref (r;0; F) � 0;Ref (r; Z; F) � Z;Ref (r; r:E; F) � �:F Y [Ref (r; E; F)℄;Ref (r; a:E; F) � a:Ref (r; E; F); if a 6= r;Ref (r; E1 +E2; F) � Ref (r; E1; F) +Ref (r; E2; F);Ref (r; E1jE2; F) � Ref (r; E1; F)jRef (r; E2; F);Ref (r; E[f ℄; F) � Ref (r; E; F)[f ℄;Ref (r; E n v; F) � Ref (r; E; F) n v;Ref (r; re
Z:E1; F) � re
Z:Ref (r; E1; F):Proof. First, we prove the following Claim.Claim. Let n � 0. Then,1. ParRefn(r; a:E; F) � a:ParRefn(r; E; F), if a 6= r;2. ParRefn(r; E1 +E2; F) � ParRefn(r; E1; F) + ParRefn(r; E2; F);3. ParRefn(r; E1 j e2; F) � ParRefn(r; E1; F) jParRefn(r; E2; F);4. ParRefn(r; E[f ℄; F) � ParRefn(r; E; F)[f ℄;5. ParRefn(r; E n v; F) � ParRefn(r; E; F) n v;6. ParRefn(r; re
Z:E1; F) � re
Z:ParRefn(r; E1; F);7. ParRefn+1(r; r:E; F) � �:F Y [ParRefn(r; E; F)℄.Proof. Properties from 1 to 6 follow from the Claim inside the proof of Theorem4. In order to prove the last one we pro
eed by indu
tion on n � 1.Base n = 1.ParRef(r; r:E; F) � �:F Y [E℄ sin
e r:Efrg = �:XE� �:F Y [Ref(r; E; F)℄ sin
e r does not o

ur in E:Indu
tive step, let n � 2.ParRefn(r; r:E; F) � ParRef(r; ParRefn�1(r; r:E; F); F)� ParRefn�1(r; ParRef(r; r:E; F); F) by fun
t.
omposition� ParRefn�1(r; �:F Y [E℄; F) sin
e r:Efrg = �:XE� �:F Y [ParRefn�1(r; E; F)℄ by point 1: ut12

Our theorem follows by
hoosing n as the number of o

urren
es of r in E. utIf we need to re�ne two a
tions in a pro
ess E, then the order in whi
h we applythe re�nements does not matter.Theorem 6. Let E be a term. Let F1 and F2 be two terms with no o

urren
esof r1, r2, �r1, and �r2.Ref (r2;Ref (r1; E; F1); F2) � Ref (r1;Ref (r2; E; F2); F1):Proof. We pro
eed by indu
tion on the stru
ture of E.Base. The
ases 0 and X are trivial.Indu
tive step. The more interesting
ase is r1:ERef(r2; Ref(r1; r1:E; F1); F2)� Ref(r2; �:F Y1 [Ref(r1; E; F1)℄; F2) by Theorem 5� �:Ref(r2; F Y1 [Ref(r1; E; F1)℄; F2) by Theorem 5� �:F Y1 [Ref(r2; Ref(r1; E; F1); F2) by Theorem 4, sin
e r2 is not in F1� �:F Y1 [Ref(r1; Ref(r2; E; F2); F1) by indu
tion� Ref(r1; r1:Ref(r2; E; F2); F1) by Theorem 5� Ref(r1; Ref(r2; r1:E; F2); F1) by Theorem 5The
ase r2:E is symmetri
. All the other
ases have to be treated in the sameway by applying Theorem 5. Let us only see the
ase E1 +E2Ref(r2; Ref(r1; E1 +E2; F1); F2)� Ref(r2; Ref(r1; E1; F1) +Ref(r1; E2; F1); F2)� Ref(r2; Ref(r1; E1; F1); F2) +Ref(r2; Ref(r1; E2; F1); F2)� Ref(r1; Ref(r2; E1; F2); F1) +Ref(r1; Ref(r2; E2; F2); F1) by indu
tion� Ref(r1; Ref(r2; E1 +E2; F2); F1) utExample 5. Let E � r1:a:0 + r2:b:r2:0, F1 � b:0 and F2 �
:0. We have thatRef (r2;Ref (r1; E; F1); F2) � ParRef 2(r2; �:b:a:0+ r2:b:r2:0; F2) �ParRef (r2;ParRef (r2; �:b:a:0+ r2:b:r2:0; F2); F2) � �:b:a:0+ �:
:b:�:
:0 �Ref (r1; r1:a:0+ �:
:b:�:
:0; F1) � Ref (r1;ParRef 2(r2; E; F2); F1) �Ref (r1;Ref (r2; E; F2); F1).Moreover, we
an re�ne r1 in E using F1 and r2 in F1 using F2 independentlyfrom the order in whi
h the re�nements are applied.First we extend Theorem 4.Lemma 3. Let C[Z1; : : : ; Zn℄ be a
ontext. Let E1; : : : ; En; F be terms.Ref(r; C[E1; : : : ; En℄; F) � Ref(r; C; F)[Ref(r; E1; F); : : : ; Ref(r; En; F)℄:Proof. We prove the thesis by indu
tion on the stru
ture of C in the
ase n = 1.The general
ase is similar.If C has no o

urren
es of Z, then we immediately have the thesis.If C � Z, then we have the thesis. 13

If C � a:D[Z℄ with a 6= r, thenRef(r; a:D[E℄; F) � by Theorem 5a:Ref(r;D[E℄; F) � by indu
tiona:Ref(r;D; F)[Ref(r; E; F)℄ � by Theorem 5Ref(r; a:D; F)[Ref(r; E; F)℄If C � r:D[Z℄, thenRef(r; r:D[E℄; F) � by Theorem 5�:F Y [Ref(r;D[E℄; F)℄ � by indu
tion�:F Y [Ref(r;D; F)[Ref(r; E; F)℄℄ � by Theorem 5Ref(r; r:D; F)[Ref(r; E; F)℄If C � H [Z℄ +K[Z℄, thenRef(r;H [E℄ +K[E℄; F) � by Theorem 5Ref(r;H [E℄; F) +Ref(r;K[E℄; F) � by indu
tionRef(r;H; F)[Ref(r; E; F)℄ +Ref(r;K; F)[Ref(r; E; F)℄ � by Theorem 5Ref(r;H +K;F)[Ref(r; E; F)℄All the other
ases are similar. utWe need also the following te
hni
al lemma.Lemma 4. Let E;F1; F2 be terms su
h that F2 has no o

urren
es of r1 and �r1.Ref(r2; ParRef(r1; r1:E; F1); F2) �ParRef(r1; Ref(r2; r1:E; F2); Ref(r2; F1; F2)):Proof. We �rst prove the following
laim.Claim. Ref(r; F Y ; G) � Ref(r; F;G)Y :Proof. By indu
tion on the stru
ture of F .The only interesting
ase is F � r:H .Ref(r; r:HY ; G) � by Theorem 5�:GZ [Ref(r;HY ; G)℄ � by indu
tion�:GZ [Ref(r;H;G)Y ℄ � by Def. of F Y(�:GZ [Ref(r;H;G)℄)Y � by Theorem 5Ref(r; r:H;G)Y utWe are now ready to prove the lemma.Ref(r2; ParRef(r1; r1:E; F1); F2) � by Def. of ParRefRef(r2; �:F Y1 [E℄; F2) � by Lemma 3Ref(r2; �:F Y1 ; F2)[Ref(r2; E; F2)℄ � by Theorem 5�:Ref(r2; F Y1 ; F2)[Ref(r2; E; F2)℄ � by the above
laim�:Ref(r2; F1; F2)Y [Ref(r2; E; F2)℄ � by Def. of ParRefParRef(r1; r1:Ref(r2; E; F2); Ref(r2; F1; F2)) � by Theorem 5ParRef(r1; Ref(r2; r1:E; F2); Ref(r2; F1; F2)) ut14

Theorem 7. Let E;F1; F2 be terms su
h that r1 and �r1 do not o

ur in F2.Ref(r2; Ref(r1; E; F1); F2) � Ref(r1; Ref(r2; E; F2); Ref(r2; F1; F2)):Proof. We pro
eed by indu
tion on the stru
ture of the term E.The
ases 0; Z;G1+G2; G1jG2; G[f ℄; Gnv; re
Z:G; a:G, with a 6= r1 immediatelyfollows from Theorems 4 and 5.Let E � r1:G.Ref(r2; Ref(r1; r1:G; F1); F2) �by Theorem 5Ref(r2; �:F Y1 [Ref(r1; G; F1)℄; F2) �by Lemma 3Ref(r2; �:F Y1 ; F2)[Ref(r2; Ref(r1; G; F1); F2)℄ �by indu
tionRef(r2; �:F Y1 ; F2)[Ref(r1; Ref(r2; G; F2); Ref(r2; F1; F2))℄ �by Theorem 4Ref(r1; Ref(r2; �:F Y1 ; F2)[Ref(r2; G; F2)℄; Ref(r2; F1; F2)) �by Lemma 3Ref(r1; Ref(r2; �:F Y1 [G℄; F2); Ref(r2; F1; F2)) �by Def. of ParRefRef(r1; Ref(r2; ParRef(r1; r1:G; F1); F2); Ref(r2; F1; F2)) �by Lemma 4Ref(r1; ParRef(r1; Ref(r2; r1:G; F2); Ref(r2; F1; F2)); Ref(r2; F1; F2)) �by Def. of RefRef(r1; Ref(r2; r1:G; F2); Ref(r2; F1; F2)) utExample 6. Let E � r1:a:0 + a:r2:0, F1 � b:r20 and F2 �
:0. We haveRef (r2;Ref (r1; E; F1); F2) � Ref (r2; �:b:r2:a:0+a:r2:0; F2) � �:b:�:
:a:0+a:�:
:0� Ref (r1; r1:a:0+ a:�:
:0; b:�:
:0) � Ref (r1;Ref (r2; E; F2);Ref (r2; F1; F2)).5 A
tion Re�nement and Se
urity PropertiesLet P be a generi
 property, i.e., a
lass of pro
esses. It is immediate to provethat the partial re�nement applied to P-
ontexts preserves P .Theorem 8. Let P be a
lass of pro
esses. Let E and F be pro
esses. If Efrgand F Y are P-
ontexts and E�r is a set of P pro
esses, then ParRef (r; E; F)is a P pro
ess.Proof. Sin
e F Y is a P-
ontext, Y is the only free variable in it, and E�r isa set of P pro
ess, we have that fF Y [T ℄ j T 2 E�rg is a set of P pro
esses.Hen
e, sin
e Efrg is a P-
ontext with only the XTi 's as free variables, we getthat ParRef(r; E; F) � Efrg[F Y [T1℄; : : : ; F Y [Tn℄℄ is a P-pro
ess. utNoti
e that the above theorem
annot be applied when E�r is not a set ofpro
esses, i.e., when in E�r there is a term with a free variable (see Example15

2). This means that we have no general results when r o

urs inside a re
ursiveloop. Moreover, Theorem 8 is limited to the partial re�nement, sin
e the fa
t thatParRef (r; E; F) is in P does not imply that ParRef (r; E; F)frg is a P-
ontext.In order to obtain a more general result we introdu
e the following de�nition.De�nition 9 (P-re�nable
ontexts). Let P be a
lass of pro
esses. A
lassC of
ontexts is said to be a
lass of P-re�nable
ontexts if:{ C is a
lass of P-
ontexts;{ if C;D 2 C, then C[D℄ 2 C;{ if C 2 C, then C�r [fCfrgg � C where r is re�nable in C.Theorem 9. Let P be a
lass of pro
esses and C be a
lass of P-re�nable
on-texts. Let E and F be pro
esses. If E;F 2 C, then Ref (r; E; F) is a P pro
essand it is in C.Proof. Sin
e E 2 C we have that E�r [fEfrgg � C. From the fa
t that C is
losed under
omposition we get the thesis. utIn order to apply either Theorem 8 or Theorem 9 we need to be able to
har-a
terize
lasses of P-
ontexts. This problem has been
onsidered in[4, 5℄ wheresome se
urity properties have been
onsidered and
lasses of
ontexts with ni
eproperties have been identi�ed. Moreover, in order to apply Theorem 9 we needto
hara
terize
lasses of P-re�nable
ontexts. In the following subse
tion weanalyze one of the se
urity property
onsidered in[4, 5℄ , namely P BNDC , andwe show how to apply (and generalize) Theorems 8 and 9.5.1 Preserving P BNDC under Re�nementInformation
ow se
urity in a multilevel system aims at guaranteeing that nohigh level (
on�dential) information is revealed to users running at low se
uritylevels [14, 11, 19, 22, 23℄, even in the presen
e of any possible mali
ious pro
ess.Persistent Bisimulation Non Dedu
ibility on Composition (P BNDC , for short)[13℄, is an information
ow se
urity property suitable to analyze pro
esses in
ompletely dynami
 hostile environments, i.e., environments whi
h
an be dy-nami
ally re
on�gured at run-time. The notion of P BNDC is based on the ideaof Non-Interferen
e [15℄ and requires that every state whi
h is rea
hable by thesystem still satis�es a basi
 Non-Interferen
e property. In this paper we presentP BNDC by exploiting an unwinding
hara
terization of it (see [2℄).We �rst introdu
e the notion of weak bisimulation on low se
urity a
tions.De�nition 10 (Weak Bisimulation on Low A
tions). A symmetri
 binaryrelation R � E �E over pro
esses is a weak bisimulation on low se
urity a
tionsif (E;F) 2 R implies, for all a 2 L [f�g, if E a! E0, then there exists F 0 su
hthat F â=) F 0 and (E0; F 0) 2 R.Two pro
esses E;F 2 E are weakly bisimilar on low se
urity a
tions, de-noted by E �LB F , if there exists a weak bisimulation on low se
urity a
tions R
ontaining the pair (E;F). 16

The de�nition of P BNDC in terms of unwinding
ondition requires that allthe high se
urity a
tions
an be lo
ally simulated by a sequen
e of � a
tions.De�nition 11 (P BNDC). A pro
ess E is P BNDC if for all E0 rea
hablefrom E (i.e., E a1! : : : an! E0) and for all h 2 H if E0 h! E00, then E0 �̂=) E000with E00 nH �B E000 nH.Example 7. Let l 2 L and h 2 H . The pro
ess h:l:h:0+ �:l:0 is P BNDC . Thepro
ess h:l:0 is not P BNDC .The de
idability of P BNDC has been proved in [13℄ and an eÆ
ient (poly-nomial) algorithm has been presented in [12℄. In [2℄, a proof system whi
h allowsus to in
rementally build P BNDC pro
esses has been obtained by exploitingthe unwinding
hara
terization of P BNDC .The
ompositional properties of P BNDC allows us to synta
ti
ally
hara
-terize two
lasses of P BNDC -
ontexts.De�nition 12 (The
lasses C0 and C).{ C0 is the
lass of
ontexts
ontaining: the pro
ess 0; Z, where Z is a variable;Pi2I li:Ci +Pj2J (hj :Dj + �:Dj), with li 2 L [f�g, hj 2 H, Ci; Dj 2 C0;C n v, C[f ℄, and re
Z:C, with C 2 C0.{ C is the
lass of
ontexts
ontaining: all the P BNDC pro
esses; Z, where Zis a variable; Pi2I li:Ci +Pj2J (hj :Dj + �:Dj), with li 2 L [f�g, hj 2 H,Ci; Dj 2 C; C n v, C[f ℄, and re
Z:C, with C 2 C.Lemma 5. C0 and C are
lasses of P BNDC-
ontexts.Proof. We prove that C0 is a
lass of P BNDC -
ontexts.The only interesting
ase is the
ase of re
ursion.We have to prove that for all C 2 C0, for all E1; : : : ; En 2 P BNDC ,C[E1; : : : ; En℄ 2 P BNDC . Sin
e if E �B F , then E 2 P BNDC if and onlyif F 2 P BNDC , we
an prove that a pro
ess equivalent to C[E1; : : : ; En℄ isP BNDC .Sin
e the parallel
omposition is not used in C0, we
an push the restri
tionsand the renamings inside until we rea
h a variable. In fa
t (E1 + E2) n v �BE1 n v +E2 n v and (re
Z:E) n v �B re
Z:(E n v) (see Lemma 7 in [6℄).Moreover, by applying some transformations on the renamings we
an per-mute them with all the restri
tions, in order to push the renamings inside. Hen
e,we
an transform C into D, where D is built using the following produ
tionsB ::= X j B n v j B[f ℄D ::= B jPi2I li:Di +Pj2J (hj :Dj + �:Dj)with li 2 L [f�g and hj 2 H . The
ontext D is strongly bisimilar to C, hen
eit is suÆ
ient to prove that D[E1; : : : ; En℄ is P BNDC .The pro
ess D[E1; : : : ; En℄
an be seen as G[F1; : : : ; Fn℄, where G is builtonly using variables and sums of the formPi2I li:Gi+Pj2J (hj :Gj + �:Gj) andFi is of the form Ei[f ℄ n v for some f and v. Sin
e the Ei's are P BNDC , theFi's are P BNDC . Sin
e G is built using only variables and sums we have thatif G[F1; : : : ; Fn℄ rea
hes a pro
ess G0, then two
ases are possible:17

{ G rea
hes G and G0 � G[F1; : : : ; Fn℄;{ there exists i su
h that Fi rea
hes G0.In the se
ond
ase, sin
e Fi is P BNDC we immediately get that if G0 h! G00,then G0 �̂) G000, with G00 �LB G000. In the �rst
ase if G[F1; : : : ; Fn℄ h! G00, two
ases are possible:{ G h! ~G and G00 � ~G[F1; : : : ; Fn℄;{ there exists i su
h that Fi h! G00.Again in the se
ond
ase we get the thesis, sin
e Fi is P BNDC . In the �rs
asewe get the thesis sin
e by
onstru
tion G �! ~G, and G00 �LB ~G[F1; : : : ; Fn℄.We prove that C is a
lass of P BNDC -
ontexts.The thesis immediately follows from the fa
t that ea
h
ontext in C is noth-ing but a
ontext of C0 in whi
h some variables have already been repla
ed byP BNDC pro
esses. utBoth C0 and C are de
idable
lasses of
ontexts. In parti
ular, the de
idabilityof C is a
onsequen
e of the fa
t that P BNDC is de
idable (see [13, 12℄).Sin
e the
lass C is
losed under
omposition of
ontexts we obtain the fol-lowing result. Noti
e that it is not a
onsequen
e of Theorem 8, sin
e E�r
annow
ontain terms with free variables.Corollary 2. Let E and F be pro
esses. If E�r [fEfrg; F Y g � C, thenParRef (r; E; F) 2 P BNDC :Proof. Sin
e Efrg, E�r, and F Y are in C we have that ParRef(r; E; F) is inC. Hen
e by Theorem 5, ParRef(r; E; F) is a P BNDC -
ontext. Sin
e E is apro
ess ParRef(r; E; F) is a pro
ess, i.e., it is a P BNDC pro
ess. utThe following lemma allows us to instantiate Theorem 9 in the
ase ofP BNDC .Lemma 6. C0 is a
lass of P BNDC-re�nable
ontexts.Proof. By Lemma 5 we have that C0 is a
lass of P BNDC -
ontexts.It is immediate to prove that C0 is
losed under
omposition.By de�nition of C0 we have that if C 2 C, then C�r � C0.The fa
t that if C 2 C, then Cfrg 2 C is a
onsequen
e of the fa
t that werepla
e r with �:Y , hen
e all the sums remain guarded. utCorollary 3. Let E;F be pro
esses. If E;F Y 2 C0, then Ref (r; E; F) is aP BNDC pro
ess and it is in C0.Proof. This is a
onsequen
e of Theorem 9 and Lemma 6. utWe
on
lude this se
tion by reporting an example adapted from [18℄.18

Example 8. Let us
onsider a distributed data base whi
h
an take two valuesand whi
h
an be both queried and updated. In parti
ular, the high level user
an query it (qry1, qry2), while the low level user
an only update it (upd1,upd2). Hen
e qry1; qry2 2 H and upd1; upd2 2 L. We
an model the data basewith the following SPA pro
essE � re
Z:(qry1:Z + upd1:Z + �:Z+upd2:re
W:(qry2:W + upd2:W + �:W + upd1:Z)):The pro
ess E is in C0. We
an now re�ne the update a
tions by requiringthat ea
h update is requested and
on�rmed, i.e., we re�ne upd1 using F1 �req1:
nf1:0 and upd2 using F2 � req2:
nf2:0, where req1;
nf1; req2;
nf2 arelow se
urity level a
tions. We obtain the pro
ess Ref(r2; Ref(r1; E; F1); F2) isre
Z:(qry1:Z + req1:
nf1:Z + �:Z+req2:
nf2:re
W:(qry2:W + req2:
nf2:W + �:W + req1:
nf1:Z)):Sin
e F Y1 and F Y2 are in C0, by Corollary 3, Ref(r2; Ref(r1; E; F1); F2) is aP BNDC pro
ess.6 Con
lusions and Related WorksIn this paper we study the relations between a
tion re�nement,
ompositionality,and information
ow se
urity within the Se
urity Pro
ess Algebra (SPA).We formalize the notion of a
tion re�nement in terms of
ontext
omposi-tion. This approa
h allows us to exploit properties of open terms to individuate
onditions under whi
h se
urity properties
an be preserved under a
tion re�ne-ment. In parti
ular, we
onsider the se
urity property P BNDC and show howit
an be preserved under a
tion re�nement.A
tion re�nement has been extensively studied in the literature. There areessentially two interpretations of a
tion re�nement: semanti
 and synta
ti
 (see[16℄). In the semanti
 interpretation an expli
it re�nement operator, writtenE[r ! F ℄, is introdu
ed in the semanti
 domain used to interpret the termsof the algebra. The semanti
s of E[r ! F ℄ models the fa
t that r is an a
tionof E to be re�ned by pro
ess F . In the synta
ti
 approa
h, the same situationis modelled by synta
ti
ally repla
ing r by F in E. The repla
ement
an bestati
, i.e., before exe
ution, or dynami
, i.e., r is repla
ed as soon as it o

urswhile exe
uting E. In order to
orre
tly formalize the repla
ement, the pro
essalgebra is usually equipped with an operation of sequential
omposition (ratherthan the more standard a
tion pre�x), as, e.g., in ACP, sin
e otherwise it wouldnot be
losed under the ne
essary synta
ti
 substitution. Our approa
h to a
-tion re�nement follows the stati
, synta
ti
 interpretation. However, the use of
ontext
omposition to realize the re�nement allows us to keep the original SPAlanguage without introdu
ing a sequential
omposition operator for pro
esses.A
tion re�nement is also
lassi�ed as atomi
 or non-atomi
. Atomi
 re�ne-ment is based on the view that a
tions are atomi
 and their re�nements should19

in some sense preserve this atomi
ity (see, e.g.,[9, 7, 17℄). On the other hand,non-atomi
 re�nement takes the view that atomi
ity is always relative to the
urrent level of abstra
tion and may, in a sense, be destroyed by the re�nement(see, e.g., [1, 10, 24℄). In this paper we follow the non-atomi
 approa
h. A
tually,this approa
h is on the whole more popular then the former.In the literature the term re�nement is also used to indi
ate any transforma-tion of a system that
an be justi�ed be
ause the transformed system implementsthe original one on the same abstra
tion level, by being more nearly exe
utable,for instan
e more deterministi
. The implementation relation is expressed interms of pre-orders su
h as tra
e in
lusion or various kinds of simulation. Manypapers in this tradition
an be found in [8℄. The relations between this form ofre�nement and information
ow se
urity have been studied in [3℄.Referen
es1. L. A
eto and M. Hennessy. Adding a
tion re�nement to a �nite pro
ess algebra.Information and Computation, 115(2):179{247, 1994.2. A. Bossi, R. Fo
ardi, C. Piazza, and S. Rossi. A Proof System for InformationFlow Se
urity. In M. Leus
hel, editor, Logi
 Based Program Development andTransformation, volume 2664 of LNCS, pages 199{218. Springer-Verlag, 2003.3. A. Bossi, R. Fo
ardi, C. Piazza, and S. Rossi. Re�nement Operators and In-formation Flow Se
urity. In Pro
. of the International Conferen
e on SoftwareEngineering and Formal Methods (SEFM'03). IEEE Comp. So
. Press, 2003. Toappear.4. A. Bossi, D. Ma
edonio, C. Piazza, and S. Rossi. Se
ure Contexts for Con�dentialData. In Pro
. of the 16th IEEE Computer Se
urity Foundations Workshop, pages14{28. IEEE Computer So
iety Press, 2003.5. A. Bossi, D. Ma
edonio, C. Piazza, and S. Rossi. Information Flow Se
urity andRe
ursive Systems. In Italian Conferen
e on Theoreti
al Computer S
ien
e, LNCS.Springer-Verlag, 2004. To appear.6. A. Bossi, D. Ma
edonio, C. Piazza, and S. Rosssi. Se
ure Contexts for Informa-tion Flow Se
urity. Te
hni
al Report CS-2002-18, Dipartimento di Informati
a,Universit�a Ca' Fos
ari di Venezia, Italy, 2002.7. G. Boudol. Atomi
 a
tions. Bulletin of the EATCS, 38:136{144, 1989.8. J. W. de Bakker, W. P. de Roever, and G. Rozenberg, editors. Stepwise Re�nementof Distributed Systems, Models, Formalisms, Corre
tness, REX Workshop, Mook,The Netherlands, May 29 - June 2, 1989, Pro
eedings, volume 430 of Le
ture Notesin Computer S
ien
e. Springer, 1990.9. J. W. de Bakker and E. P. de Vink. Bisimulation semanti
s for
on
urren
y withatomi
ity and a
tion re�nement. Fundamenta Informati
ae, 20(1/2/3):3{34, 1994.10. P. Degano and R. Gorrieri. A
ausal operational semanti
s of a
tion re�nement.Information and Computation, 122(1):97{119, 1995.11. R. Fo
ardi and R. Gorrieri. Classi�
ation of Se
urity Properties (Part I: Infor-mation Flow). In R. Fo
ardi and R. Gorrieri, editors, Foundations of Se
urityAnalysis and Design, volume 2171 of LNCS. Springer-Verlag, 2001.12. R. Fo
ardi, C. Piazza, and S. Rossi. Proof Methods for Bisimulation based Infor-mation Flow Se
urity. In A. Cortesi, editor, Pro
. of Int. Workshop on Veri�
ation,Model Che
king and Abstra
t Interpretation, volume 2294 of LNCS, pages 16{31.Springer-Verlag, 2002. 20

13. R. Fo
ardi and S. Rossi. Information Flow Se
urity in Dynami
 Contexts. InPro
. of the IEEE Computer Se
urity Foundations Workshop (CSFW'02), pages307{319. IEEE Comp. So
. Press, 2002.14. S. N. Foley. A Universal Theory of Information Flow. In Pro
. of the IEEESymposium on Se
urity and Priva
y, pages 116{122. IEEE Comp. So
. Press, 1987.15. J. A. Goguen and J. Meseguer. Se
urity Poli
ies and Se
urity Models. In Pro
.of the IEEE Symposium on Se
urity and Priva
y, pages 11{20. IEEE Comp. So
.Press, 1982.16. U. Goltz, R. Gorrieri, and A. Rensink. Comparing synta
ti
 and semanti
 a
tionre�nement. Information and Computation, 125(2):118{143, 1996.17. R. Gorrieri, S. Mar
hetti, and U. Montanari. A2CCS: Atomi
 a
tions for CCS.Theoreti
al Computer S
ien
e, 72(2-3):203{223, 1990.18. R. Gorrieri and A. Rensink. A
tion Re�nement. Te
hni
al Report UBLCS-99-09,University of Bologna (Italy), 1999.19. J. M
Lean. Se
urity Models and Information Flow. In Pro
. of the IEEE Sympo-sium on Se
urity and Priva
y, pages 180{187. IEEE Comp. So
. Press, 1990.20. R. Milner. Communi
ation and Con
urren
y. Prenti
e-Hall, 1989.21. M. Nielsen, U. Engberg, and K. S. Larsen. Fully Abstra
t Models for a Pro
ess Lan-guage with Re�nement. In J. W. de Bakker, W. P. de Roever, and G. Rozenberg,editors, Pro
. of the Linear Time, Bran
hing Time and Partial Order in Logi
s andModels for Con
urren
y, S
hool/Workshop, volume 354 of LNCS, pages 523{548.Springer-Verlag, 1989.22. C. O'Halloran. A Cal
ulus of Information Flow. In Pro
. of the European Sympo-sium on Resear
h in Se
urity and Priva
y, pages 180{187. AFCET, 1990.23. G. Smith and D. M. Volpano. Se
ure Information Flow in a Multi-threaded Imper-ative Language. In Pro
. of ACM SIGPLAN-SIGACT Symposium on Prin
iplesof Programming Languages (POPL'98), pages 355{364. ACM Press, 1998.24. R. J. van Glabbeek and U. Goltz. Re�nement of a
tions and equivalen
e notionsfor
on
urrent systems. A
ta Informati
a, 37(4/5):229{327, 2001.25. N. Wirth. Program development by stepwise re�nement. Communi
ations of theACM, 14(4):221{227, 1971.

21

