Secure Contexts for Information Flow Security

Annalisa Bossi, Damiano Macedonio, Carla Piazza, and Sabina Rossi

Dipartimento di Informatica, Universitd Ca’ Foscari di Venezia
via Torino 155, 30172 Venezia, Italy
{bossi,mace,piazza,srossi}@dsi.unive.it

Abstract. Information flow security in a multilevel system aims at guar-
anteeing that no high level information is revealed to low levels. A usual
requirement to ensure information flow security for a process is that
no generic attacker can induce a high-to-low information flow. This re-
quirement is too demanding when we have some knowledge about the
contexts where the process is going to run. To deal with these situations
we introduce the notion of secure contexts for a process. The notion is
parametric with respect to both the observational equivalence and the
operation used to characterize the low level behavior. In the paper we
mainly analyze the cases of bisimulation and trace equivalence. We de-
scribe how to build secure contexts in these cases and we show that
two well-known security properties, BNDC and NDC, are just special
instances of our general notion.

1 Introduction

Information flow security in a multilevel system aims at guaranteeing that no
high level information is revealed to users running at low levels [7, 8, 10], even in
the presence of any possible malicious process. Qur work starts from the obser-
vation that such a requirement could be too demanding when some knowledge
about the context (environment) in which the process is going to run is available.
In our approach the context can perform both high and low level action and can
also incorporate possible attackers.

As an example, consider a Java applet E downloadable from the site of
Money&Money Itd which should allow the Money&Money’s customers (sellers)
to get the price list of its products, while the rest of the world should only get
the product list. The applet opens a window with two buttons: if one clicks on
the first button, the product list is shown; otherwise, if one clicks on the second
button, it is asked to insert a password and then the price list is shown. Let
PWD_SELLER be the high level action representing the fact that E is waiting
for a password from a customer before showing the price list through the high
(or low) level output action PRICE_LIST-H (or PRICE_LIST_L). If the password is
not given, then E shows the product list through the high (or low) level output
action PROD_LIST_H (or PROD_LISTL) !. E can be represented by a CCS-like

! Notice that when the product (or price) list is shown on the video both a low-level
and a high-level user can read it. For this reason the output of the product (or price)
list is represented by both a low and a high level action.



process of the form

PWD_SELLER.(PRICE_LIST-H.0 + PRICE_LIST_L.0)+
(PROD_LIST_H.0 4+ PROD_LIST_L.0).

Money&Money does not want the applet to be executed on a machine (context)
C which reveals some high level information (the price list) to someone belonging
to the rest of the world. Let us consider two possible contexts. Let C; be the
machine of the high level user in which the password has been stored (in a
cookie). Then C; can be represented by a term of the form

X|PWD_SELLER.O.

In this case high level information is revealed: when a low level user interacts
with C1[E] he can read the price list, and thus it is reasonable to assume that
C1 is not secure for E. Another more involved context is, for instance, a machine
C5 shared between high and low level users such that only high level users can
read the price list, while low level ones can only read the product list:

PWD_HIGH.(X |PWD_SELLER.O) + PWD_LOW.X.

In this case the flexibility of the context is obtained by splitting C5 into two
non-deterministic components: the first one manages the interactions with high
level users and has in memory the seller’s password; the second one interacts
with low level users and does not provide any password. Note that if a high
level user interacts with C[E] by inserting the password, the price list becomes
readable to low level observers. Does this really means that C' is not secure for
E? 1t depends on how strict we want to be. The high level user could have the
permission to downgrade (see [11]) the level of the information stored in the
price list.

The process E described here does not satisfy the basic information flow secu-
rity properties such as non-interference [10] (also named NDC in [5]). However,
it is reasonable to assume that the context Cy is secure for E. To deal with these
situations we introduce the notion of secure context for a process, which can
be motivated both as security for the process and security for the process. This
notion is parametric with respect to both an observational equivalence relation
and an operation used to characterize the low level view of a process. Here, we
consider weak bisimulation and trace equivalence. We show how to build secure
contexts and prove that the security properties known as BNDC and NDC [5]
are just special instances of our general security notion.

2 Basic Notions

The Security Process Algebra [5] is a variation of Milner’'s CCS [9], where the
set of visible actions is partitioned into high level actions and low level ones in
order to specify multilevel systems. SPA syntax is based on the same elements



as CCS, i.e.: a set £ of visible actions such that £ =1U O where I = {a,b,...}
is a set of input actions and O = {a,b,...} is a set of output actions; a special
action 7 which models internal computations, not visible outside the system; a
complement function - : £ — L, such that @ = a, for alla € L. Act = LU{7} is
the set of all actions. Function - is extended to Act by defining 7 = 7. The set
of visible actions is partitioned into two sets, H and L, of high and low actions
such that H = H and L = L.
The syntax of SPA terms is defined as follows:

T:=0|Z|aT|T+T|T|T|T\v|T[f]|recZ.T

where Z is a variable, a € Act, v C L, f: Act — Act is such that f(a) = f(a),
f(r) = 7. f(H) C HU{r}, and (L) C LU{r}.

We apply the standard notions of free and bound (occurrences of) variables
to the variables occurring in a SPA term. More precisely, all the occurrences of
the variable Z in recZ.T are bound; and Z is free in a term T if there is an
occurrence of Z in T which is not bound.

Definition 1. A SPA process is a SPA term without free variables. We denote
by & the set of all SPA processes, ranged over by E,F, ..., and by Eg the set of
all high level processes, i.e., those constructed only using actions in H U {7}.

A SPA term with free variables can be seen as an environment with places (the
free occurrences of its variables) in which other SPA terms can be inserted. The
result of this substitution is still a SPA term, which could be a process. For
instance, in the term h.0|(l.X + 7.0) we can replace the variable X with the
process h.0 obtaining the process h.0|(I.h.0 + 7.0); or we can replace X by the
term a.Y obtaining the term h.0|(l.a.Y + 7.0). When we consider a SPA term
as an environment we call it context.

Definition 2. A SPA context, ranged over by C, D, ..., is a SPA term in which
free variables can occur.

We can consider a context also as a compound SPA constructor. In fact it can be
used to build new SPA terms from sets of SPA terms. Its arity is determined by
the number of its free variables. For instance X|X can be seen as a constructor
of arity 1 which transforms any process E into the parallel composition with
itself: E|E.

We use the notation C[Y7,...,Y,] when we want to stress the fact that we
are interested only in the free occurrences of the variables Y7, ...,Y},. The term
C[Ty,...,T,)] is the term obtained from C[Y3,...,Y,] by replacing all the free
occurrences of Y7,...,Y, with the terms T3,...,T,, respectively. For instance,
we can write C[X] = h.0|(I.X +7.0) or D[X] = (I.X +7.0)[Y or C'[X] = Y|h.0.
Hence, the notation C[h.0] stands for h.0[(I.h.0 + 7.0), while D[h.0] = (.h.0 +
7.0)|Y and C'[h.0] = Y |h.0. Note that the notation C[Y1, ..., Y,] does not imply
neither that all the Y7,...,Y,, occur free in the context nor that they include all
the variables occurring free in the context.

The operational semantics of SPA processes is given in terms of Labelled
Transition Systems (LTS, for short). In particular, the LTS (£, Act, —), whose



states are processes, is defined by structural induction as the least relation gen-
erated by the inference rules depicted in Figure 1, where a is an action of Act,
while £ belongs to L.
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Fig. 1. The operational rules for SPA

Intuitively, 0 is the empty process that does nothing; a.E is a process that
can perform an action a and then behaves as E; F; + F5 represents the nonde-
terministic choice between the two processes E; and Es; E;i|Es is the parallel
composition of F; and E,, where executions are interleaved, possibly synchro-
nized on complementary input/output actions, producing an internal action 7;
E\ v is a process F prevented from performing actions in v. E[f] is the process
FE whose actions are renamed via the relabelling function f. Given a set v, the
hiding operator mapping E into E /v, where the actions of v U ¢ performed by
E have been replaced by 7 actions, can be defined using relabelling as follows:
E/v = E|[f,], where f,(a) = a,if a ¢ vU® and f,(a) = 7, if a € v U . Finally,
recZ.C[Z] can perform all the actions performed by the process obtained by
substituting recZ.C[Z] to the place-holder Z in the context C[Z]. Observe that
in order to have recZ.C[Z] € £, Z is the only variable which can occur free in
ClZ].

Note also that if W is a variable not occurring in recZ.C[Z] and we replace
all the occurrences of Z in recZ.C[Z] by W we obtain the process recW.C[W]
(a-conversion) which is semantically equivalent to recZ.C[Z]. This equivalence
allows us to assume that whenever we substitute a context D to the free oc-
currences of X in C[X], no free variable of D becomes bound in C[D]: an



a-conversion is always implicitly performed. For instance, by composing the
contexts C[Y] = recX.Y and D[X] = a.X, we obtain C[D[X]] = recZ.a.X.

The concept of observation equivalence is used to establish equalities among
processes and it is based on the idea that two systems have the same semantics if
and only if they cannot be distinguished by an external observer. This is obtained
by defining an equivalence relation over £. The weak bisimulation relation [9)
equates two processes if they are able to mutually simulate their behavior step
by step. Weak bisimulation does not care about internal 7 actions. The trace
equivalence relation equates two processes if they have the same sets of traces,
again, without considering the 7 actions.

We will use the following auxiliary notations. If t = a; ---a, € Act™ and
ES ... 3 E' then we write £ & E'. We also write B == E' if E(3)* %
(5)*---(5) B (5)*E'" where (5)* denotes a (possibly empty) sequence of T
labelled transitions. If ¢ € Act*, then £ € £* is the sequence gained by deleting
all occurrences of 7 from t. As a consequence, F == E' stands for F == E' if
a € £, and for E(5)*E' if a = 7 (note that == requires at least one 7 labelled

o . T o
transition while = means zero or more 7 labelled transitions).

Definition 3 (Weak Bisimulation). A binary relation R C & x £ over pro-
cesses is a weak bisimulation if (E, F') € R implies, for all a € Act,

if E5 E', then there exists F' such that F =L F' and (E',F") e R;
if F 5 F', then there exists E' such that E = E' and (E',F') € R.

Two processes E, F € £ are weakly bisimilar, denoted by E ~p F, if there exists
a weak bisimulation R containing the pair (E, F).

The relation ~p is the largest weak bisimulation and is an equivalence rela-
tion [9].

Definition 4 (Trace Equivalence). For any process E € £ the set of traces
Tr(E) associated with E is defined as follows:

Tr(E)={tec £*|3E'E == E'}.

Two processes E,F € £ are trace equivalent, denoted by E ~¢ F, if Tr(E) =
Tr(F).

It is possible to prove that if two processes are weak bisimilar, then they are
also trace equivalent, while the other implication does not hold.

Following [9] we extend the binary relations defined on processes to contexts
as follows.

Definition 5 (Relations on Contexts). Let R be a binary relation on €. Let
C and D be two contexts and assume Y7, ...,Y, includes all their free variables.
We say that C R D, if for all set of processes {Ey, ..., E,} it holds

C|Ei,...,E,] R DIEy, ..., Ey,].



In the case of weak bisimulation, applying the above definition we have that two
contexts are weak bisimilar if all the processes obtained by instantiating their
variables are pair-wise bisimilar. For instance, using our notation, the contexts
ClX] = aX +7.Y and D[X] = a.7.X + 7.Y are weak bisimilar since for all
E,F € £ it holds a.E + 7.F ~p a.7.E + 7.F. Notice that not all the free
variables of C' and D were explicit in the notation C[X] and D[X]. However,
Definition 5 requires that we instantiate all their free variables.

3 Secure Contexts

In this section we introduce our notion of secure contexts for a class of processes.
This notion is parametric with respect to an operation used to characterize the
low level behavior, say Ej, of a process E (e.g., E\H, E/H), and an observational
equivalence ~ used to equate two processes. We denote by ~; the relation ~ on
the low level views of processes, i.e., E ~; F' stands for E; ~ F;.

Definition 6 (Secure Contexts for a Class of Processes). Let C be a class
of contexts, P be a class of processes, and X be a variable. The class C is secure
for the class P with respect to the variable X if

VC[X] € C,VE € P C|[E] ~, C[E/].

In our definition the variable X is used to determine which are the “places” in
C which have to be filled in using E. It can be that X does not occur free in C.
In this case C is trivially secure (by reflexivity of ~;). Moreover, in C there can
be other free variables different from X. In this case we have to apply Definition
5 and instantiate the other free variables in all the possible ways.

Ezample 1. Let P = {E} and C = {I.X +1.Y + h.Y}, withl € L and h € H.
To prove that C is secure for P with respect to the variable X we have to prove
that for all F € £ it holds l.E+1.F+h.F ~; l.E;+[.F + h.F. Similarly, to prove
that C is secure for P with respect to the variable Y we have to prove that for
all F € £it holds I.F +1.E+ h.E ~; I.F + |.E; + h.E;. The class C is trivially
secure for P with respect to the variable Z, since for all F,G € £ it holds that
I.LF+1G+hG~1.F+1.G+hG.

In the rest of this paper when we say that C is secure for P we are implicitly
referring to the variable X.

The intended meaning of our security definition is that a low level observer
cannot distinguish the interactions between a process E € P and C € C from the
interactions between E; and C. It is an instance of the noninterference schema
proposed in [7]. In fact, no high level information can flow from E; and the
context C' represents the environment in which FE is executed, i.e. it subsumes a
possible situation with actions performed by high and low level users as well as
by possibly attackers.

Let us analyze the definition in the case in which only one process and one
context are involved. The definition can be seen from two points of view: security



for the processes and security for the contexts. On the one hand, if a context
C is secure for a process E, then E can safely interact with C (security for
the process), since C is not able to reveal to the low level user any high level
information contained in E. In fact, it is revealed only the information that
would be revealed by the interaction with E;. On the other hand, if a context
C is secure for a process E, then C can safely interact with E (security for the
context), since E is not able to reveal any high level information of C. In fact,
FE is able to reveal the same information which can be revealed by E; and, since
E; cannot perform high level action, it cannot reveal any high information. We
explain the two points of view with some examples.

Ezample 2 (Security for the Process). Consider the process representing a client
of a bank using his card in a ATM (Automatic Teller Machine) to take money
from his account. When the card is inserted in the ATM the code of the card is
read and the client input his PIN code, then if the PIN is correct he can ask for
the money. All the actions involved concern high level exchange of information
between the client and the bank. We can formalize the process representing the
client in front of the ATM as follows

CARD_CD.PIN_CD.MONEY.O,

where all the actions are high level actions. A correct ATM should read the
codes, and if they are correct, give the money to the client. Hence, leaving out
the details concerning the checks on the codes, it should be of the form

X|CARD_CD.PIN_CD.MONEY.O0.

In this case, intuitively, the process is secure inside the context. In fact, since all
the actions are high no information is revealed to the low level observer.

Imagine now that a maintenance engineer puts a laptop inside the ATM. The
laptop records all the card numbers and the PINs of the ATM’s users. After one
week the engineer removes the laptop and starts to make up counterfeit card.
In this case the context in which the client inserts his card has been modified,
i.e. a malicious component which reveals information to the low level observer
(the engineer) has been added. The card and the PIN codes are first read by the
malicious process, which both records and send them to the bank. The action
of recording the codes is a low level action, since it can be used later by the low
level observer to steal money. The codes are sent to the bank so that the client
receives the money and does not suspect the fraud. The counterfeit context can
be represented as follows

X|CARD_CD.PIN_CD.RECORD_CDS.CARD_CD.PIN_CD.0|
CARD_CD.PIN_CD.MONEY.O0.

Obviously this context is not secure for the process. However, this does not
mean that we give up using cards and ATMs. We just hope to use them in
secure contexts.



Ezample 8 (Security for the Context). Mr Earner has on his own machine C' some
files containing the information about his investments. He would like to check
whether they are profitable and, if they are not, to have some suggestions about
how to change them. He buy a program E which is able to check on the stock
market, using an Internet connection, read the files and perform some computa-
tions (using the information taken from the market) to determine whether the
investments are profitable, and, if necessary (the investment are going bad), to
check again on the stock market, for better opportunities. The second check on
the stock market is recommended to suggest in the best possible way (using
the last quotations), i.e. it is preferable not to use the cached stock market’s
quotations. Obviously Mr Earner does not want that someone knows if his in-
vestments are good or not. Since Mr Earner is not able to evaluate the quality
of his investments he only knows that his machine is in one of the following two
situations:

X|ACCESS_GOOD.0 or X |ACCESS_BAD.SUGGESTIONS.O0.

In the first case Mr Earner investments are good and this fact can be revealed
through the high level output ACCESS_GOOD. In the second case Mr Earner in-
vestments are bad, hence after the high level output its machine is ready to
have in input some suggestions through the high level input SUGGESTIONS. Mr
Earner wants E to be secure w.r.t. both contexts. Let us assume that Mr Earner
investments are good, i.e. we consider the first context?.

If the program FE is of the form

CHECK_MARKET.(ACCESS_GOOD.0+
ACCESS_BAD.CHECK_MARKET.SUGGESTIONS.0),

where the only low level action is the input CHECK_MARKET, then, by observing

that F has not checked a second time on the stock marked, someone could be

able to deduce that Mr Earner’s investments are good. Hence, E is not secure.
The program

CHECK_MARKET.(ACCESS_GOOD.CHECK_MARKET.0+
ACCESS_BAD.CHECK_MARKET.SUGGESTIONS.0)

is secure, because, by performing the check also when the investments are good,
it does not reveal anything about them.

If the market is ‘stable” and the elaboration of the information in Mr Earner’s
file is “fast”, the following program can be used

CHECK_MARKET.(ACCESS_GOOD.O + ACCESS_BAD.SUGGESTIONS.O).

It performs the low level input only once before analyzing the situation of the
investments (i.e., it suggests using the cached dates). Hence, it is secure.

2 All the consideration which follow hold also for the second context.



Notice, that this example recalls the case of military radio transmissions. In
order to avoid that someone knows when some information have been transmit-
ted, every n instants a message is sent. Only one of the messages contains the
real information.

When the class C has only one element C' we say that C is secure for P.
Similarly, in the case in which P has only one element E we say that the class C
is secure for the process E. If a context is secure for a class P of processes, then
it is secure also for all the subclasses of P. Analogously, if a class of contexts C
is secure for a process F, then all the subclasses of C are secure for E. In the
general case we obtain the following result.

Proposition 1. Let C; C Cy be two classes of contexts, P1 C Py be two classes
of processes, and X be a variable. If Cy is secure for Py with respect to X, then
Cy is X-secure for Py with respect to X.

Definition 6 introduces a general security notion. To analyze it more concretely
it is necessary to instantiate the observational equivalence ~; and the operation
defining Fj. In order to get instances useful in the practical cases, a decidable
equivalence and a computable operation are the minimal reasonable require-
ments. However, they are not strong enough to guarantee the decidability of the
security notion. In fact, Definition 6 involves two universal quantifications which
imply that if either C or P are infinite the definition is not operative.

In the next two sections we consider two instances of our framework. We
study the properties of these instances and their connections with some security
notions coming from the literature.

4 First Instance: Weak Bisimulation and Restriction

First we analyze the properties of our security definition by instantiating the
observational equivalence (~) and the low level view of a process (E;) in the
following way. Let E, F € £

- E~F iff E ~p F;

- Eis E\H.
Notice that in this way ~; is an equivalence relation.

Using such an instance, a class of contexts C is secure for a class of processes
‘P with respect to a variable X iff

VC[X]eC,YE € PCIE]\ H~p C|E\ H]\ H.
In the rest of this section we refer to this instance of our security property.

Ezample 4. Let us consider again the process and the contexts in the Introduc-
tion. Since, E has the form

PWD_SELLER.(PRICE_LIST-H.0 + PRICE_LIST_L.0)+
(PROD_LIST_H.0 4+ PROD_LIST_L.0).




where PWD_SELLER, PRICE_LIST_H, and PROD_LIST_H are high level actions, we
obtain that E \ H is
PROD_LIST-L.0.

The first context C' we considered is
X|PWD_SELLER.O.

Hence, we obtain that C[E]\ H is

T.PRICE_LIST_L.0 4+ PROD_LIST_L.0
This is not weak bisimilar to C[E \ H]\ H which is
PROD_LIST_L.0

Hence, the context is not secure. Indeed, a low level user interacting with C[E]
can obtain confidential information.
The second context we considered is

PWD_HIGH.(X [PWD_SELLER.0) + PWD_LOW.X.
In this case we have that both C[E]\ H and C[E \ H]\ H are bisimilar to
PWD_LOW.PROD_LIST_L.0

The context is secure. Indeed, only a further interaction of a high level user can
allow the low level observer to read the price list (downgrading of information).

Ezample 5. In Example 3 we said that the second program FE is secure in both
the proposed contexts. In fact, E never reveals to a low level user the situation
of Mr Earner’s investments, since a second check on the marked is performed
in any case. However, with this instance of our framework and using the first
context, of Example 3 we obtain that C[E]\ H is

CHECK_MARKET.(7.CHECK_MARKET.0)

Y

while C[E\ H]\ H is
CHECK_MARKET.O,

hence the security property does not hold. This models the following situation:
the low level user can deduce that the quality of the investments is still under
evaluation, by observing that the second check on the stock marked has not yet
been performed. Nevertheless, if we assume that the evaluation always takes a
constant amount of time, the process can be safely executed inside the context,
since from the fact that the second check on the market is performed the low level
observer cannot deduce which high level synchronization is occurred (the good
or the bad one). If we consider the instance of our security property obtained by
using the hiding operator instead of the restriction one (see [4]), i.e., we require

C|E|/H ~5 C|E/H]/H



we obtain that C[E]/H and C[E/H]/H are both weak bisimilar to
CHECK_-MARKET.CHECK_MARKET.0,

hence the security property holds.
The third program of Example 3 satisfies C[E]\ H ~p C[E \ H|\ H, w.r.t.
both the contexts, as it can be easily checked.

Using this first instance we find an interesting connection between our secu-
rity definition and the security notion known as BNDC. The BNDC' [4] security
property aims at guaranteeing that no information flow from the high to the low
level is possible, even in the presence of any malicious high level process. The
main motivation is to protect a system also from internal attacks, which could
be performed by the so called Trojan Horse programs, i.e., programs that are
apparently honest but hide inside some malicious code. Property BNDC is based
on the idea of checking the system against all high level potential interactions,
representing every possible high level malicious program. In particular, a system
E is BNDC' if for every high level process II a low level user cannot distinguish
E from (E|II), i.e., if IT cannot interfere with the low level execution of the
system FE.

Definition 7 (BNDC). Let E € £.
E€BNDC iff VI € &y, E\ H ~p (E|I)\ H.

Example 6. The BNDC property is powerful enough to detect information flows
due to the possibility for a high level malicious process to block or unblock a
system. Let H = {h}, L = {l,j} and E4l.h.j.0 + 1.5.0. Consider the process
I = h.0. We have that (Ey|IT) \ H ~p 1.j.0, while E; \ H ~p 1.0 + 1.5.0.
Note that the latter may (nondeterministically) block after the ! input. Having
many instances of this process, a low level user could deduce if h is executed
by observing whether the system always performs j or not. Process E; may be
“repaired”, by including the possibility of choosing to execute j or not inside the
process. Indeed, process Fy = 1.h.5.0 + 1.(7.7.0 + 7.0) is BNDC.

The following lemma states that all the contexts of the form X |IT with IT €
Eg are secure for BNDC' processes.

Lemma 1. Let E € €.
E € BNDC iff CIE]\ H ~p CI[E\ HI\ H
for all contexts C[X] = X|IT with IT € E.
Proof. See Appendix. O

Notice that a BNDC process can be safely executed also in a context in which
an external attacher is able to guess all the high level password. When strict
policies are applied on choices and changes of the passwords, the requirement of
BNDC could be too demanding. In this sense it becomes interesting to study
also processes which are secure only in a more restricted class of contexts.’



Ezample 7. The process in the introduction (see also Example 4) is not a BNDC
process. In fact, the context X|PWD_SELLER.O is a context of the form X|IT with
II € £ and it is not secure for F, hence by Lemma 1 we obtain that E is not
BNDC. However, as shown in Example 4, there are complex contexts in which
E can be safely executed.

The second process of Example 3 is not a BNDC process. In fact, the context
X |ACCESS_GOOD.0 is not secure for it. More in general, we can observe that if
l € L, then a process of the form

> hlo

heH

is not BNDC. In this case the information which flow to the low level observer
is only that a high level action has (or has not) been performed. However, when
the low level user is able to perform his action he is not able to infer which one
of the high level action has been chosen.

The third process of Example 3 can be proved to be BNDC.

In Subsection 4.1 we identify two classes of contexts which are secure for all
the processes. Then, in Subsection 4.2 we concentrate on classes of processes
characterized by some security notions (basically we will consider subclasses of
BNDC) and analyze whether they admit larger classes of secure contexts.

4.1 Secure Contexts for a generic class P
Our first result can be immediately proved by applying the definitions.

Theorem 1. Let P be a class of processes. The following contexts are secure
for P with respect to X .

- Feg&;

— Y, with Y a variable®;

—YerliCi+ Zh]—EH hj.Dj, with the C;’s secure for P with respect to X;
— C'\ v, with C secure for P with respect to X ;

— C[f], with C secure for P with respect to X.

Proof. See Appendix. O

Notice that it does not hold that if C' and D are secure for P, then C|D is
secure for P. This is a consequence of the fact that we do not know anything
about P.

Ezample 8. Consider the process F = h.l.0 + h.0. Let the class P = {E}. The
context X is secure for P (see Theorem 1), but the context X |X is not secure
for P.

3Y can also be the variable X.



Notice that Theorem 1 is not a decidability result. For instance, if we know
that C' is secure for P, then we can deduce that C'\ v is secure for P, but Theorem
1 does not tell us how to prove that C' is secure for P.

Now we characterize a decidable class of contexts which are secure for all the
processes (i.e. for a generic class P). Obviously we want the class to be as large
as possible. In order to obtain the decidability of the class we require a composi-
tionality structure, i.e. contexts are build only using sub-contexts which belong
to the class. In order to ensure security we do not use the parallel composition
when the context is not closed (see Example 8).

Definition 8 (The Class C;). Let Cs be the minimum class such that:

—if F €&, then F € Cy;

— if Y is a variable, then Y € Cy;

— if C; € Cy for alli € I, then ), ;a;.C; € Cy;
— if C € Cy, then C'\ v € Cy;

— if C € Cy, then C[f] € Cs;

— if C € Cy, then recY.C € Cs.

Notice that we impose to the sums to be guarded in the contexts, but not in the
processes.

It is easy to define a proof system whose proofs correspond exactly to the
constructions of the contexts of Cg.

Notice, that if C[Y], D € Cs, then we have C[D] € Cs.

Example 9. The context a.X + b.Y + ¢.Z is in Cs. Hence, also the context
recY.(recZ.(a.X +0.Y + c¢.Z)) belongs to Cs.

All the contexts in Cg are secure for all the processes, as it is stated by the
following theorem.

Theorem 2. Let P be a class of processes and X be a variable. If C' € Cy, then
C is secure for P with respect to X .

Proof. See Appendix. O

Ezxample 10. Let C' be a machine shared between one low level user and one high
level user. When one of the two users is logged the machine cannot be used by
the other one. The logged user can execute his program or a new program which
has been downloaded from the web. The programs of both the users always
terminate and at the end of their executions the other user can take the control.
Let PWD_HIGH be high level action representing the input of the high level user
password. Moreover, let CALL_PROG_H be the high level call to the program
and EX_PROG_H its execution. Finally, let CALL_-WEB_H be the high level call to
the program downloaded from the web. Similarly, all the low level actions are
defined. Hence, C' has the form

recY.(PWD_HIGH.(CALL_PROG_H.EX_PROG_H.Y + CALL_WEB_H.X )+
PWD_LOW.(CALL_PROG_L.EX_PROG_L.Y + CALL_WEB_L.X))

Since C belongs to Cs, the program coming from the web is secure inside C.



As shown by Example 8, without assumptions on the class P the contexts
built using the parallel operator cannot be considered secure. However, as seen
in the previous examples most contexts involve the parallel operator, since it is
at the core of the exchange of information between the process and the context.
For this reason in the next subsection we concentrate on classes of processes on
which we prove that some contexts involving the parallel operator are secure.

4.2 Secure Contexts for sub-classes of BNDC

As stated in Lemma 1 some particular contexts built using the parallel operator
are secure for the class BNDC. Unfortunately, the decidability of BNDC is still
an open problem, and for this reason many sufficient conditions for BNDC' have
been introduced and studied in the literature (see [3,6,2]). In particular, in [2]
three of these sufficient conditions have been considered and it has been shown
that they can be parametrically characterized with respect to an opportune
bisimulation relation. In virtue of Proposition 1 all the contexts which are secure
for the larger of these three classes, i.e. P.BNDC, are secure also for the other two
classes. P_.BNDC( is nothing but the persistent version of BNDC. The persistency
of P_.BNDC has been proved to be fundamental to deal with dynamic contexts
(see [6]).

Definition 9 (P_BNDC). Let E € €£.
E € P_.BNDC iff VE' reachable from E E' € BNDC.

Notice that in order to obtain that parallel contexts are secure we somehow
need to be able to exchange the parallel operator with the restriction one, i.e.,
knowing that C[E]\ H ~p C[E;] \ H and D[E]\ H ~p D[E;] \ H we want
to obtain that (C[E]|D[E]) \ H ~p (C[E;]|D[E;]) \ H. Such property holds for
P_BNDC processes as shown by the following lemma.

Lemma 2. Let E,F,G,K € P_.BNDC. If E\H ~p F\H and G\H ~p K\H,
then (E|G)\ H ~p (F|K)\ H.

Proof. See Appendix. O

The previous lemma suggests us that by requiring to a context to map P.BNDC
processes into P_BND(C' processes we obtain that the parallel composition of se-
cure contexts is secure. More in general we can introduce the following definition,
which will turn out to be useful also in the next section.

Definition 10 (P-contexts). Let P be a class of processes and C[X,Y] be a
context whose free variables are in XUY . C[X,Y] is said to be a P-context with
respect to X if for all E € P and for all F € & it holds that C[E, F] € P.

Definition 11. A context C[X] is said to be P_BNDC-secure with respect to
X if it is a P_BNDC-context with respect to X and it is secure for P_.BNDC
with respect to X .



Theorem 3. Let C and D be two contexts which are P_BNDC -secure with re-
spect to X. The context C|D is P_.BNDC-secure with respect to X.

Proof. See Appendix. O

Notice that we can apply the theorem more than once, thus obtaining contexts
which involve more parallel operators mixed with other operators.

From Proposition 1 we have that the contexts which can be proved to be
secure using Theorem 3 are secure also for SBNDC (see [3]) and CP_BNDC
(see [2]) processes. In fact, in [2] it has been proved that these two are subclasses
of P_LBNDC.

Ezample 11. Consider the third program of Example 3
CHECK_MARKET.(ACCESS_GOOD.0 + ACCESS_BAD.SUGGESTIONS.O).

This process is P_.BNDC|, hence by applying Theorem 3 we immediately get that
the two contexts of Example 3 are secure for the process.

Example 12. Let a € L be an action and E be a P_BNDC' process in which
neither a nor a occur. Let P be a class of P_.BNDC processes whose termination
is announced by the execution of an END action. Consider the context C' defined
as

(X|END.E) \ {END}.

When in C we replace the variable X with a process F' taken from P we obtain
that F'is executed and then F is executed, i.e. we have obtained a context which
behaves like a sequential operator. From Theorem 3 we have that X|a.F is secure
for P. Hence, from Theorem 1, we obtain that C is secure for P.

However, Theorem 3 is not a decidability result. In fact, to check that a
context is a P_BND(C-context, in general, it is necessary to check that an infinite
number of processes are in P_.BNDC'. A decidable class of contexts which are
P_BNDC(C-contexts is characterized by the following definition.

Definition 12 (The Class Cp). Let C,, be the minimum class such that:

— if F € P.BNDC, then F € Cp;

— the variable X is in Cp;

— if Y is a variable, then Y \ H and Y/H are in Cp;

—ifC;,D; €Cp,i €1 and j € J, then Zz’e] li-Ci+ZjeJ(hj-Dj +T.Dj) € Cp,
where l; € L and h; € H;

- if C,D € C, then C|D € C,

—if C €Cp, then C'\ v € Cp;

— if C € Cp, then C[f] € Cp;

Theorem 4. If C[X] € C, then C[X] is P_BNDC-secure with respect to X.
Proof. See Appendix. O

The class C,, in a certain sense, corresponds to the class of processes defined
by the proof system Core described in [1]. In fact, the high level prefixes are
controlled by the T ones, like in Core. Moreover, it is not possible to use the
recursion operator. It could be interesting to study if the same extensions to the
cases with recursion presented in [1] can be added here.



5 Second Instance: Trace Equivalence and Restriction

Sometimes weak bisimulation is considered to be too demanding, i.e. in some
cases processes which are not weak bisimilar can be considered equivalent.

Example 13. The process in the introduction was of the form

PWD_SELLER.(PRICE_LIST_H.0 + PRICE_LIST_L.0)+
(PROD_LIST_H.0 + PROD_LIST_L.0).

Money&Money could imagine that people usually set cookies. Hence, it could
decide to change the applet in the following way: if the password is inserted,
then the price list is given, but as an encrypted file. The high level user has to
use another program to decrypt the file and this program does not allow to store
the decryption key. In this case the price list is given in output only through a
high level action and the process E becomes

PWD_SELLER.PRICE_LIST_H.0+
(PROD_LIST_H.0 4+ PROD_LIST_L.0).

If we consider the first context
X |PWD_SELLER.O,
we obtain that C[E]\ H is
7.0 + PROD_LIST_L.0
This is not weak bisimilar to C[E \ H]\ H which is
PROD_LIST-L.0

However, the low level user cannot read the price list using this context. The
information which flow to the low level user is that if he cannot read the product
list, then a high level user has used the applet to read the price list. But, in this
case the applet has terminated and it has disappeared. It really seems that in
this case the use of bisimulation is too restrictive, while trace-equivalence could
be the right choice.

In this section we consider the following instance:

~E~F if EwgF;
~ EisE\H.

In this case a class of contexts C is secure for a class of processes P with respect
to X iff
VC[X]eC,VYE € P C|[E]\H ~y C[E\ H]\ H.

In the rest of this section we refer to this instance of our security property.

Ezample 14. Using the above definition the context of Example 13 is secure.



Let us consider the security notion known as NDC which is defined as BNDC,
but using trace equivalence instead of weak bisimulation.

Definition 13 (NDC). Let E € £.
Ee NDC iff VII € g, E\ H =7 (E|II)\ H.

The NDC security property is decidable as it immediately follows from the
following characterization, whose proof can be found in [3].

Lemma 3. Let E € £.
Ee NDC iff E/H=~r E\H.
Ezample 15. The process in the introduction is not NDC'.

As in the case of BNDC, it is possible to prove that all the contexts of the form
X|II with IT € Ex are secure for NDC contexts.

Lemma 4. Let E € £.
E € NDC iff C[E]\ H ~1 C[E\ H]\ H
for all contexts C1X] = X|II with IT € .
Proof. See Appendix. O

In the next subsection we study contexts which are secure, using this second
instance, for all the processes. Then in Subsection 5.2 we concentrate on the
contexts secure for the class of NDC processes.

5.1 Secure Contexts for a generic class P

Since trace equivalence is less demanding than weak bisimulation we immediately
obtain that the contexts which were secure in the previous section are secure also
in this section.

Theorem 5. Let C be a class and P be a class of processes. IfVC[X] € C,VE €
P CIEI\H ~p CI[E\H|\H, thenVC[X] € C,VE € P C|[E]\H ~¢ C[E\H]\H.

Proof. See Appendix. O

This means that the class of contexts of Theorem 1 and the class of contexts Cg
are secure for a generic class P of processes.
Moreover, it is easy to prove that the sum of secure contexts is secure.

Theorem 6. Let P be a class of processes and X be a variable. ), ; C; +
ZhjeH h;.Dj is secure for P with respect to X, if for all i € I C; is secure for
P with respect to X .

Proof. See Appendix. O

Notice that, again, it does not hold that if C' and D are secure for P, then C|D
is secure for P. The contexts and the process presented in Example 8 witnesses
this fact.



5.2 Secure Contexts for N DC processes

Here we rediscover the equivalent of the results proved in Subsection 4.2 for
P_BNDC processes, in the case of NDC processes. In particular, the following
lemma, is the correspondent of Lemma, 2.

Lemma 5. Let E,F,G,K € NDC. If E\H ~p F\ H and G\ H ~7 K \ H,
then (E|G)\ H ~¢ (F|K)\ H.

Proof. See Appendix. O

This allows us to obtain the following result which states that contexts obtained
using the parallel operator are secure for NDC processes when the two contexts
which are put in parallel are secure and map NDC processes into NDC' processes.

Definition 14. A context C[X] is said to be NDC-secure with respect to X if
it is a NDC'-context with respect to X and it is secure for NDC with respect to
X.

Theorem 7. Let C and D be two contexts which are NDC'-secure with respect
to X. The context C|D is NDC-secure with respect to X .

Proof. See Appendix. O

Again Theorem 7 does not provide us a decidability procedure, because the
definition of ND(-secure contexts is not operative. In the following definition
we characterize a decidable class of NDC-contexts, which is the analogous of the
class Cp, of Definition 12.

Definition 15 (The Class C,). Let C,, be the minimum class such that:

if F € NDC, then F € Cp;

— the variable X is in Cy;

— if Y is a variable, then Y \ H and Y/H are in C,;
—ifC€Cpandl € L, thenl.C € Cp;

—if C€Cp and h € H, then h.C + 7.C € Cy;
—ifC,DeC,, then C+ D €Cy;

— if C,D € C, then C|D € C,

— if C € Cyp, then C'\ v € Cp;

— if C € Cy, then C[f] € Cy;

Theorem 8. If C[X] € C,, then C[X] is NDC-secure with respect to X .

Proof. See Appendix. O



6 Conclusions

We presented a security notion for processes which is more flexible than some
already known security properties where the attackers are all the possible con-
texts of the form X|II, with IT € €. The flexibility is a consequence of the fact
that our notion is parametric with respect to a class of contexts. On the one
hand our notion can be used to restrict the possible attackers: e.g., when it is
not reasonable to assume that all high level passwords can be guessed. On the
other hand our notion allows to enlarge the set of possible attackers, since also
low level actions can be performed and SPA operators can be freely combined
in the context construction.

An interesting future issue could be the reformulation of our security property
in richer languages (e.g., m-calculus). Such a reformulation would allow a more
deep comparison with other approaches to security.
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7 Appendix

Proof of Lemma 1

(=) If E € BNDC, then (E|II)\ H ~p E\ H. Moreover, E\ H is always in
BNDC and E\H\ H ~g E\ H, hence (E\ H|II) ~p E\ H. So by transitivity
of g, we obtain that (E|II)\ H ~p (E\ H|II)\ H.

(«) Since E \ H is always in BNDC and E\ H\ H ~p E \ H, we obtain
(E\I)\H ~g (E\H|II)\ H=~p E\ H. O

Proof of Theorem 1

— Since F'\ H =p F'\ H for each F € &, F is secure for P.

— The fact that a variable Y is secure for P follows again from E \ H ~p
E\H\H foral E €.

— Let C[X]= 30,0 li-Ci+ Xop, e hy-Dj, with C; secure for P for all i. We
prove that C[E]\ H ~p C[E\ H]\ H for all E € P. If C[E]\ H % C’, then
a € L. Hence, there exists i such that a = I; and C' = C;[E]\ H. So we have
that C[E\ H]\ H % C;[E\ H]\ H, and since C;[X] is secure for P it holds
that C;[E]\ H ~p C;[E\ H]\ H. Similarly, if C[E\ H]\ H % C', then there
exists 7 such that a = [; and C' = C;[E\ H]\ H. Hence, since C;[X] is secure
for P we obtain that C[E]\ H 2 C;[E]\ H with C;[E]\ H ~p C[E\ H]\ H.

— Let E € P. From C[E|\ H ~p C[E \ H]\ H we obtain C[E]\ H\ v =p
C[E\ H]\ H\v, hence C[E]\v\H~p C[E\ H|\v\H.

— Let E € P. We prove that C[E][f]\ H =g C[E \ H|[f]\ H, where f maps
high actions in HU {7} and low actions in LU{7}. If C[E][f]\ H = C', then

C’ = C"[f] and there exists b such that f(b) = a and C[E]\ H 2 ¢ Hence,
CIE\ H]\ H 2 C" with C" ~p C". So we obtain that C[E\ H][f]\ H &

C"[f] with C"'[f] =B C"'[f].
O

The following lemma is useful to prove Lemma 8.
Lemma 6. Let C,D,C',D' € C,. If C ~g D and C' =g D', then
—aC+d.C'"~gaD+ad.D;
— C\vmp D\v;

Clf] =B D[f];
— recY.C =g recY.D.

Proof. Given C,D,C",D' € C; with C ~p D, C' ~g D', and a,a’ € Act, we
can easily see that a.C' +a'.C' ~g a.D +a'.D’'. In fact, the only actions that the
two processes can perform are a and a’ Hence, they can only reduce themselves
toC~pDorC ~pD.

The cases of “Restriction” and “Relabelling” are similar.

We prove the “Recursion” case. Given C,D € Cs with C' &g D we have to
prove that recY.C' ~p recY.D. Without loss of generality we can assume that



C[X] and D[X] have at most the single free variable X . The general case follows
from Definition 5.
Let us define the relation S C C; x C; as follows:

S = {(GrecX.C[X]],GrecX.D[X]]) | C,D,G € Cs, C =~p D,
and G contains at most one variable }.

It will be enough to show that S is a weak bisimulation up to ~p. From this it
follows recX.C[X] ~p recX.D[X], by taking G = X. We prove that

If G[recX.C[X]] = P then there exist Q, Q"' € C,
GlrecX.D[X]] == Q ~p Q', with (P,Q") € S.

The converse follows by the symmetry of S.

We prove the claim by induction on the depth d of the inference used to
obtain G[recX.C[X]] - P.

Base: d = 0.
If GlrecX.C[X]] =% P with an inference of depth 0, then the rule “Prefix” has
been applied, and G[X] = a.G'[X], so P = G'[recX.C[X]], with G’ € C;. Hence,
also G[recX.D[X]] = a.G'[recX.D[X]] - G'[recX.D[X]] and we have that
(G'[recX.C[X]],G'[recX.D[X]]) € S, as required.

Induction. We proceed by cases on the structure of the context G:

— G € £. We have G[recX.C[X]] = G[recX.D[X]] = G, hence we immediately
obtain the thesis.

— G =Y. Then recX.C[X] - P has been deduced by applying the “Recur-
sion” rule at the last step. So C[recX.C[X]] = P with a shorter inference.
Hence, by induction there exist @, Q' € Cs such that C[recX.D[X]] ==
Q =p Q' with (P,Q') € S. But also C[X] ~p D[X] and thus D[recX.D[X]]
== Q" ~p Q. Since, D[recX.D[X]] ~p recX.D[X], we have that it holds
recX.D[X] = Q" with Q" ~p Q" ~p Q ~p Q'.

— G =Y,a;.G;. Then ¥, a;.G;[recX.C[X]] % P by applying the “Sum” in
the last step. So, there exists i such that a;.G;[recX.C[X]] & P. Hence, it
must be P = G;[recX.C[X]], with G; € C;. By applying the same rules,

GlrecX.D[X]] == Q = Gi[recX.D[X]], and (P,Q) € S.

—~ G =Gy \v. Then Gy[recX.C[X]]\ = P by applying the rule “Restriction”
in the last step. So, P = P'\ v, a ¢ v and Gy[recX.C[X]] = P’ by a
shorter inference. By induction on G € Cg, there exist Q,Q’ € C, such
that G1[recX.D[X]] == Q ~p Q' with (E',Q’') € S. Hence, we conclude
Gi[recX.D[X]]\v == Q \ v, with Q \ v ~p Q' \ v and (P,Q' \v) €
S by construction of S. In fact, (P',Q') € S implies that there exists a
context H[Z], with only a free variable Z, such that P’ = H[recX.C[X]] and
Q' = HrecX.D[X]]. Hence, P = P' \ v = H[recX.C[X]]\ v and Q' \ v =
HlrecX.D[X]]\ v.



— G = G4[f]. Then G4[recX.C[X]][f] = P by applying the rule “Relabelling”

in the last step. So, P = P'[f], a = f(a'), and G;[recX.C[X]] a pr
by a shorter inference. By induction there exist @,Q’ € Cs such that it

holds G1[recX.D[X]] = Q ~p Q' with (P',Q") € S Hence, we conclude

Gy [recX.D[X]][f] i Q[f], with Q[f] =p Q'[f] and (P,Q'[f]) € S by

construction.

— G =recY.G1[Z,Y]. Then recY.Gi[recX.C[X],Y] % P by applying the rule
“Recursion” in the last step. So, G1[recX.C[X],recY.G1[recX.C[X]]] = P
with a shorter inference. Hence, by induction there exist @, Q' € Cs such
that Gy[recX.D[X],recY.Gi[recX.D[X]]] == Q ~p Q' with (P,Q’) € S.
Since Gi[recX.D[X],recY.G1[recX.D[X]]] ~p recY.Gi[recX.D[X], Y] we
conclude that G4 [recX.D[X], recY.G1[recX.D[X]]] == Q" ~5 Q ~5 Q'.

a

The following lemmas are at the basis of the proof of Theorem 2.

Lemma 7. Let C € C,.
recY.(C\ H)\ H =p (recY.C) \ H.

Proof. Without loss of generality we can assume that only the variable Y occurs
free in the context C. The general case follows by Definition 5.

Let S = {(G[(recY.(C \ H))]\ H,G[recY.C]\ H) | G[X],C € Cs}. We prove
that S is a strong bisimulation. ;From this the result follows by considering
G[X] = X. To prove that S is a strong bisimulation we prove that for any pair
(GrecY.(C\ H)]\ H,G[recY.C]\ H) in S

1. if G[recY.(C'\ H)]\ H % P then there exists @ such that (P,Q) € S, and
GlrecY.C]\ H % Q.

2. if G[recY.C]\ H % @ then there exists P such that (P,Q) € S and
GlrecY.(C\ H)]\ H % P.

The proof proceeds by induction on the depth d of the inference used to prove
GlrecY.(C\ H)]\ H % P or G[recY.C]\ H % Q.
Base: d = 1.

1. If G[recY.(C'\ H)]\ H % P with an inference of depth 1, then the rules
“Restriction” and “Prefix” have been applied. Hence, G[X] = a.G'[X] and
P = G'[recY.(C\ H)]\ H. By applying the same rules to G[recY.C|\ H we
obtain that G[recY.C]\ H % Q with Q = G'[recY.C]\ H. Since G € Cs, it
holds that G' € Cs, hence (P, Q) € S.

2. Similar to the previous case.

Induction. We proceed by cases on the structure of the context G[X].

— G[X] € €. Trivial.



- dX]=X.
1. Let (recY.(C\H))\H % P. Then P = P'\H and C[recY.(C\H)]\H &
P' by a shorter inference. This implies that P’ is free from high level
action, i.e. P = P'\ H = P'. Hence, by inductive hypothesis, there
exists @ such that (P,Q) € S, and C[(recY.C)]\ H % Q. So, (P,Q) € S
and (recY.C)\ H % Q.
2. Let (recY.C)\ H % Q. Then Q = Q' \ H and ClrecY.C]\ H % Q by
a shorter inference. Hence, by inductive hypothesis, there exists P such
that (P,Q) € S and C[recY.(C \ H)]\ H % P. So, (P,Q) € S and
(recY.(C\ H))\ H S P.
— G[X] = Ziel aZGZ[X]
1. Let GrecY.(C[Y]\ H)]\ H % P. Then Ji such that a = a;, P =
Gi[recY.(C\H)]\ H. Hence, G[recY.C]\H % Q with Q = G;[recY.C]\H.
From this, since G;[X] € Cs, we immediately get (P,Q) € S.
2. Let G[recY.C])\ H % Q. Then Ji such that a = a;, Q = Gy[recY.C]\ H.
Hence, GlrecY.(C \ H)]\ H % P with P = G;[recY.(C' \ H)]\ H. From
this, since G;[X] € Cs, we immediately get (P,Q) € S.

— G[X] = G4[X] \ v. Trivial.
- G[X] = G1[X][f]. Trivial.
— G[X] =recZ.G1[X, Z].

1. Let G[recY.(C[Y]\H)]\H % P. Then recZ.G1[recY.(C\H), Z)\H % P
and G1[recY.(C \ H),recZ.Gy[recY.(C \ H),Z]]\ H % P by a shorter
inference. By inductive hypothesis there exists @) such that (P,Q) € S,
and Gi[recY.C,recZ.G[recY.C,Z]]\ H % Q. Hence, (P,Q) € S and
recZ.Gi[recY.C, Z]]\ H % Q, that is GlrecY.C]\ H 5 Q.

2. Let GlrecY.C]\ H % @ that is recZ.G[recY.C,Z]] \ H = Q. Then,
GilrecY.C,recZ.G1[recY.C, Z]] \ H % @Q, by a shorter inference. By in-
ductive hypothesis there exists P such that (P,Q) € S and G4[recY.(C'\
H),recZ.G[recY.(C\H), Z]]\H % P.Hence, recZ.G1[recY.(C\H), Z]\
H S P.

a

Lemma 8. Let P be a class of processes and C[X] € Cs be secure for P with
respect to X. The context recY.C[X] is secure for P with respect to X.

Proof. Our hypothesis is that C[E]\ H ~p C[E \ H]\ H and we have to prove
that (recY.C[E]) \ H ~g (recY.C[E \ H]) \ H.
From the hypothesis and Lemma 6 we have that

recY.(C[E]\ H) ~p recY.(C[E\ H]\ H).
By applying \H to both members we obtain

recY.(C[E]\ H)\ H ~p recY.(CIE\ HI\ H)\ H



Notice that if C[X] € Cs, then also C[E] and C[E \ H] are in Cs. Hence, we can
apply Lemma 7 to both members and get

recY.(C[E]) \ H ~p recY.(C|E \ H]) \ H,
i.e. our thesis. o

Proof of Theorem 2
By induction on the structure of C.

C € £. We have already prove in Theorem 1, that C is secure for P.

C =Y. Again, this has been proved in Theorem 1.

C = ) ,c;a:i.C;. By induction on the C;’s and by Lemma 6 we have the
thesis.

— C = (4 \ v. By induction and applying Lemma 6 we obtain the thesis.

— C = C1]f]. Again, by induction and Lemma 6 we get the thesis.

— C = recY.C;. By induction and Lemma 8 we have the thesis.

Proof of Lemma 2
Consider the binary relation

S={((E|G)\ H,(F|K)\ H) | E,F,G,K € P.BNDC
and E\H~p F\H,G\H~p K\ H}.

It is easy to prove that S is a weak bisimulation. The only non-trivial case is
the synchronization. Assume that (E|G)\ H = (E'|G') \ H with E L B and
G 5 G'. Then, since E,G € P_.BNDC, we have E = E" with E'\H ~p5 E"\ H
and G = G" with G' \ H ~p G" \ H. Hence, E\ H = E"\ H and G\ H &
G" \ H. By hypothesis we obtain F'\ H SNy & \ H with F'\ H ~g E" \ H and
K\H 2 K'\ H with K\ H ~5 G" \ H. Hence, (F|K)\ H = (F'|K')\ H
with E',G', F',K' € P.BNDC, E'\ H ~p F'\ H, and G' \ H ~p K'\ H, i.c.
(B'G)\ H,(F'|K')\ H) € S. O

Proof of Theorem 3

The fact that C|D is a P_.BNDC —context follows from the fact that if two
processes are P_BNDC, then their parallel composition is P_BNDC'.

We prove that C|D is secure for P.BNDC. If E € P_.BNDC, then by hypoth-
esis we have C[E]\ H ~p C[E\H]\ H and D[E|\H ~p D[E\ H]\ H. Moreover,
since E \ H is always P_.BNDC we have that C[E],C|E \ H],D[E],D|E \ H]
are P_.BNDC'. Hence, by applying Lemma 2 to these four processes we get the
thesis. 0

Proof of Theorem
First we prove that all the contexts in C, are P_BNDC-contexts. This is
immediate by induction on the structure of the context. In particular, the case



of the non deterministic choice can be proved using the unwinding characteri-
zation of P_.BNDC presented in [1], while the case of the parallel operator is a
consequence of the fact that the parallel composition of P_.BNDC' processes is
P_BNDC (see [6]).

Now we prove that all the contexts in C, are secure for P_LBNDC'. This
is immediate by induction on the structure of the context. The basic steps are
trivial. All inductive steps follow by Theorem 1 except parallel case, which follows
from Lemma 2.

ad

Proof of Lemma 4

(=) If E€ NDC, then (E|II)\ H
approxrE\ H. Moreover, E\ H is always in NDC and E\H\ H =7 E\ H, hence
(E\ H|II) =7 E\ H. So by transitivity of ~r, we obtain that (E|II) \ H =t
(E\H[IT)\ H.

(<) Since E \ H is always in NDC and E\ H\ H ~r E \ H, we obtain
(EIII)\H ~r (E\H|II)\H~r E\ H. O

Proof of Theorem 5

This is an immediate consequence of the fact that if E ~g F, then E ~7 F,
forall E,F € £. O

Proof of Theorem 6

Let E be a process in P. From the fact that all the C; are secure for P we
obtain that for all ¢ € I it holds C;[E]\ H =~y C;[E\ H]\ H. Hence, since ~7 is a
congruence with respect to the non deterministic choice operator, we have that
Yoict(CGHEI\H) =7 >, (Ci[E\ H]\ H). So, we can commute the restrictions
with the sum and get (3_,c; Ci[E]) \ H =7 (3_;c; Ci[E \ H]) \ H. It trivially
holds that (3, cp hj-Di[E)) \ H =1 0 &1 (3, cqr hj-D;[E\ H]|) \ H. Hence,
again since ~ 18 a congruence with respect to the non deterministic choice and
the restriction operator commutes with the non deterministic choice we obtain

(Xier CilE] + Xonen hi- D [E) \ H ~1 (Xiey GilE\ H] + 32 e hy-Dy[E\
H]) \ H, i.e. our thesis. O

Proof of Lemma 5

We recall the following properties whose proofs can be found in [3]:

1) if E,G € NDC, then E|G € NDC;
2) P € NDC iff P\ H ~r P/H;
3) (E|G)/H ~r E/H|G/H;

)

(
(
(
(4) if E' ~p F' and G' ~¢ K', then E'|G' ~p F'|K'.



Hence we obtain

(BIG)\H ~r by (1) and (2)
(EIG)/H — ~r by (3)
(E/H|G/H) ~r by (2)and (4)
(F/HK/H) ~r by (3)
(FIK)/H ~ ~r by (1) and (2)
(FIK)\ H

Proof of Theorem 7

The fact that C|D is a NDC-context follows from the fact that if two pro-
cesses are NDC, then their parallel composition is NDC.

We prove that C|D is secure for NDC. If E € NDC, then by hypothesis we
have C[E]\ H =7 C|[E\ H|\ H and D[E]|\ H ~1 D[E\ H]\ H. Moreover, since
E\ H is always NDC we have that C[E],C[E \ H],D[E], D[E \ H] are NDC.
Hence, by applying Lemma 5 to these four processes we get the thesis. O

Proof of Theorem 8

First we prove that all the contexts in C,, are NDC-contexts. This is imme-
diate by induction on the structure of the context. In particular, we use the fact
that trace equivalence is a congruence with respect to non deterministic choice,
the fact that if E,F € NDC then E|F,E\ H € NDC (see [4]).

Now we prove that all the contexts in C,, are secure for NDC'. This is imme-
diate by induction on the structure of the context. The basic steps are trivial.
As weak bisimulation implies trace equivalence, all the inductive steps follow by
by Theorem 1 except cases of parallel and nondeterministic choice. The parallel
step follows by lemma 5. Finally, let C[X] and D[X] be secure for NDC, i.e.
Tr(CI[E)\ H) =Tr(C[E\ H|\ H) and Tr(D[E]\ H) = Tr(D[E \ H] \ H) for
all E € NDC, then Tr((C[E] + DIE])\ H) =Tr((C[E]\ H) + (DIE]\ H)) =
Tr(CIE]\ HYUTr(D|EI\ H) = Tr(C[E\ HI\ H)UTr(DIE\ H\ H) =
Tr(ClIE\ H]+ D|E \ H]) for all E € NDC, so we conclude that C[X] + D[X]
is secure for for NDC'.

O



