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e,piazza,srossig�dsi.unive.itAbstra
t. Information 
ow se
urity in a multilevel system aims at guar-anteeing that no high level information is revealed to low levels. A usualrequirement to ensure information 
ow se
urity for a pro
ess is thatno generi
 atta
ker 
an indu
e a high-to-low information 
ow. This re-quirement is too demanding when we have some knowledge about the
ontexts where the pro
ess is going to run. To deal with these situationswe introdu
e the notion of se
ure 
ontexts for a pro
ess. The notion isparametri
 with respe
t to both the observational equivalen
e and theoperation used to 
hara
terize the low level behavior. In the paper wemainly analyze the 
ases of bisimulation and tra
e equivalen
e. We de-s
ribe how to build se
ure 
ontexts in these 
ases and we show thattwo well-known se
urity properties, BNDC and NDC, are just spe
ialinstan
es of our general notion.1 Introdu
tionInformation 
ow se
urity in a multilevel system aims at guaranteeing that nohigh level information is revealed to users running at low levels [7, 8, 10℄, even inthe presen
e of any possible mali
ious pro
ess. Our work starts from the obser-vation that su
h a requirement 
ould be too demanding when some knowledgeabout the 
ontext (environment) in whi
h the pro
ess is going to run is available.In our approa
h the 
ontext 
an perform both high and low level a
tion and 
analso in
orporate possible atta
kers.As an example, 
onsider a Java applet E downloadable from the site ofMoney&Money ltd whi
h should allow the Money&Money's 
ustomers (sellers)to get the pri
e list of its produ
ts, while the rest of the world should only getthe produ
t list. The applet opens a window with two buttons: if one 
li
ks onthe �rst button, the produ
t list is shown; otherwise, if one 
li
ks on the se
ondbutton, it is asked to insert a password and then the pri
e list is shown. Letpwd seller be the high level a
tion representing the fa
t that E is waitingfor a password from a 
ustomer before showing the pri
e list through the high(or low) level output a
tion pri
e list h (or pri
e list l). If the password isnot given, then E shows the produ
t list through the high (or low) level outputa
tion prod list h (or prod list l) 1. E 
an be represented by a CCS-like1 Noti
e that when the produ
t (or pri
e) list is shown on the video both a low-leveland a high-level user 
an read it. For this reason the output of the produ
t (or pri
e)list is represented by both a low and a high level a
tion.



pro
ess of the formpwd seller:(pri
e list h:0+ pri
e list l:0)+(prod list h:0+ prod list l:0):Money&Money does not want the applet to be exe
uted on a ma
hine (
ontext)C whi
h reveals some high level information (the pri
e list) to someone belongingto the rest of the world. Let us 
onsider two possible 
ontexts. Let C1 be thema
hine of the high level user in whi
h the password has been stored (in a
ookie). Then C1 
an be represented by a term of the formX jpwd seller:0:In this 
ase high level information is revealed: when a low level user intera
tswith C1[E℄ he 
an read the pri
e list, and thus it is reasonable to assume thatC1 is not se
ure for E. Another more involved 
ontext is, for instan
e, a ma
hineC2 shared between high and low level users su
h that only high level users 
anread the pri
e list, while low level ones 
an only read the produ
t list:pwd high:(X jpwd seller:0) + pwd low:X:In this 
ase the 
exibility of the 
ontext is obtained by splitting C2 into twonon-deterministi
 
omponents: the �rst one manages the intera
tions with highlevel users and has in memory the seller's password; the se
ond one intera
tswith low level users and does not provide any password. Note that if a highlevel user intera
ts with C[E℄ by inserting the password, the pri
e list be
omesreadable to low level observers. Does this really means that C is not se
ure forE? It depends on how stri
t we want to be. The high level user 
ould have thepermission to downgrade (see [11℄) the level of the information stored in thepri
e list.The pro
essE des
ribed here does not satisfy the basi
 information 
ow se
u-rity properties su
h as non-interferen
e [10℄ (also named NDC in [5℄). However,it is reasonable to assume that the 
ontext C2 is se
ure for E. To deal with thesesituations we introdu
e the notion of se
ure 
ontext for a pro
ess, whi
h 
anbe motivated both as se
urity for the pro
ess and se
urity for the pro
ess. Thisnotion is parametri
 with respe
t to both an observational equivalen
e relationand an operation used to 
hara
terize the low level view of a pro
ess. Here, we
onsider weak bisimulation and tra
e equivalen
e. We show how to build se
ure
ontexts and prove that the se
urity properties known as BNDC and NDC [5℄are just spe
ial instan
es of our general se
urity notion.2 Basi
 NotionsThe Se
urity Pro
ess Algebra [5℄ is a variation of Milner's CCS [9℄, where theset of visible a
tions is partitioned into high level a
tions and low level ones inorder to spe
ify multilevel systems. SPA syntax is based on the same elements



as CCS, i.e.: a set L of visible a
tions su
h that L = I [O where I = fa; b; : : :gis a set of input a
tions and O = f�a;�b; : : :g is a set of output a
tions; a spe
iala
tion � whi
h models internal 
omputations, not visible outside the system; a
omplement fun
tion �� : L ! L, su
h that ��a = a, for all a 2 L. A
t = L[f�g isthe set of all a
tions. Fun
tion �� is extended to A
t by de�ning �� = � . The setof visible a
tions is partitioned into two sets, H and L, of high and low a
tionssu
h that H = H and L = L.The syntax of SPA terms is de�ned as follows:T ::= 0 j Z j a:T j T + T j T jT j T n v j T [f ℄ j re
Z:Twhere Z is a variable, a 2 A
t , v � L, f : A
t ! A
t is su
h that f(��) = f(�),f(�) = � , f(H) � H [ f�g, and f(L) � L [ f�g.We apply the standard notions of free and bound (o

urren
es of) variablesto the variables o

urring in a SPA term. More pre
isely, all the o

urren
es ofthe variable Z in re
Z:T are bound ; and Z is free in a term T if there is ano

urren
e of Z in T whi
h is not bound.De�nition 1. A SPA pro
ess is a SPA term without free variables. We denoteby E the set of all SPA pro
esses, ranged over by E;F; : : :, and by EH the set ofall high level pro
esses, i.e., those 
onstru
ted only using a
tions in H [ f�g.A SPA term with free variables 
an be seen as an environment with pla
es (thefree o

urren
es of its variables) in whi
h other SPA terms 
an be inserted. Theresult of this substitution is still a SPA term, whi
h 
ould be a pro
ess. Forinstan
e, in the term h:0j(l:X + �:0) we 
an repla
e the variable X with thepro
ess �h:0 obtaining the pro
ess h:0j(l:�h:0+ �:0); or we 
an repla
e X by theterm a:Y obtaining the term h:0j(l:a:Y + �:0). When we 
onsider a SPA termas an environment we 
all it 
ontext.De�nition 2. A SPA 
ontext, ranged over by C;D; : : :, is a SPA term in whi
hfree variables 
an o

ur.We 
an 
onsider a 
ontext also as a 
ompound SPA 
onstru
tor. In fa
t it 
an beused to build new SPA terms from sets of SPA terms. Its arity is determined bythe number of its free variables. For instan
e X jX 
an be seen as a 
onstru
torof arity 1 whi
h transforms any pro
ess E into the parallel 
omposition withitself: EjE.We use the notation C[Y1; : : : ; Yn℄ when we want to stress the fa
t that weare interested only in the free o

urren
es of the variables Y1; : : : ; Yn. The termC[T1; : : : ; Tn℄ is the term obtained from C[Y1; : : : ; Yn℄ by repla
ing all the freeo

urren
es of Y1; : : : ; Yn with the terms T1; : : : ; Tn, respe
tively. For instan
e,we 
an write C[X ℄ � h:0j(l:X+ �:0) or D[X ℄ � (l:X+ �:0)jY or C 0[X ℄ � Y jh:0.Hen
e, the notation C[�h:0℄ stands for h:0j(l:�h:0+ �:0), while D[�h:0℄ � (l:�h:0+�:0)jY and C 0[�h:0℄ � Y jh:0. Note that the notation C[Y1; : : : ; Yn℄ does not implyneither that all the Y1; : : : ; Yn o

ur free in the 
ontext nor that they in
lude allthe variables o

urring free in the 
ontext.The operational semanti
s of SPA pro
esses is given in terms of LabelledTransition Systems (LTS, for short). In parti
ular, the LTS (E ;A
t ;!), whose



states are pro
esses, is de�ned by stru
tural indu
tion as the least relation gen-erated by the inferen
e rules depi
ted in Figure 1, where a is an a
tion of A
t ,while ` belongs to L.Pre�x �a:E a! ESum E1 a! E01E1 +E2 a! E01 E2 a! E02E1 +E2 a! E02Parallel E1 a! E01E1jE2 a! E01jE2 E2 a! E02E1jE2 a! E1jE02 E1 !̀ E01 E2 �̀! E02E1jE2 �! E01jE02Restri
tion E a! E0E n v a! E0 n v if a 62 vRelabelling E a! E0E[f ℄ f(a)! E0[f ℄Re
ursion C[re
Z:C[Z℄℄ a! E0re
Z:C[Z℄ a! E0Fig. 1. The operational rules for SPAIntuitively, 0 is the empty pro
ess that does nothing; a:E is a pro
ess that
an perform an a
tion a and then behaves as E; E1 +E2 represents the nonde-terministi
 
hoi
e between the two pro
esses E1 and E2; E1jE2 is the parallel
omposition of E1 and E2, where exe
utions are interleaved, possibly syn
hro-nized on 
omplementary input/output a
tions, produ
ing an internal a
tion � ;E n v is a pro
ess E prevented from performing a
tions in v. E[f ℄ is the pro
essE whose a
tions are renamed via the relabelling fun
tion f . Given a set v, thehiding operator mapping E into E=v, where the a
tions of v [ �v performed byE have been repla
ed by � a
tions, 
an be de�ned using relabelling as follows:E=v � E[fv℄, where fv(a) = a, if a 62 v [ �v and fv(a) = � , if a 2 v [ �v. Finally,re
Z:C[Z℄ 
an perform all the a
tions performed by the pro
ess obtained bysubstituting re
Z:C[Z℄ to the pla
e-holder Z in the 
ontext C[Z℄. Observe thatin order to have re
Z:C[Z℄ 2 E , Z is the only variable whi
h 
an o

ur free inC[Z℄.Note also that if W is a variable not o

urring in re
Z:C[Z℄ and we repla
eall the o

urren
es of Z in re
Z:C[Z℄ by W we obtain the pro
ess re
W:C[W ℄(�-
onversion) whi
h is semanti
ally equivalent to re
Z:C[Z℄. This equivalen
eallows us to assume that whenever we substitute a 
ontext D to the free o
-
urren
es of X in C[X ℄, no free variable of D be
omes bound in C[D℄: an



�-
onversion is always impli
itly performed. For instan
e, by 
omposing the
ontexts C[Y ℄ � re
X:Y and D[X ℄ � a:X , we obtain C[D[X ℄℄ � re
Z:a:X .The 
on
ept of observation equivalen
e is used to establish equalities amongpro
esses and it is based on the idea that two systems have the same semanti
s ifand only if they 
annot be distinguished by an external observer. This is obtainedby de�ning an equivalen
e relation over E . The weak bisimulation relation [9℄equates two pro
esses if they are able to mutually simulate their behavior stepby step. Weak bisimulation does not 
are about internal � a
tions. The tra
eequivalen
e relation equates two pro
esses if they have the same sets of tra
es,again, without 
onsidering the � a
tions.We will use the following auxiliary notations. If t = a1 � � � an 2 A
t� andE a1! � � � an! E0, then we write E t! E0. We also write E t=) E0 if E( �!)� a1!( �!)� � � � ( �!)� an! ( �!)�E0 where ( �!)� denotes a (possibly empty) sequen
e of �labelled transitions. If t 2 A
t�, then t̂ 2 L� is the sequen
e gained by deletingall o

urren
es of � from t. As a 
onsequen
e, E â=) E0 stands for E a=) E0 ifa 2 L, and for E( �!)�E0 if a = � (note that �=) requires at least one � labelledtransition while �̂=) means zero or more � labelled transitions).De�nition 3 (Weak Bisimulation). A binary relation R � E � E over pro-
esses is a weak bisimulation if (E;F ) 2 R implies, for all a 2 A
t,if E a! E0, then there exists F 0 su
h that F â=) F 0 and (E0; F 0) 2 R;if F a! F 0, then there exists E0 su
h that E â=) E0 and (E0; F 0) 2 R.Two pro
esses E;F 2 E are weakly bisimilar, denoted by E �B F , if there existsa weak bisimulation R 
ontaining the pair (E;F ).The relation �B is the largest weak bisimulation and is an equivalen
e rela-tion [9℄.De�nition 4 (Tra
e Equivalen
e). For any pro
ess E 2 E the set of tra
esTr(E) asso
iated with E is de�ned as follows:Tr(E) = ft 2 L� j 9E0E t=) E0g:Two pro
esses E;F 2 E are tra
e equivalent, denoted by E �T F , if Tr(E) =Tr(F ).It is possible to prove that if two pro
esses are weak bisimilar, then they arealso tra
e equivalent, while the other impli
ation does not hold.Following [9℄ we extend the binary relations de�ned on pro
esses to 
ontextsas follows.De�nition 5 (Relations on Contexts). Let R be a binary relation on E. LetC and D be two 
ontexts and assume Y1; : : : ; Yn in
ludes all their free variables.We say that C RD, if for all set of pro
esses fE1; : : : ; Eng it holdsC[E1; : : : ; En℄ R D[E1; : : : ; En℄:



In the 
ase of weak bisimulation, applying the above de�nition we have that two
ontexts are weak bisimilar if all the pro
esses obtained by instantiating theirvariables are pair-wise bisimilar. For instan
e, using our notation, the 
ontextsC[X ℄ � a:X + �:Y and D[X ℄ � a:�:X + �:Y are weak bisimilar sin
e for allE;F 2 E it holds a:E + �:F �B a:�:E + �:F . Noti
e that not all the freevariables of C and D were expli
it in the notation C[X ℄ and D[X ℄. However,De�nition 5 requires that we instantiate all their free variables.3 Se
ure ContextsIn this se
tion we introdu
e our notion of se
ure 
ontexts for a 
lass of pro
esses.This notion is parametri
 with respe
t to an operation used to 
hara
terize thelow level behavior, sayEl, of a pro
essE (e.g., EnH , E=H), and an observationalequivalen
e � used to equate two pro
esses. We denote by �l the relation � onthe low level views of pro
esses, i.e., E �l F stands for El � Fl.De�nition 6 (Se
ure Contexts for a Class of Pro
esses). Let C be a 
lassof 
ontexts, P be a 
lass of pro
esses, and X be a variable. The 
lass C is se
urefor the 
lass P with respe
t to the variable X if8C[X ℄ 2 C;8E 2 P C[E℄ �l C[El℄:In our de�nition the variable X is used to determine whi
h are the \pla
es" inC whi
h have to be �lled in using E. It 
an be that X does not o

ur free in C.In this 
ase C is trivially se
ure (by re
exivity of �l). Moreover, in C there 
anbe other free variables di�erent from X . In this 
ase we have to apply De�nition5 and instantiate the other free variables in all the possible ways.Example 1. Let P = fEg and C = fl:X + l:Y + h:Y g, with l 2 L and h 2 H .To prove that C is se
ure for P with respe
t to the variable X we have to provethat for all F 2 E it holds l:E+ l:F +h:F �l l:El+ l:F +h:F . Similarly, to provethat C is se
ure for P with respe
t to the variable Y we have to prove that forall F 2 E it holds l:F + l:E + h:E �l l:F + l:El + h:El. The 
lass C is triviallyse
ure for P with respe
t to the variable Z, sin
e for all F;G 2 E it holds thatl:F + l:G+ h:G �l l:F + l:G+ h:G.In the rest of this paper when we say that C is se
ure for P we are impli
itlyreferring to the variable X .The intended meaning of our se
urity de�nition is that a low level observer
annot distinguish the intera
tions between a pro
ess E 2 P and C 2 C from theintera
tions between El and C. It is an instan
e of the noninterferen
e s
hemaproposed in [7℄. In fa
t, no high level information 
an 
ow from El and the
ontext C represents the environment in whi
h E is exe
uted, i.e. it subsumes apossible situation with a
tions performed by high and low level users as well asby possibly atta
kers.Let us analyze the de�nition in the 
ase in whi
h only one pro
ess and one
ontext are involved. The de�nition 
an be seen from two points of view: se
urity



for the pro
esses and se
urity for the 
ontexts. On the one hand, if a 
ontextC is se
ure for a pro
ess E, then E 
an safely intera
t with C (se
urity forthe pro
ess), sin
e C is not able to reveal to the low level user any high levelinformation 
ontained in E. In fa
t, it is revealed only the information thatwould be revealed by the intera
tion with El. On the other hand, if a 
ontextC is se
ure for a pro
ess E, then C 
an safely intera
t with E (se
urity for the
ontext), sin
e E is not able to reveal any high level information of C. In fa
t,E is able to reveal the same information whi
h 
an be revealed by El and, sin
eEl 
annot perform high level a
tion, it 
annot reveal any high information. Weexplain the two points of view with some examples.Example 2 (Se
urity for the Pro
ess). Consider the pro
ess representing a 
lientof a bank using his 
ard in a ATM (Automati
 Teller Ma
hine) to take moneyfrom his a

ount. When the 
ard is inserted in the ATM the 
ode of the 
ard isread and the 
lient input his PIN 
ode, then if the PIN is 
orre
t he 
an ask forthe money. All the a
tions involved 
on
ern high level ex
hange of informationbetween the 
lient and the bank. We 
an formalize the pro
ess representing the
lient in front of the ATM as follows
ard 
d:pin 
d:money:0;where all the a
tions are high level a
tions. A 
orre
t ATM should read the
odes, and if they are 
orre
t, give the money to the 
lient. Hen
e, leaving outthe details 
on
erning the 
he
ks on the 
odes, it should be of the formX j
ard 
d:pin 
d:money:0:In this 
ase, intuitively, the pro
ess is se
ure inside the 
ontext. In fa
t, sin
e allthe a
tions are high no information is revealed to the low level observer.Imagine now that a maintenan
e engineer puts a laptop inside the ATM. Thelaptop re
ords all the 
ard numbers and the PINs of the ATM's users. After oneweek the engineer removes the laptop and starts to make up 
ounterfeit 
ard.In this 
ase the 
ontext in whi
h the 
lient inserts his 
ard has been modi�ed,i.e. a mali
ious 
omponent whi
h reveals information to the low level observer(the engineer) has been added. The 
ard and the PIN 
odes are �rst read by themali
ious pro
ess, whi
h both re
ords and send them to the bank. The a
tionof re
ording the 
odes is a low level a
tion, sin
e it 
an be used later by the lowlevel observer to steal money. The 
odes are sent to the bank so that the 
lientre
eives the money and does not suspe
t the fraud. The 
ounterfeit 
ontext 
anbe represented as followsX j
ard 
d:pin 
d:re
ord 
ds:
ard 
d:pin 
d:0j
ard 
d:pin 
d:money:0:Obviously this 
ontext is not se
ure for the pro
ess. However, this does notmean that we give up using 
ards and ATMs. We just hope to use them inse
ure 
ontexts.



Example 3 (Se
urity for the Context). Mr Earner has on his own ma
hine C some�les 
ontaining the information about his investments. He would like to 
he
kwhether they are pro�table and, if they are not, to have some suggestions abouthow to 
hange them. He buy a program E whi
h is able to 
he
k on the sto
kmarket, using an Internet 
onne
tion, read the �les and perform some 
omputa-tions (using the information taken from the market) to determine whether theinvestments are pro�table, and, if ne
essary (the investment are going bad), to
he
k again on the sto
k market, for better opportunities. The se
ond 
he
k onthe sto
k market is re
ommended to suggest in the best possible way (usingthe last quotations), i.e. it is preferable not to use the 
a
hed sto
k market'squotations. Obviously Mr Earner does not want that someone knows if his in-vestments are good or not. Sin
e Mr Earner is not able to evaluate the qualityof his investments he only knows that his ma
hine is in one of the following twosituations:X ja

ess good:0 or X ja

ess bad:suggestions:0:In the �rst 
ase Mr Earner investments are good and this fa
t 
an be revealedthrough the high level output a

ess good. In the se
ond 
ase Mr Earner in-vestments are bad, hen
e after the high level output its ma
hine is ready tohave in input some suggestions through the high level input suggestions. MrEarner wants E to be se
ure w.r.t. both 
ontexts. Let us assume that Mr Earnerinvestments are good, i.e. we 
onsider the �rst 
ontext2.If the program E is of the form
he
k market:(a

ess good:0+a

ess bad.
he
k market:suggestions:0);where the only low level a
tion is the input 
he
k market, then, by observingthat E has not 
he
ked a se
ond time on the sto
k marked, someone 
ould beable to dedu
e that Mr Earner's investments are good. Hen
e, E is not se
ure.The program
he
k market:(a

ess good.
he
k market:0+a

ess bad.
he
k market:suggestions:0)is se
ure, be
ause, by performing the 
he
k also when the investments are good,it does not reveal anything about them.If the market is `stable" and the elaboration of the information in Mr Earner's�le is \fast", the following program 
an be used
he
k market:(a

ess good:0+ a

ess bad:suggestions:0):It performs the low level input only on
e before analyzing the situation of theinvestments (i.e., it suggests using the 
a
hed dates). Hen
e, it is se
ure.2 All the 
onsideration whi
h follow hold also for the se
ond 
ontext.



Noti
e, that this example re
alls the 
ase of military radio transmissions. Inorder to avoid that someone knows when some information have been transmit-ted, every n instants a message is sent. Only one of the messages 
ontains thereal information.When the 
lass C has only one element C we say that C is se
ure for P .Similarly, in the 
ase in whi
h P has only one element E we say that the 
lass Cis se
ure for the pro
ess E. If a 
ontext is se
ure for a 
lass P of pro
esses, thenit is se
ure also for all the sub
lasses of P . Analogously, if a 
lass of 
ontexts Cis se
ure for a pro
ess E, then all the sub
lasses of C are se
ure for E. In thegeneral 
ase we obtain the following result.Proposition 1. Let C1 � C2 be two 
lasses of 
ontexts, P1 � P2 be two 
lassesof pro
esses, and X be a variable. If C2 is se
ure for P2 with respe
t to X, thenC1 is X-se
ure for P1 with respe
t to X.De�nition 6 introdu
es a general se
urity notion. To analyze it more 
on
retelyit is ne
essary to instantiate the observational equivalen
e �l and the operationde�ning El. In order to get instan
es useful in the pra
ti
al 
ases, a de
idableequivalen
e and a 
omputable operation are the minimal reasonable require-ments. However, they are not strong enough to guarantee the de
idability of these
urity notion. In fa
t, De�nition 6 involves two universal quanti�
ations whi
himply that if either C or P are in�nite the de�nition is not operative.In the next two se
tions we 
onsider two instan
es of our framework. Westudy the properties of these instan
es and their 
onne
tions with some se
uritynotions 
oming from the literature.4 First Instan
e: Weak Bisimulation and Restri
tionFirst we analyze the properties of our se
urity de�nition by instantiating theobservational equivalen
e (�) and the low level view of a pro
ess (El) in thefollowing way. Let E;F 2 E{ E � F i� E �B F ;{ El is E nH .Noti
e that in this way �l is an equivalen
e relation.Using su
h an instan
e, a 
lass of 
ontexts C is se
ure for a 
lass of pro
essesP with respe
t to a variable X i�8C[X ℄ 2 C;8E 2 P C[E℄ nH �B C[E nH ℄ nH:In the rest of this se
tion we refer to this instan
e of our se
urity property.Example 4. Let us 
onsider again the pro
ess and the 
ontexts in the Introdu
-tion. Sin
e, E has the formpwd seller:(pri
e list h:0+ pri
e list l:0)+(prod list h:0+ prod list l:0):



where pwd seller, pri
e list h, and prod list h are high level a
tions, weobtain that E nH is prod list l:0:The �rst 
ontext C we 
onsidered isX jpwd seller:0:Hen
e, we obtain that C[E℄ nH is�:pri
e list l:0+ prod list l:0This is not weak bisimilar to C[E nH ℄ nH whi
h isprod list l:0Hen
e, the 
ontext is not se
ure. Indeed, a low level user intera
ting with C[E℄
an obtain 
on�dential information.The se
ond 
ontext we 
onsidered ispwd high:(X jpwd seller:0) + pwd low:X:In this 
ase we have that both C[E℄ nH and C[E nH ℄ nH are bisimilar topwd low:prod list l:0The 
ontext is se
ure. Indeed, only a further intera
tion of a high level user 
anallow the low level observer to read the pri
e list (downgrading of information).Example 5. In Example 3 we said that the se
ond program E is se
ure in boththe proposed 
ontexts. In fa
t, E never reveals to a low level user the situationof Mr Earner's investments, sin
e a se
ond 
he
k on the marked is performedin any 
ase. However, with this instan
e of our framework and using the �rst
ontext of Example 3 we obtain that C[E℄ nH is
he
k market:(�:
he
k market:0);while C[E nH ℄ nH is 
he
k market:0;hen
e the se
urity property does not hold. This models the following situation:the low level user 
an dedu
e that the quality of the investments is still underevaluation, by observing that the se
ond 
he
k on the sto
k marked has not yetbeen performed. Nevertheless, if we assume that the evaluation always takes a
onstant amount of time, the pro
ess 
an be safely exe
uted inside the 
ontext,sin
e from the fa
t that the se
ond 
he
k on the market is performed the low levelobserver 
annot dedu
e whi
h high level syn
hronization is o

urred (the goodor the bad one). If we 
onsider the instan
e of our se
urity property obtained byusing the hiding operator instead of the restri
tion one (see [4℄), i.e., we requireC[E℄=H �B C[E=H ℄=H



we obtain that C[E℄=H and C[E=H ℄=H are both weak bisimilar to
he
k market:
he
k market:0;hen
e the se
urity property holds.The third program of Example 3 satis�es C[E℄ nH �B C[E nH ℄ nH , w.r.t.both the 
ontexts, as it 
an be easily 
he
ked.Using this �rst instan
e we �nd an interesting 
onne
tion between our se
u-rity de�nition and the se
urity notion known as BNDC. The BNDC [4℄ se
urityproperty aims at guaranteeing that no information 
ow from the high to the lowlevel is possible, even in the presen
e of any mali
ious high level pro
ess. Themain motivation is to prote
t a system also from internal atta
ks, whi
h 
ouldbe performed by the so 
alled Trojan Horse programs, i.e., programs that areapparently honest but hide inside some mali
ious 
ode. Property BNDC is basedon the idea of 
he
king the system against all high level potential intera
tions,representing every possible high level mali
ious program. In parti
ular, a systemE is BNDC if for every high level pro
ess � a low level user 
annot distinguishE from (Ej�), i.e., if � 
annot interfere with the low level exe
ution of thesystem E.De�nition 7 (BNDC). Let E 2 E.E 2 BNDC i� 8 � 2 EH ; E nH �B (Ej�) nH:Example 6. The BNDC property is powerful enough to dete
t information 
owsdue to the possibility for a high level mali
ious pro
ess to blo
k or unblo
k asystem. Let H = fhg, L = fl; jg and E1l:h:j:0 + l:j:0. Consider the pro
ess� � �h:0. We have that (E1j�) n H �B l:j:0, while E1 n H �B l:0 + l:j:0.Note that the latter may (nondeterministi
ally) blo
k after the l input. Havingmany instan
es of this pro
ess, a low level user 
ould dedu
e if �h is exe
utedby observing whether the system always performs j or not. Pro
ess E1 may be\repaired", by in
luding the possibility of 
hoosing to exe
ute j or not inside thepro
ess. Indeed, pro
ess E2 � l:h:j:0+ l:(�:j:0+ �:0) is BNDC.The following lemma states that all the 
ontexts of the form X j� with � 2EH are se
ure for BNDC pro
esses.Lemma 1. Let E 2 E.E 2 BNDC i� C[E℄ nH �B C[E nH ℄ nHfor all 
ontexts C[X ℄ � X j� with � 2 EH .Proof. See Appendix. utNoti
e that a BNDC pro
ess 
an be safely exe
uted also in a 
ontext in whi
han external atta
her is able to guess all the high level password. When stri
tpoli
ies are applied on 
hoi
es and 
hanges of the passwords, the requirement ofBNDC 
ould be too demanding. In this sense it be
omes interesting to studyalso pro
esses whi
h are se
ure only in a more restri
ted 
lass of 
ontexts.'



Example 7. The pro
ess in the introdu
tion (see also Example 4) is not a BNDCpro
ess. In fa
t, the 
ontext X jpwd seller:0 is a 
ontext of the form X j� with� 2 EH and it is not se
ure for E, hen
e by Lemma 1 we obtain that E is notBNDC. However, as shown in Example 4, there are 
omplex 
ontexts in whi
hE 
an be safely exe
uted.The se
ond pro
ess of Example 3 is not a BNDC pro
ess. In fa
t, the 
ontextX ja

ess good:0 is not se
ure for it. More in general, we 
an observe that ifl 2 L, then a pro
ess of the form Xh2H h:l:0is not BNDC. In this 
ase the information whi
h 
ow to the low level observeris only that a high level a
tion has (or has not) been performed. However, whenthe low level user is able to perform his a
tion he is not able to infer whi
h oneof the high level a
tion has been 
hosen.The third pro
ess of Example 3 
an be proved to be BNDC.In Subse
tion 4.1 we identify two 
lasses of 
ontexts whi
h are se
ure for allthe pro
esses. Then, in Subse
tion 4.2 we 
on
entrate on 
lasses of pro
esses
hara
terized by some se
urity notions (basi
ally we will 
onsider sub
lasses ofBNDC ) and analyze whether they admit larger 
lasses of se
ure 
ontexts.4.1 Se
ure Contexts for a generi
 
lass POur �rst result 
an be immediately proved by applying the de�nitions.Theorem 1. Let P be a 
lass of pro
esses. The following 
ontexts are se
urefor P with respe
t to X.{ F 2 E;{ Y , with Y a variable3;{ Pli2L li:Ci +Phj2H hj :Dj , with the Ci's se
ure for P with respe
t to X;{ C n v, with C se
ure for P with respe
t to X;{ C[f ℄, with C se
ure for P with respe
t to X.Proof. See Appendix. utNoti
e that it does not hold that if C and D are se
ure for P , then CjD isse
ure for P . This is a 
onsequen
e of the fa
t that we do not know anythingabout P .Example 8. Consider the pro
ess E � h:l:0+ �h:0. Let the 
lass P = fEg. The
ontext X is se
ure for P (see Theorem 1), but the 
ontext X jX is not se
urefor P .3 Y 
an also be the variable X.



Noti
e that Theorem 1 is not a de
idability result. For instan
e, if we knowthat C is se
ure for P , then we 
an dedu
e that Cnv is se
ure for P , but Theorem1 does not tell us how to prove that C is se
ure for P .Now we 
hara
terize a de
idable 
lass of 
ontexts whi
h are se
ure for all thepro
esses (i.e. for a generi
 
lass P). Obviously we want the 
lass to be as largeas possible. In order to obtain the de
idability of the 
lass we require a 
omposi-tionality stru
ture, i.e. 
ontexts are build only using sub-
ontexts whi
h belongto the 
lass. In order to ensure se
urity we do not use the parallel 
ompositionwhen the 
ontext is not 
losed (see Example 8).De�nition 8 (The Class Cs). Let Cs be the minimum 
lass su
h that:{ if F 2 E, then F 2 Cs;{ if Y is a variable, then Y 2 Cs;{ if Ci 2 Cs for all i 2 I, then Pi2I ai:Ci 2 Cs;{ if C 2 Cs, then C n v 2 Cs;{ if C 2 Cs, then C[f ℄ 2 Cs;{ if C 2 Cs, then re
Y:C 2 Cs.Noti
e that we impose to the sums to be guarded in the 
ontexts, but not in thepro
esses.It is easy to de�ne a proof system whose proofs 
orrespond exa
tly to the
onstru
tions of the 
ontexts of Cs.Noti
e, that if C[Y ℄; D 2 Cs, then we have C[D℄ 2 Cs.Example 9. The 
ontext a:X + b:Y + 
:Z is in Cs. Hen
e, also the 
ontextre
Y:(re
Z:(a:X + b:Y + 
:Z)) belongs to Cs.All the 
ontexts in Cs are se
ure for all the pro
esses, as it is stated by thefollowing theorem.Theorem 2. Let P be a 
lass of pro
esses and X be a variable. If C 2 Cs, thenC is se
ure for P with respe
t to X.Proof. See Appendix. utExample 10. Let C be a ma
hine shared between one low level user and one highlevel user. When one of the two users is logged the ma
hine 
annot be used bythe other one. The logged user 
an exe
ute his program or a new program whi
hhas been downloaded from the web. The programs of both the users alwaysterminate and at the end of their exe
utions the other user 
an take the 
ontrol.Let pwd high be high level a
tion representing the input of the high level userpassword. Moreover, let 
all prog h be the high level 
all to the programand ex prog h its exe
ution. Finally, let 
all web h be the high level 
all tothe program downloaded from the web. Similarly, all the low level a
tions arede�ned. Hen
e, C has the formre
Y:(pwd high:(
all prog h:ex prog h:Y + 
all web h:X)+pwd low:(
all prog l:ex prog l:Y + 
all web l:X))Sin
e C belongs to Cs, the program 
oming from the web is se
ure inside C.



As shown by Example 8, without assumptions on the 
lass P the 
ontextsbuilt using the parallel operator 
annot be 
onsidered se
ure. However, as seenin the previous examples most 
ontexts involve the parallel operator, sin
e it isat the 
ore of the ex
hange of information between the pro
ess and the 
ontext.For this reason in the next subse
tion we 
on
entrate on 
lasses of pro
esses onwhi
h we prove that some 
ontexts involving the parallel operator are se
ure.4.2 Se
ure Contexts for sub-
lasses of BNDCAs stated in Lemma 1 some parti
ular 
ontexts built using the parallel operatorare se
ure for the 
lass BNDC. Unfortunately, the de
idability of BNDC is stillan open problem, and for this reason many suÆ
ient 
onditions for BNDC havebeen introdu
ed and studied in the literature (see [3, 6, 2℄). In parti
ular, in [2℄three of these suÆ
ient 
onditions have been 
onsidered and it has been shownthat they 
an be parametri
ally 
hara
terized with respe
t to an opportunebisimulation relation. In virtue of Proposition 1 all the 
ontexts whi
h are se
urefor the larger of these three 
lasses, i.e. P BNDC, are se
ure also for the other two
lasses. P BNDC is nothing but the persistent version of BNDC. The persisten
yof P BNDC has been proved to be fundamental to deal with dynami
 
ontexts(see [6℄).De�nition 9 (P BNDC). Let E 2 E.E 2 P BNDC i� 8E0 rea
hable from E E0 2 BNDC :Noti
e that in order to obtain that parallel 
ontexts are se
ure we somehowneed to be able to ex
hange the parallel operator with the restri
tion one, i.e.,knowing that C[E℄ n H �B C[El℄ n H and D[E℄ n H �B D[El℄ n H we wantto obtain that (C[E℄jD[E℄) nH �B (C[El℄jD[El℄) nH . Su
h property holds forP BNDC pro
esses as shown by the following lemma.Lemma 2. Let E;F;G;K 2 P BNDC. If EnH �B F nH and GnH �B KnH,then (EjG) nH �B (F jK) nH.Proof. See Appendix. utThe previous lemma suggests us that by requiring to a 
ontext to map P BNDCpro
esses into P BNDC pro
esses we obtain that the parallel 
omposition of se-
ure 
ontexts is se
ure. More in general we 
an introdu
e the following de�nition,whi
h will turn out to be useful also in the next se
tion.De�nition 10 (P-
ontexts). Let P be a 
lass of pro
esses and C[X; �Y ℄ be a
ontext whose free variables are in X[ �Y . C[X; �Y ℄ is said to be a P-
ontext withrespe
t to X if for all E 2 P and for all �F 2 E it holds that C[E; �F ℄ 2 P.De�nition 11. A 
ontext C[X ℄ is said to be P BNDC -se
ure with respe
t toX if it is a P BNDC-
ontext with respe
t to X and it is se
ure for P BNDCwith respe
t to X.



Theorem 3. Let C and D be two 
ontexts whi
h are P BNDC-se
ure with re-spe
t to X. The 
ontext CjD is P BNDC-se
ure with respe
t to X.Proof. See Appendix. utNoti
e that we 
an apply the theorem more than on
e, thus obtaining 
ontextswhi
h involve more parallel operators mixed with other operators.From Proposition 1 we have that the 
ontexts whi
h 
an be proved to bese
ure using Theorem 3 are se
ure also for SBNDC (see [3℄) and CP BNDC(see [2℄) pro
esses. In fa
t, in [2℄ it has been proved that these two are sub
lassesof P BNDC .Example 11. Consider the third program of Example 3
he
k market:(a

ess good:0+ a

ess bad:suggestions:0):This pro
ess is P BNDC , hen
e by applying Theorem 3 we immediately get thatthe two 
ontexts of Example 3 are se
ure for the pro
ess.Example 12. Let a 2 L be an a
tion and E be a P BNDC pro
ess in whi
hneither a nor �a o

ur. Let P be a 
lass of P BNDC pro
esses whose terminationis announ
ed by the exe
ution of an end a
tion. Consider the 
ontext C de�nedas (X jend:E) n fendg:When in C we repla
e the variable X with a pro
ess F taken from P we obtainthat F is exe
uted and then E is exe
uted, i.e. we have obtained a 
ontext whi
hbehaves like a sequential operator. From Theorem 3 we have that X j�a:E is se
urefor P . Hen
e, from Theorem 1, we obtain that C is se
ure for P .However, Theorem 3 is not a de
idability result. In fa
t, to 
he
k that a
ontext is a P BNDC -
ontext, in general, it is ne
essary to 
he
k that an in�nitenumber of pro
esses are in P BNDC . A de
idable 
lass of 
ontexts whi
h areP BNDC -
ontexts is 
hara
terized by the following de�nition.De�nition 12 (The Class Cp). Let Cp be the minimum 
lass su
h that:{ if F 2 P BNDC, then F 2 Cp;{ the variable X is in Cp;{ if Y is a variable, then Y nH and Y=H are in Cp;{ if Ci; Dj 2 Cp, i 2 I and j 2 J , then Pi2I li:Ci+Pj2J (hj :Dj + �:Dj) 2 Cp,where li 2 L and hj 2 H;{ if C;D 2 Cp then CjD 2 Cp{ if C 2 Cp, then C n v 2 Cp;{ if C 2 Cp, then C[f ℄ 2 Cp;Theorem 4. If C[X ℄ 2 Cp then C[X ℄ is P BNDC-se
ure with respe
t to X.Proof. See Appendix. utThe 
lass Cp, in a 
ertain sense, 
orresponds to the 
lass of pro
esses de�nedby the proof system Core des
ribed in [1℄. In fa
t, the high level pre�xes are
ontrolled by the � ones, like in Core. Moreover, it is not possible to use there
ursion operator. It 
ould be interesting to study if the same extensions to the
ases with re
ursion presented in [1℄ 
an be added here.



5 Se
ond Instan
e: Tra
e Equivalen
e and Restri
tionSometimes weak bisimulation is 
onsidered to be too demanding, i.e. in some
ases pro
esses whi
h are not weak bisimilar 
an be 
onsidered equivalent.Example 13. The pro
ess in the introdu
tion was of the formpwd seller:(pri
e list h:0+ pri
e list l:0)+(prod list h:0+ prod list l:0):Money&Money 
ould imagine that people usually set 
ookies. Hen
e, it 
ouldde
ide to 
hange the applet in the following way: if the password is inserted,then the pri
e list is given, but as an en
rypted �le. The high level user has touse another program to de
rypt the �le and this program does not allow to storethe de
ryption key. In this 
ase the pri
e list is given in output only through ahigh level a
tion and the pro
ess E be
omespwd seller:pri
e list h:0+(prod list h:0+ prod list l:0):If we 
onsider the �rst 
ontextX jpwd seller:0;we obtain that C[E℄ nH is �:0+ prod list l:0This is not weak bisimilar to C[E nH ℄ nH whi
h isprod list l:0However, the low level user 
annot read the pri
e list using this 
ontext. Theinformation whi
h 
ow to the low level user is that if he 
annot read the produ
tlist, then a high level user has used the applet to read the pri
e list. But, in this
ase the applet has terminated and it has disappeared. It really seems that inthis 
ase the use of bisimulation is too restri
tive, while tra
e-equivalen
e 
ouldbe the right 
hoi
e.In this se
tion we 
onsider the following instan
e:{ E � F i� E �T F ;{ El is E nH .In this 
ase a 
lass of 
ontexts C is se
ure for a 
lass of pro
esses P with respe
tto X i� 8C[X ℄ 2 C;8E 2 P C[E℄ nH �T C[E nH ℄ nH:In the rest of this se
tion we refer to this instan
e of our se
urity property.Example 14. Using the above de�nition the 
ontext of Example 13 is se
ure.



Let us 
onsider the se
urity notion known as NDC whi
h is de�ned as BNDC,but using tra
e equivalen
e instead of weak bisimulation.De�nition 13 (NDC). Let E 2 E.E 2 NDC i� 8 � 2 EH ; E nH �T (Ej�) nH:The NDC se
urity property is de
idable as it immediately follows from thefollowing 
hara
terization, whose proof 
an be found in [3℄.Lemma 3. Let E 2 E.E 2 NDC i� E=H �T E nH:Example 15. The pro
ess in the introdu
tion is not NDC .As in the 
ase of BNDC, it is possible to prove that all the 
ontexts of the formX j� with � 2 EH are se
ure for NDC 
ontexts.Lemma 4. Let E 2 E.E 2 NDC i� C[E℄ nH �T C[E nH ℄ nHfor all 
ontexts C[X ℄ � X j� with � 2 EH .Proof. See Appendix. utIn the next subse
tion we study 
ontexts whi
h are se
ure, using this se
ondinstan
e, for all the pro
esses. Then in Subse
tion 5.2 we 
on
entrate on the
ontexts se
ure for the 
lass of NDC pro
esses.5.1 Se
ure Contexts for a generi
 
lass PSin
e tra
e equivalen
e is less demanding than weak bisimulation we immediatelyobtain that the 
ontexts whi
h were se
ure in the previous se
tion are se
ure alsoin this se
tion.Theorem 5. Let C be a 
lass and P be a 
lass of pro
esses. If 8C[X ℄ 2 C;8E 2P C[E℄nH �B C[EnH ℄nH, then 8C[X ℄ 2 C;8E 2 P C[E℄nH �T C[EnH ℄nH.Proof. See Appendix. utThis means that the 
lass of 
ontexts of Theorem 1 and the 
lass of 
ontexts Csare se
ure for a generi
 
lass P of pro
esses.Moreover, it is easy to prove that the sum of se
ure 
ontexts is se
ure.Theorem 6. Let P be a 
lass of pro
esses and X be a variable. Pi2I Ci +Phj2H hj :Dj is se
ure for P with respe
t to X, if for all i 2 I Ci is se
ure forP with respe
t to X.Proof. See Appendix. utNoti
e that, again, it does not hold that if C and D are se
ure for P , then CjDis se
ure for P . The 
ontexts and the pro
ess presented in Example 8 witnessesthis fa
t.



5.2 Se
ure Contexts for NDC pro
essesHere we redis
over the equivalent of the results proved in Subse
tion 4.2 forP BNDC pro
esses, in the 
ase of NDC pro
esses. In parti
ular, the followinglemma is the 
orrespondent of Lemma 2.Lemma 5. Let E;F;G;K 2 NDC. If E nH �T F nH and G nH �T K nH,then (EjG) nH �T (F jK) nH.Proof. See Appendix. utThis allows us to obtain the following result whi
h states that 
ontexts obtainedusing the parallel operator are se
ure for NDC pro
esses when the two 
ontextswhi
h are put in parallel are se
ure and map NDC pro
esses into NDC pro
esses.De�nition 14. A 
ontext C[X ℄ is said to be NDC -se
ure with respe
t to X ifit is a NDC-
ontext with respe
t to X and it is se
ure for NDC with respe
t toX.Theorem 7. Let C and D be two 
ontexts whi
h are NDC-se
ure with respe
tto X. The 
ontext CjD is NDC-se
ure with respe
t to X.Proof. See Appendix. utAgain Theorem 7 does not provide us a de
idability pro
edure, be
ause thede�nition of NDC -se
ure 
ontexts is not operative. In the following de�nitionwe 
hara
terize a de
idable 
lass of NDC -
ontexts, whi
h is the analogous of the
lass Cp of De�nition 12.De�nition 15 (The Class Cn). Let Cn be the minimum 
lass su
h that:{ if F 2 NDC, then F 2 Cn;{ the variable X is in Cn;{ if Y is a variable, then Y nH and Y=H are in Cn;{ if C 2 Cn and l 2 L, then l:C 2 Cn;{ if C 2 Cn and h 2 H, then h:C + �:C 2 Cn;{ if C;D 2 Cn, then C +D 2 Cn;{ if C;D 2 Cn then CjD 2 Cn{ if C 2 Cn, then C n v 2 Cn;{ if C 2 Cn, then C[f ℄ 2 Cn;Theorem 8. If C[X ℄ 2 Cn then C[X ℄ is NDC-se
ure with respe
t to X.Proof. See Appendix. ut



6 Con
lusionsWe presented a se
urity notion for pro
esses whi
h is more 
exible than somealready known se
urity properties where the atta
kers are all the possible 
on-texts of the form X j� , with � 2 EH . The 
exibility is a 
onsequen
e of the fa
tthat our notion is parametri
 with respe
t to a 
lass of 
ontexts. On the onehand our notion 
an be used to restri
t the possible atta
kers: e.g., when it isnot reasonable to assume that all high level passwords 
an be guessed. On theother hand our notion allows to enlarge the set of possible atta
kers, sin
e alsolow level a
tions 
an be performed and SPA operators 
an be freely 
ombinedin the 
ontext 
onstru
tion.An interesting future issue 
ould be the reformulation of our se
urity propertyin ri
her languages (e.g., �-
al
ulus). Su
h a reformulation would allow a moredeep 
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7 AppendixProof of Lemma 1()) If E 2 BNDC , then (Ej�) nH �B E nH . Moreover, E nH is always inBNDC and E nH nH �B E nH , hen
e (E nH j�) �B E nH . So by transitivityof �B, we obtain that (Ej�) nH �B (E nH j�) nH .(() Sin
e E nH is always in BNDC and E nH nH �B E nH , we obtain(Ej�) nH �B (E nH j�) nH �B E nH . utProof of Theorem 1{ Sin
e F nH �B F nH for ea
h F 2 E , F is se
ure for P .{ The fa
t that a variable Y is se
ure for P follows again from E n H �BE nH nH for all E 2 E .{ Let C[X ℄ � Pli2L li:Ci +Phj2H hj :Dj , with Ci se
ure for P for all i. Weprove that C[E℄ nH �B C[E nH ℄ nH for all E 2 P . If C[E℄ nH a! C 0, thena 2 L. Hen
e, there exists i su
h that a = li and C 0 � Ci[E℄ nH . So we havethat C[E nH ℄ nH a! Ci[E nH ℄ nH , and sin
e Ci[X ℄ is se
ure for P it holdsthat Ci[E℄nH �B Ci[E nH ℄nH . Similarly, if C[E nH ℄nH a! C 0, then thereexists i su
h that a = li and C 0 � Ci[E nH ℄nH . Hen
e, sin
e Ci[X ℄ is se
urefor P we obtain that C[E℄nH a! Ci[E℄nH with Ci[E℄nH �B C[E nH ℄nH .{ Let E 2 P . From C[E℄ n H �B C[E n H ℄ n H we obtain C[E℄ n H n v �BC[E nH ℄ nH n v, hen
e C[E℄ n v nH �B C[E nH ℄ n v nH .{ Let E 2 P . We prove that C[E℄[f ℄ nH �B C[E nH ℄[f ℄ nH , where f mapshigh a
tions in H[f�g and low a
tions in L[f�g. If C[E℄[f ℄nH a! C 0, thenC 0 � C 00[f ℄ and there exists b su
h that f(b) = a and C[E℄nH b! C 00. Hen
e,C[E nH ℄ nH b̂) C 000 with C 00 �B C 000. So we obtain that C[E nH ℄[f ℄ nH â)C 000[f ℄ with C 00[f ℄ �B C 000[f ℄. utThe following lemma is useful to prove Lemma 8.Lemma 6. Let C;D;C 0; D0 2 Cs. If C �B D and C 0 �B D0, then{ a:C + a0:C 0 �B a:D + a0:D0;{ C n v �B D n v;{ C[f ℄ �B D[f ℄;{ re
Y:C �B re
Y:D.Proof. Given C;D;C 0; D0 2 Cs with C �B D, C 0 �B D0, and a; a0 2 A
t, we
an easily see that a:C+a0:C 0 �B a:D+a0:D0. In fa
t, the only a
tions that thetwo pro
esses 
an perform are a and a0 Hen
e, they 
an only redu
e themselvesto C �B D or C 0 �B D0.The 
ases of \Restri
tion" and \Relabelling" are similar.We prove the \Re
ursion" 
ase. Given C;D 2 Cs with C �B D we have toprove that re
Y:C �B re
Y:D. Without loss of generality we 
an assume that



C[X ℄ and D[X ℄ have at most the single free variable X . The general 
ase followsfrom De�nition 5.Let us de�ne the relation S � Cs � Cs as follows:S = f(G[re
X:C[X ℄℄; G[re
X:D[X ℄℄) j C;D;G 2 Cs; C �B D;and G 
ontains at most one variableg:It will be enough to show that S is a weak bisimulation up to �B. From this itfollows re
X:C[X ℄ �B re
X:D[X ℄, by taking G � X . We prove thatIf G[re
X:C[X ℄℄ a�! P then there exist Q;Q0 2 CsG[re
X:D[X ℄℄ ba=) Q �B Q0, with (P;Q0) 2 S:The 
onverse follows by the symmetry of S.We prove the 
laim by indu
tion on the depth d of the inferen
e used toobtain G[re
X:C[X ℄℄ a�! P .Base: d = 0.If G[re
X:C[X ℄℄ a�! P with an inferen
e of depth 0, then the rule \Pre�x" hasbeen applied, and G[X ℄ � a:G0[X ℄, so P � G0[re
X:C[X ℄℄, with G0 2 Cs. Hen
e,also G[re
X:D[X ℄℄ � a:G0[re
X:D[X ℄℄ a�! G0[re
X:D[X ℄℄ and we have that(G0[re
X:C[X ℄℄; G0[re
X:D[X ℄℄) 2 S, as required.Indu
tion. We pro
eed by 
ases on the stru
ture of the 
ontext G:{ G 2 E . We have G[re
X:C[X ℄℄ � G[re
X:D[X ℄℄ � G, hen
e we immediatelyobtain the thesis.{ G � Y . Then re
X:C[X ℄ a�! P has been dedu
ed by applying the \Re
ur-sion" rule at the last step. So C[re
X:C[X ℄℄ a�! P with a shorter inferen
e.Hen
e, by indu
tion there exist Q;Q0 2 Cs su
h that C[re
X:D[X ℄℄ ba=)Q �B Q0 with (P;Q0) 2 S: But also C[X ℄ �B D[X ℄ and thus D[re
X:D[X ℄℄ba=) Q00 �B Q. Sin
e, D[re
X:D[X ℄℄ �B re
X:D[X ℄, we have that it holdsre
X:D[X ℄ ba=) Q000 with Q000 �B Q00 �B Q �B Q0.{ G � Pi ai:Gi. Then Pi ai:Gi[re
X:C[X ℄℄ a! P by applying the \Sum" inthe last step. So, there exists i su
h that ai:Gi[re
X:C[X ℄℄ a! P . Hen
e, itmust be P � Gi[re
X:C[X ℄℄, with Gi 2 Cs. By applying the same rules,G[re
X:D[X ℄℄ ba=) Q � Gi[re
X:D[X ℄℄, and (P;Q) 2 S.{ G � G1 n v. Then G1[re
X:C[X ℄℄n a! P by applying the rule \Restri
tion"in the last step. So, P � P 0 n v, a =2 v and G1[re
X:C[X ℄℄ a! P 0 by ashorter inferen
e. By indu
tion on G1 2 Cs, there exist Q;Q0 2 Cs su
hthat G1[re
X:D[X ℄℄ ba=) Q �B Q0 with (E0; Q0) 2 S. Hen
e, we 
on
ludeG1[re
X:D[X ℄℄ n v ba=) Q n v, with Q n v �B Q0 n v and (P;Q0 n v) 2S by 
onstru
tion of S. In fa
t, (P 0; Q0) 2 S implies that there exists a
ontext H [Z℄, with only a free variable Z, su
h that P 0 � H [re
X:C[X ℄℄ andQ0 � H [re
X:D[X ℄℄. Hen
e, P � P 0 n v � H [re
X:C[X ℄℄ n v and Q0 n v �H [re
X:D[X ℄℄ n v.



{ G � G1[f ℄. Then G1[re
X:C[X ℄℄[f ℄ a! P by applying the rule \Relabelling"in the last step. So, P � P 0[f ℄, a = f(a0), and G1[re
X:C[X ℄℄ a0! P 0by a shorter inferen
e. By indu
tion there exist Q;Q0 2 Cs su
h that itholds G1[re
X:D[X ℄℄ ba0=) Q �B Q0 with (P 0; Q0) 2 S Hen
e, we 
on
ludeG1[re
X:D[X ℄℄[f ℄ [f(a0)=) Q[f ℄, with Q[f ℄ �B Q0[f ℄ and (P;Q0[f ℄) 2 S by
onstru
tion.{ G � re
Y:G1[Z; Y ℄. Then re
Y:G1[re
X:C[X ℄; Y ℄ a! P by applying the rule\Re
ursion" in the last step. So, G1[re
X:C[X ℄; re
Y:G1[re
X:C[X ℄℄℄ a! Pwith a shorter inferen
e. Hen
e, by indu
tion there exist Q;Q0 2 Cs su
hthat G1[re
X:D[X ℄; re
Y:G1[re
X:D[X ℄℄℄ ba=) Q �B Q0 with (P;Q0) 2 S:Sin
e G1[re
X:D[X ℄; re
Y:G1[re
X:D[X ℄℄℄ �B re
Y:G1[re
X:D[X ℄; Y ℄ we
on
lude that G1[re
X:D[X ℄; re
Y:G1[re
X:D[X ℄℄℄ ba=) Q00 �B Q �B Q0. utThe following lemmas are at the basis of the proof of Theorem 2.Lemma 7. Let C 2 Cs.re
Y:(C nH) nH �B (re
Y:C) nH:Proof. Without loss of generality we 
an assume that only the variable Y o

ursfree in the 
ontext C. The general 
ase follows by De�nition 5.Let S = f(G[(re
Y:(C nH))℄ nH;G[re
Y:C℄ nH) j G[X ℄; C 2 Csg. We provethat S is a strong bisimulation. >From this the result follows by 
onsideringG[X ℄ � X . To prove that S is a strong bisimulation we prove that for any pair(G[re
Y:(C nH)℄ nH;G[re
Y:C℄ nH) in S1. if G[re
Y:(C nH)℄ nH a! P then there exists Q su
h that (P;Q) 2 S, andG[re
Y:C℄ nH a! Q.2. if G[re
Y:C℄ n H a! Q then there exists P su
h that (P;Q) 2 S andG[re
Y:(C nH)℄ nH a! P .The proof pro
eeds by indu
tion on the depth d of the inferen
e used to proveG[re
Y:(C nH)℄ nH a! P or G[re
Y:C℄ nH a! Q.Base: d = 1.1. If G[re
Y:(C n H)℄ n H a! P with an inferen
e of depth 1, then the rules\Restri
tion" and \Pre�x" have been applied. Hen
e, G[X ℄ � a:G0[X ℄ andP � G0[re
Y:(C nH)℄ nH . By applying the same rules to G[re
Y:C℄ nH weobtain that G[re
Y:C℄ nH a! Q with Q � G0[re
Y:C℄ nH . Sin
e G 2 Cs, itholds that G0 2 Cs, hen
e (P;Q) 2 S.2. Similar to the previous 
ase.Indu
tion. We pro
eed by 
ases on the stru
ture of the 
ontext G[X ℄.{ G[X ℄ 2 E . Trivial.



{ G[X ℄ � X .1. Let (re
Y:(CnH))nH a! P . Then P � P 0nH and C[re
Y:(CnH)℄nH a!P 0 by a shorter inferen
e. This implies that P 0 is free from high levela
tion, i.e. P � P 0 n H � P 0. Hen
e, by indu
tive hypothesis, thereexists Q su
h that (P;Q) 2 S, and C[(re
Y:C)℄ nH a! Q. So, (P;Q) 2 Sand (re
Y:C) nH a! Q.2. Let (re
Y:C) nH a! Q. Then Q � Q0 nH and C[re
Y:C℄ n H a! Q bya shorter inferen
e. Hen
e, by indu
tive hypothesis, there exists P su
hthat (P;Q) 2 S and C[re
Y:(C n H)℄ n H a! P . So, (P;Q) 2 S and(re
Y:(C nH)) nH a! P .{ G[X ℄ �Pi2I ai:Gi[X ℄.1. Let G[re
Y:(C[Y ℄ n H)℄ n H a! P . Then 9i su
h that a � ai, P �Gi[re
Y:(CnH)℄nH . Hen
e, G[re
Y:C℄nH a! Q with Q � Gi[re
Y:C℄nH .From this, sin
e Gi[X ℄ 2 Cs, we immediately get (P;Q) 2 S.2. Let G[re
Y:C℄)nH a! Q. Then 9i su
h that a � ai, Q � Gi[re
Y:C℄nH .Hen
e, G[re
Y:(C nH)℄ nH a! P with P � Gi[re
Y:(C nH)℄ nH . Fromthis, sin
e Gi[X ℄ 2 Cs, we immediately get (P;Q) 2 S.{ G[X ℄ � G1[X ℄ n v. Trivial.{ G[X ℄ � G1[X ℄[f ℄. Trivial.{ G[X ℄ � re
Z:G1[X;Z℄.1. Let G[re
Y:(C[Y ℄nH)℄nH a! P . Then re
Z:G1[re
Y:(CnH); Z℄nH a! Pand G1[re
Y:(C n H); re
Z:G1[re
Y:(C nH); Z℄℄ n H a! P by a shorterinferen
e. By indu
tive hypothesis there exists Q su
h that (P;Q) 2 S,and G1[re
Y:C; re
Z:G1[re
Y:C; Z℄℄ n H a! Q. Hen
e, (P;Q) 2 S andre
Z:G1[re
Y:C; Z℄℄ nH a! Q, that is G[re
Y:C℄ nH a! Q.2. Let G[re
Y:C℄ n H a! Q that is re
Z:G1[re
Y:C; Z℄℄ n H a! Q. Then,G1[re
Y:C; re
Z:G1[re
Y:C; Z℄℄ nH a! Q, by a shorter inferen
e. By in-du
tive hypothesis there exists P su
h that (P;Q) 2 S and G1[re
Y:(C nH); re
Z:G1[re
Y:(CnH); Z℄℄nH a! P . Hen
e, re
Z:G1[re
Y:(CnH); Z℄nH a! P . utLemma 8. Let P be a 
lass of pro
esses and C[X ℄ 2 Cs be se
ure for P withrespe
t to X. The 
ontext re
Y:C[X ℄ is se
ure for P with respe
t to X.Proof. Our hypothesis is that C[E℄ nH �B C[E nH ℄ nH and we have to provethat (re
Y:C[E℄) nH �B (re
Y:C[E nH ℄) nH:From the hypothesis and Lemma 6 we have thatre
Y:(C[E℄ nH) �B re
Y:(C[E nH ℄ nH):By applying nH to both members we obtainre
Y:(C[E℄ nH) nH �B re
Y:(C[E nH ℄ nH) nH:



Noti
e that if C[X ℄ 2 Cs, then also C[E℄ and C[E nH ℄ are in Cs. Hen
e, we 
anapply Lemma 7 to both members and getre
Y:(C[E℄) nH �B re
Y:(C[E nH ℄) nH;i.e. our thesis. utProof of Theorem 2By indu
tion on the stru
ture of C.{ C 2 E . We have already prove in Theorem 1, that C is se
ure for P .{ C � Y . Again, this has been proved in Theorem 1.{ C � Pi2I ai:Ci. By indu
tion on the Ci's and by Lemma 6 we have thethesis.{ C � C1 n v. By indu
tion and applying Lemma 6 we obtain the thesis.{ C � C1[f ℄. Again, by indu
tion and Lemma 6 we get the thesis.{ C � re
Y:C1. By indu
tion and Lemma 8 we have the thesis. utProof of Lemma 2Consider the binary relationS = f((EjG) nH; (F jK) nH) jE;F;G;K 2 P BNDCand E nH �B F nH;G nH �B K nHg:It is easy to prove that S is a weak bisimulation. The only non-trivial 
ase isthe syn
hronization. Assume that (EjG) nH �! (E0jG0) nH with E h! E0 andG �h! G0. Then, sin
e E;G 2 P BNDC , we have E �̂) E00 with E0 nH �B E00 nHand G �̂) G00 with G0 nH �B G00 nH . Hen
e, E nH �̂) E00 nH and G nH �̂)G00 nH . By hypothesis we obtain F nH �̂) F 0 nH with F 0 nH �B E00 nH andK n H �̂) K 0 n H with K 0 n H �B G00 n H . Hen
e, (F jK) n H �̂) (F 0jK 0) n Hwith E0; G0; F 0;K 0 2 P BNDC , E0 nH �B F 0 nH , and G0 nH �B K 0 nH , i.e.((E0jG0) nH; (F 0jK 0) nH) 2 S. utProof of Theorem 3The fa
t that CjD is a P BNDC�
ontext follows from the fa
t that if twopro
esses are P BNDC , then their parallel 
omposition is P BNDC .We prove that CjD is se
ure for P BNDC . If E 2 P BNDC , then by hypoth-esis we have C[E℄nH �B C[EnH ℄nH and D[E℄nH �B D[EnH ℄nH . Moreover,sin
e E n H is always P BNDC we have that C[E℄; C[E n H ℄; D[E℄; D[E n H ℄are P BNDC . Hen
e, by applying Lemma 2 to these four pro
esses we get thethesis. utProof of Theorem 4First we prove that all the 
ontexts in Cp are P BNDC -
ontexts. This isimmediate by indu
tion on the stru
ture of the 
ontext. In parti
ular, the 
ase



of the non deterministi
 
hoi
e 
an be proved using the unwinding 
hara
teri-zation of P BNDC presented in [1℄, while the 
ase of the parallel operator is a
onsequen
e of the fa
t that the parallel 
omposition of P BNDC pro
esses isP BNDC (see [6℄).Now we prove that all the 
ontexts in Cp are se
ure for P BNDC . Thisis immediate by indu
tion on the stru
ture of the 
ontext. The basi
 steps aretrivial. All indu
tive steps follow by Theorem 1 ex
ept parallel 
ase, whi
h followsfrom Lemma 2. utProof of Lemma 4()) If E 2 NDC , then (Ej�) nHapproxTEnH . Moreover, EnH is always in NDC and EnH nH �T EnH , hen
e(E nH j�) �T E nH . So by transitivity of �T , we obtain that (Ej�) nH �T(E nH j�) nH .(() Sin
e E n H is always in NDC and E n H n H �T E n H , we obtain(Ej�) nH �T (E nH j�) nH �T E nH . utProof of Theorem 5This is an immediate 
onsequen
e of the fa
t that if E �B F , then E �T F ,for all E;F 2 E . utProof of Theorem 6Let E be a pro
ess in P . From the fa
t that all the Ci are se
ure for P weobtain that for all i 2 I it holds Ci[E℄nH �T Ci[E nH ℄nH . Hen
e, sin
e �T is a
ongruen
e with respe
t to the non deterministi
 
hoi
e operator, we have thatPi2I(Ci[E℄ nH) �T Pi2I(Ci[E nH ℄ nH). So, we 
an 
ommute the restri
tionswith the sum and get (Pi2I Ci[E℄) n H �T (Pi2I Ci[E n H ℄) n H . It triviallyholds that (Phj2H hj :Dj [E℄) nH �T 0 �T (Phj2H hj :Dj [E nH ℄) nH . Hen
e,again sin
e �T is a 
ongruen
e with respe
t to the non deterministi
 
hoi
e andthe restri
tion operator 
ommutes with the non deterministi
 
hoi
e we obtain(Pi2I Ci[E℄ +Phj2H hj :Dj [E℄) n H �T (Pi2I Ci[E n H ℄ +Phj2H hj :Dj [E nH ℄) nH , i.e. our thesis. utProof of Lemma 5We re
all the following properties whose proofs 
an be found in [3℄:(1) if E;G 2 NDC , then EjG 2 NDC ;(2) P 2 NDC i� P nH �T P=H ;(3) (EjG)=H �T E=H jG=H ;(4) if E0 �T F 0 and G0 �T K 0, then E0jG0 �T F 0jK 0.



Hen
e we obtain (EjG) nH �T by (1) and (2)(EjG)=H �T by (3)(E=H jG=H) �T by (2) and (4)(F=H jK=H) �T by (3)(F jK)=H �T by (1) and (2)(F jK) nH: utProof of Theorem 7The fa
t that CjD is a NDC -
ontext follows from the fa
t that if two pro-
esses are NDC , then their parallel 
omposition is NDC .We prove that CjD is se
ure for NDC . If E 2 NDC , then by hypothesis wehave C[E℄ nH �T C[E nH ℄ nH and D[E℄ nH �T D[E nH ℄ nH . Moreover, sin
eE nH is always NDC we have that C[E℄; C[E nH ℄; D[E℄; D[E nH ℄ are NDC .Hen
e, by applying Lemma 5 to these four pro
esses we get the thesis. utProof of Theorem 8First we prove that all the 
ontexts in Cn are NDC -
ontexts. This is imme-diate by indu
tion on the stru
ture of the 
ontext. In parti
ular, we use the fa
tthat tra
e equivalen
e is a 
ongruen
e with respe
t to non deterministi
 
hoi
e,the fa
t that if E;F 2 NDC then EjF;E nH 2 NDC (see [4℄).Now we prove that all the 
ontexts in Cn are se
ure for NDC . This is imme-diate by indu
tion on the stru
ture of the 
ontext. The basi
 steps are trivial.As weak bisimulation implies tra
e equivalen
e, all the indu
tive steps follow byby Theorem 1 ex
ept 
ases of parallel and nondeterministi
 
hoi
e. The parallelstep follows by lemma 5. Finally, let C[X ℄ and D[X ℄ be se
ure for NDC , i.e.Tr(C[E℄ nH) = Tr(C[E nH ℄ nH) and Tr(D[E℄ nH) = Tr(D[E nH ℄ nH) forall E 2 NDC , then Tr((C[E℄ +D[E℄) nH) = Tr((C[E℄ nH) + (D[E℄ nH)) =Tr(C[E℄ n H) [ Tr(D[E℄ n H) = Tr(C[E n H ℄ n H) [ Tr(D[E n H ℄ n H) =Tr(C[E nH ℄ +D[E nH ℄) for all E 2 NDC , so we 
on
lude that C[X ℄ +D[X ℄is se
ure for for NDC . ut


