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Abstract

We study information flow security properties which are persistent, in the sense that if a system is
secure then all of its reachable states are secure too. We present a uniform characterization of these
properties in terms of a general unwinding schema. This unwinding characterization allows us to
prove several compositionality properties of the considered security classes. Moreover, we exploit
the unwinding condition to dictate the form of the rules we can use to incrementally develop secure
processes and to rectify insecure processes.

1 Introduction

Information flow security properties have been proposed as a means to ensure
confidentiality of classified information in multilevel systems. These properties
impose constraints on information flow among different groups of entities with
different security levels. Often only two groups are considered and are labelled
with the security levels high (H) and low (L). The condition is that no
information should flow from H to L.
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The necessity of controlling information flow as a whole (both direct and
indirect) motivated Goguen and Meseguer in introducing the notion of Non-

interference [19,20]. Non-Interference formalizes the absence of information
flow within deterministic systems. Given a system in which confidential (i.e.,
high level) and public (i.e., low level) information may coexist, non-interference

requires that confidential inputs never affect the outputs on the public inter-
face of the system, i.e., never interfere with the low level users. If such a
property holds, one can conclude that no information flow is ever possible
from high to low level.

Starting from Sutherland [36], many definitions extending the concept of
non-interference to non-deterministic systems have been proposed in the litera-
ture. They are developed in different settings such as programming languages
[4,33,34,35], trace models [25,26], process calculi [11,14,22,30,31,32], proba-
bilistic models [2,12], timed models [15,21], cryptographic protocols [1,5,16].

In [13], Focardi and Gorrieri express the concept of non-interference in the
Security Process Algebra (SPA) language, in terms of bisimulation semantics.
In particular, inspired by [37], they introduce the notion of Bisimulation-

based non Deducibility on Compositions (BNDC ): a system E is BNDC if
what a low level user sees of the system is not modified (in the sense of the
bisimulation semantics) by composing any high level process Π with E. The
main advantage of BNDC with respect to trace-based properties is that it
is powerful enough to detect information flows due to the possibility, for a
high level malicious process, to block or unblock a system. In particular, in
[13,14], it is shown that a malicious process may build a channel from high to
low, by suitably blocking and unblocking some system services accessible by
low level users. The system used to build this covert channel turns out to be
secure with respect to trace-based properties. This motivates the use of more
discriminating equivalences such as bisimulation.

Although Martinelli [24] has shown that a class of BNDC -like properties is
decidable over finite state processes, the problem of efficiently verifying BNDC

is still open. Indeed, decidability of BNDC is an open problem. The main
difficulty consists of getting rid of the universal quantification on high level
processes Π. Another drawback of BNDC is that it is not compositional with
respect to the main SPA operators, such as the parallel composition and the
nondeterministic choice. Compositionality results are useful since they help in
designing efficient verification algorithms and in defining proof systems which
allow one to incrementally build systems which are secure by construction.

For these reasons many decidable and compositional sufficient conditions
for BNDC have been studied in the literature. In [9] it has been proved
that four of these sufficient conditions, namely Persistent BNDC (P BNDC ),
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Strong BNDC (SBNDC ), Compositional P BNDC (CP BNDC ), and Pro-

gressing P BNDC (PP BNDC ), can be characterized in terms of unwinding

conditions.

Unwinding conditions demand properties of individual actions: they aim
at “distilling” the local effect of performing high level actions. As observed by
many authors (see [31,29,23,32]) they are easier to handle and more amenable
to automated proof with respect to global conditions.

In this paper we bridge the gap between unwinding conditions and com-
positionality. In particular, we introduce a parametric notion of unwinding
which generalizes the unwinding characterizations considered in [9]. We ex-
ploit the parametric unwinding condition to formulate general composition-
ality results. Such results aim at establishing a link between the semantics
of the operator with respect to which we want to ensure compositionality
and the relations involved in the unwinding condition. The compositionality
properties of P BNDC, SBNDC, CP BNDC, and PP BNDC are just special
instances of our general results. In the same spirit, we analize how to preserve
unwinding conditions under refinement (see [8]). By exploiting the parametric
unwinding condition and its general compositionality properties, we can also
define proof systems (see [7]) which allow us to build processes which are se-
cure by construction. Finally we suggest methods to rectify (see [6]) insecure
processes in order to obtain processes which satisfy the unwinding conditions
characterizing specific security properties.

The paper is organized as follows. In Section 2, we recall the syntax and
the semantics of the SPA language. In Section 3 we introduce the security
properties BNDC and P BNDC. Moreover, in Section 3.1 we define a general
unwinding schema and give a uniform presentation of the security properties
P BNDC, SBNDC, CP BNDC, and PP BNDC as different instances of the
general schema. In Section 4 we analize the relationships between unwind-
ing conditions and compositionality with respect to the SPA operators and
refinement. We exploit these results to develop proof systems for properties
characterized through unwinding. In Section 5 we exploit the general unwind-
ing schema to present a method for rectifying insecure processes. Finally, in
Section 6 we draw some conclusions.

This paper surveys previous work by the authors [6,7,8,9,10]. The above
mentioned general framework is an original contribution which allows us to
uniformly present our results and also to generalize some of them.

A. Bossi et al. / Electronic Notes in Theoretical Computer Science 99 (2004) 127–154 129



2 Preliminaries

In this section we report the syntax and semantics of the process algebra
we consider. It is a variation of Milner’s CCS [27], similar to the Security

Process Algebra (SPA, for short) language [14], where the set of visible actions
is partitioned into high level actions and low level ones in order to specify
multilevel systems. In addition to constant definitions, we allow one to use
the replication (!) operator for defining recursive systems.

The syntax of our process algebra is based on the same elements as CCS
that is: a set L of visible actions such that L = I ∪ O where I = {a, b, . . .}
is a set of input actions and O = {ā, b̄, . . .} is a set of output actions; a
special action τ which models internal computations, i.e., not visible outside
the system; a complementation function ·̄ : L → L, such that ¯̄a = a, for all
a ∈ L. Act = L ∪ {τ} is the set of all actions. The set of visible actions is
partitioned into two sets, H and L, of high and low actions such that H = H

and L = L.

The syntax of SPA terms 6 (or processes) is defined as follows:

E ::= 0 | a.E | E + E | E|E | E \ v | E[f ] | Z | !E

where a ∈ Act , v ⊆ L, f : Act → Act is such that f(ᾱ) = f(α), f(τ) = τ ,
f(H) ⊆ H ∪ {τ}, and f(L) ⊆ L ∪ {τ}, and Z is a constant that must be

associated with a definition Z
def
= E.

Intuitively, 0 is the empty process that does nothing; a.E is a process
that can perform an action a and then behaves as E; E1 + E2 represents the
nondeterministic choice between the two processes E1 and E2; E1|E2 is the
parallel composition of E1 and E2, where executions are interleaved, possibly
synchronized on complementary input/output actions, producing an internal
action τ ; E \ v is a process E prevented from performing actions in v; E[f ]
is the process E whose actions are renamed via the relabelling function f ; !E
(bang E) is the process E|E| . . ., i.e., the parallel composition of as many copy
as needed of the process E.

We say that a process E is guarded if it can be built by using the rule
a.E + a.E instead of E + E in the syntax of SPA terms above.

We denote by E the set of all SPA processes and by EH the set of all high
level processes, i.e., those constructed only using actions in H ∪ {τ}.

The operational semantics of SPA agents is given in terms of Labelled

Transition Systems (LTS, for short). A LTS is a triple (S, A,→) where S is a

6 Actually, the SPA syntax does not include the ! operator. We maintain the name SPA
for our language since adding ! does not increase the expressive power of the language.
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set of states, A is a set of labels (actions), →⊆ S × A × S is a set of labelled
transitions. The notation (S1, a, S2) ∈→ (or equivalently S1

a
→ S2) means

that the system can move from the state S1 to the state S2 through the action
a. The operational semantics of SPA is the LTS (E ,Act ,→), where the states
are the terms of the algebra and the transition relation →⊆ E × Act × E is
defined by structural induction as the least relation generated by the inference
rules depicted in Figure 1. We use also the notion of rooted labelled transition
system which is a LTS augmented with a distinguish node, the root. Given a
process E we denote by LTS(E) = (SE, E,Act ,→) the rooted LTS constituted
of the subpart of the SPA LTS reachable from E. E is a finite-state process
if LTS(E) has a finite number of nodes, that is SE is finite.

The concept of observation equivalence is used to establish equalities among
processes and it is based on the idea that two systems have the same semantics
if and only if they cannot be distinguished by an external observer. This is
obtained by defining an equivalence relation over E . The strong bisimulation

relation [27] equates two processes if they are able to mutually simulate their
behavior step by step.

We will use the following auxiliary notations. Act∗ denotes the set of
(possibly empty) sequences of actions, while Act+ denotes the set of nonempty
sequences of actions. If t = a1 · · ·an ∈ Act∗ and E

a1→ · · ·
an→ E ′, then we write

E
t
→ E ′. We also write E

t
=⇒ E ′ if E(

τ
→)∗

a1→ (
τ
→)∗ · · · (

τ
→)∗

an→ (
τ
→)∗E ′ where

(
τ
→)∗ denotes a (possibly empty) sequence of τ labelled transitions. If t ∈ Act∗,

then t̂ ∈ L∗ is the sequence gained by deleting all occurrences of τ from t. As

a consequence, E
â

=⇒ E ′ stands for E
a

=⇒ E ′ if a ∈ L, and for E(
τ
→)∗E ′

if a = τ (note that
τ

=⇒ requires at least one τ labelled transition while
τ̂

=⇒
means zero or more τ labelled transitions). We say that E ′ is reachable from

E when there exists t ∈ Act∗ such that E
t
→ E ′. We denote by Reach(E) the

set of all sates reachable from E.

The notion of strong bisimulation can be defined through the simulation

preorder as follows.

Definition 2.1 [Simulation] A binary relation R ⊆ E × E over agents is a
simulation if (E, F ) ∈ R implies, for all a ∈ Act ,

• if E
a
→ E ′, then there exists F ′ such that F

a
→ F ′ and (E ′, F ′) ∈ R.

An agent E is simulated by another agent F , denoted by E ≤ F , if there exists
a simulation R containing the pair (E, F ).

The relation ≤ is the largest simulation and it is a preorder relation, i.e.,
it is reflexive and transitive.
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Prefix
−

a.E
a
→ E

Sum
E1

a
→ E ′

1

E1 + E2
a
→ E ′

1

E2
a
→ E ′

2

E1 + E2
a
→ E ′

2

Parallel

E1
a
→ E ′

1

E1|E2
a
→ E ′

1|E2

E2
a
→ E ′

2

E1|E2
a
→ E1|E

′
2

E1
a
→ E ′

1 E2
ā
→ E ′

2

E1|E2
τ
→ E ′

1|E
′
2

a ∈ L

Restriction
E

a
→ E ′

E \ v
a
→ E ′ \ v

if a �∈ v

Relabelling
E

a
→ E ′

E[f ]
f(a)
→ E ′[f ]

Constant
E

a
→ E ′

Z
a
→ E ′

if Z
def
= E

Replication
E

a
→ E ′

!E
a
→ E ′|!E

E
a
→ E ′ E

ā
→ E ′′

!E
τ
→ E ′|E ′′|!E

a ∈ L

Fig. 1. The operational rules for SPA

Definition 2.2 [Strong Bisimulation] A binary relation R ⊆ E×E over agents
is a strong bisimulation if both R and R−1 are simulations.
Two agents E, F ∈ E are strongly bisimilar, denoted by E ∼B F , if there
exists a strong bisimulation R containing the pair (E, F ).

The relation ∼B is the largest strong bisimulation and it is an equivalence
relation.

In many applications strong bisimulation is too demanding, i.e., it is too
fine. In particular, the internal transitions are treated as all the other actions.
The weak bisimulation relation is similar to strong bisimulation, but it does
not care about internal τ actions.
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Definition 2.3 [Weak Bisimulation] A binary relation R ⊆ E×E over agents
is a weak bisimulation if (E, F ) ∈ R implies, for all a ∈ Act ,

• if E
a
→ E ′, then there exists F ′ such that F

â
=⇒ F ′ and (E ′, F ′) ∈ R;

• if F
a
→ F ′, then there exists E ′ such that E

â
=⇒ E ′ and (E ′, F ′) ∈ R.

Two agents E, F ∈ E are weakly bisimilar, denoted by E ≈B F , if there exists
a weak bisimulation R containing the pair (E, F ).

The relation ≈B is the largest weak bisimulation and it is an equivalence
relation [27].

In our security properties we need the notions of weak bisimulation on low

actions, which equates processes which are bisimilar from the low level user
point of view, and progressing bisimulation on low actions, which also requires
that each τ action is simulated by at least one τ .

Definition 2.4 [Weak Bisimulation on Low Actions] A binary relation R ⊆
E ×E over agents is a weak bisimulation on low actions if (E, F ) ∈ R implies,
for all � ∈ L ∪ {τ},

• if E
�
→ E ′, then there exists F ′ such that F

�̂
=⇒ F ′ and (E ′, F ′) ∈ R;

• if F
�
→ F ′, then there exists E ′ such that E

�̂
=⇒ E ′ and (E ′, F ′) ∈ R.

Two agents E, F ∈ E are weakly bisimilar on low actions, denoted by E ≈l
B F ,

if there exists a weak bisimulation R containing the pair (E, F ).

It is immediate to prove that E ≈l
B F is equivalent to E \ H ≈B F \ F .

Progressing bisimulation on low actions is similar to weak bisimulation on low
actions, but it is based on the notion of progressing bisimulation introduced
in [28].

Definition 2.5 [Progressing Bisimulation on Low Actions] A binary relation
R ⊆ E ×E over agents is a progressing bisimulation on low actions if (E, F ) ∈
R implies, for all � ∈ L ∪ {τ},

• if E
�
→ E ′, then there exists F ′ such that F

�
=⇒ F ′ and (E ′, F ′) ∈ R;

• if F
�
→ F ′, then there exists E ′ such that E

�
=⇒ E ′ and (E ′, F ′) ∈ R.

Two agents E, F are progressing bisimilar on low actions, denoted by E ≈l
P F ,

if there exists a weak bisimulation R containing the pair (E, F ).
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Fig. 2. The LTS of the memory cell M x.

3 Bisimulation Based Security Properties

In [13], Focardi and Gorrieri express the concept of non-interference in terms of
bisimulation semantics through the notion of Bisimulation-based non Deducibili-

ty on Compositions (BNDC ). Property BNDC is based on the idea of checking
the system against all high level potential interactions, representing every pos-
sible high level malicious program. In particular, a system E is BNDC if for
every high level process Π a low level user cannot distinguish E from (E|Π),
i.e., if Π cannot interfere with the low level execution of the system E. In
other words, a system E is BNDC if what a low level user sees of the system
is not modified by composing any high level process Π to E.

Definition 3.1 [BNDC] Let E ∈ E . E ∈ BNDC if

∀ Π ∈ EH , E ≈l
B (E|Π)

Example 3.2 Let us consider an abstract specification M x of a binary mem-
ory cell. M x contains the binary value x and is accessible, by high and low
users, through the four operations rh, wh, rl, wl representing a high read, a high
write, a low read and a low write, respectively. Each operation is implemented
through two different actions, one for each binary value. For example wh 0
and wh 1 indicate a high level user writing value 0 and 1, respectively. 7 The
LTS of process M x is depicted in Figure 2.

M x
def
= rh x . M x + wh 0 . M 0 + wh 1 . M 1

+ rl x . M x + wl 0 . M 0 + wl 1 . M 1

Notice that read (write) operations are modelled as outputs (inputs). Process
M x can send the stored value x through the two output actions rh x and
rl x. Moreover, write operations are performed by accepting an input wh y

7 The following expression for M x is indeed a definition scheme: the actual processes M 0
and M 1 are obtained by replacing x with 0 and 1, respectively.
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and wl y (with y ∈ {0, 1}) and moving to M y, i.e., storing y into the memory
cell.

Notice that M 0 and M 1 are totally insecure processes. As a matter of
fact, a high level user may use the memory cell to directly send confidential
information to the low level. Using BNDC we detect that M 0 and M 1 are
insecure. In fact, considering the process Π ≡ wh 1.0 we get that (M0|Π)\H ≡
τ.M1 \ H which is not weak bisimilar to M0 \ H , since in τ.M1 \ H the low
level user reads 1, while in M0 \ H he reads 0.

In [14], Focardi and Gorrieri observe that the BNDC property is diffi-
cult to use in practice: its decidability is still an open problem. It would
be desirable to have an alternative formulation of BNDC which avoids the
universal quantification on high level processes and exploits local information
only. One of the main difficulty in finding such an alternative characterization
comes from the fact that BNDC is not persistent and thus the requirements
on the processes reachable from a BNDC process E should be different from
the requirements on E itself. In [17], it is introduced a security property called
Persistent BNDC (P BNDC, for short), in which persistence is imposed by
definition.

Definition 3.3 [P BNDC] Let E ∈ E . E ∈ P BNDC if

∀ E ′ ∈ Reach(E), E ′ ∈ BNDC .

The decidability of P BNDC over finite state processes has been proved
in [17] by exploiting a bisimulation based characterization.

A standard way to protect confidential data is to apply the multilevel se-
curity model of [3]. First, we need to assign a security level to any information
containers (called objects); then the following access control rules are imposed:
(i) no low level user can read from high level objects; (ii) no high user can
write into low level objects. Indeed, these are the only two (direct) ways
for leaking confidential information. Sometimes they are sufficient to ensure
security as described in the following example.

Example 3.4 The memory cell of Example 3.2 is neither BNDC nor P BNDC.

In order to protect confidential data we can transform M x into both a
high level cell Mh x (see Figure 3), by eliminating any low level read operation
(rule (i) above),

Mh x
def
= rh x . Mh x + wh 0 . Mh 0 + wh 1 . Mh 1

+ wl 0 . Mh 0 + wl 1 . Mh 1

and a low level cell M l x, by eliminating any high level write operation (rule
(ii) above):
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Fig. 3. The LTS of the memory cell Mh x.

M l x
def
= rh x . M l x + rl x . M l x

+ wl 0 . M l 0 + wl 1 . M l 1

We can prove that both Mh x and M l x are P BNDC.

Other bisimulation based persistent security properties have been studied
in the literature. We recall here the following: Strong BNDC (SBNDC, for
short), introduced in [13], Compositional P BNDC (CP BNDC, for short),
introduced in [8], and Progressing P BNDC (PP BNDC, for short), introduced
in [9]. All these properties are included in the BNDC class, i.e., if a process
satisfies one of them, then it is BNDC. In the next subsection we introduce
them through a uniform unwinding definition.

3.1 Unwinding Definitions

The idea behind the notion of unwinding is to introduce some constraints on
the transitions of the system (see [32]) which imply some global properties. In
particular, when an unwinding condition is used to define a non-interference
property it usually requires that each high level action can be “simulated” in
such a way that it is impossible for the low level user to infer which high level
actions have been performed (see [29]).

In this section we give a uniform presentation of the security properties
P BNDC, SBNDC, CP BNDC, and PP BNDC by introducing a generalized
unwinding condition. Our unwinding is parametric with respect to two binary
relations on processes: an equivalence relation, �

l, which represents the low
level indistinguishability and a transition relation, ���, which characterizes
the local connectivity required by the unwinding condition.

Definition 3.5 [Generalized Unwinding] Let �
l be a binary equivalence re-

lation on E and ��� be a binary relation on E . We define the unwinding class
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W(�l, ���) as

W(�l, ���)
def
= {E ∈ E | ∀ F, G ∈ Reach(E) and ∀ h ∈ H

if F
h
→ G then ∃G′ such that F ��� G′ and G �

l G′}.

The unwinding condition characterizing an unwinding class clearly im-
plies persistence. Moreover, any process E which does not perform high level
actions belongs to any unwinding class W(�l, ���), since the unwinding con-
dition is trivially satisfied.

The following theorem follows from the unwinding characterizations of
P BNDC studied in [7] and of PP BNDC studied in [9], and from the original
definitions of SBNDC in [13] and of CP BNDC in [8].

Theorem 3.6 (Unwinding) Let E ∈ E be a process.

• E ∈ P BNDC iff E ∈ W(≈l
B ,

τ̂
=⇒);

• E ∈ SBNDC iff E ∈ W(≈l
B ,≡);

• E ∈ CP BNDC iff E ∈ W(≈l
B ,

τ
=⇒);

• E ∈ PP BNDC iff E ∈ W(≈l
P ,

τ
=⇒);

where ≡ is the syntactic equality between processes.

The above theorem helps us to understand the local meaning of our security
properties. Let F be a process reachable from a P BNDC process E. If F

can perform a high level transition reaching a process G, then F can also
simulate such a move reaching, through a (possible empty) sequence of silent
transitions, a process G′ which is undistinguishable from G from a low level
view. In the case of SBNDC the sequence of silent transitions is replaced
by no transitions, i.e., G′ is F itself, while in the case of CP BNDC and
PP BNDC the silent sequence cannot be empty. Moreover, in PP BNDC

weak bisimulation on low actions is replaced by progressing bisimulation on
low actions.

Example 3.7 Consider the memory cells Mh x and M l x described in Ex-
ample 3.4. Exploiting the unwinding characterization of P BNDC given in
Theorem 3.6 it is easy to see that both Mh 0 and Mh 1 are P BNDC . First,
notice that Mh 0 ≈l

B Mh 1, since there is no way for a low level user to dis-
tinguish between the two states. As a matter of fact, the only possible low
level actions are the two write operations wl 0, wl 1 which, both in Mh 0 and
in Mh 1, move the system into the same states. The fact that M l 0 and M l 1
are P BNDC is even easier to prove: the only high level actions rh 0, rh 1 do
not change the system state. Moreover, since neither Mh x nor M l x perform
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Fig. 4. The LTS of the memory cell Nh x.

BNDC

P_BNDC

SBNDC

CP_BNDC

PP_BNDC

Fig. 5. Security Properties.

any τ transition, one can infer that they are also SBNDC. Finally, one can
notice that Mh x and M l x are neither CP BNDC nor PP BNDC, since there
are not τ moves executable by the two processes.

Consider now the processes Nh x (see Figure 4) and N l x obtained by
adding a time-out realized by a τ -loop in the initial state of both Mh x and
M l x, i.e.,

Nh x
def
= rh x . Nh x + wh 0 . Nh 0 + wh 1 . Nh 1

+ wl 0 . Nh 0 + wl 1 . Nh 1 + τ . Nh x

N l x
def
= rh x . N l x + rl x . N l x

+ wl 0 . N l 0 + wl 1 . N l 1 + τ . N l x.

The processes Nh x and N l x are both CP BNDC and PP BNDC.

The unwinding characterizations allow us to easily prove that PP BNDC ⊂
CP BNDC ⊂ P BNDC, SBNDC ⊂ P BNDC, and the processes containing
only low level actions satisfy all of them. The situation is summarized in
Figure 5.
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4 How to Incrementally Build Secure Processes

Compositionality is useful for both verification and synthesis. On one hand,
if a property is preserved when systems are composed, then the analysis pro-
cess can be decomposed and applied to subsystems in order to prove that the
system as a whole satisfies the desired property. On the other hand, in the
synthesis of a system, compositionality makes it possible to deal with all the
subcomponents in a uniform way. In this section we analyze the relations be-
tween the unwinding conditions and compositionality results. We show that
all the security properties we considered are compositional with respect to the
parallel operator, while not all of them are fully compositional. In particular,
P BNDC and SBNDC are not preserved by the nondeterministic choice op-
erator. In general, when we build a system that may (nondeterministically)
choose to behave as one of two secure subsystems, we could obtain an inse-
cure system. As also observed in [18], this seems to be counterintuitive. On
the contrary, PP BNDC and CP BNDC are fully compositional, i.e., they are
compositional also with respect to the nondeterministic choice.

Besides standard algebra operators, we also consider refinement operators
which are useful for the stepwise development of secure processes. Indeed, one
usually starts from a very abstract specification of the desired system which is
then refined and decomposed until one arrives at a concrete specification that
can directly be implemented. If properties are preserved under each refinement
step then those properties which have been already investigated in some phase
need not to be re-investigated in later phases.

Given an unwinding class W(∼l, ���) and a partial function f : Ek −→ E ,
we say that W(∼l, ���) is compositional with respect to f if E1, . . . , Ek ∈
W(∼l, ���) implies that either f(E1, . . . , Ek) ∈ W(∼l, ���) or f(E1, . . . , Ek)
is not defined (denoted by f(E1, . . . , Ek) ↑).

To study compositionality properties of unwinding classes we first intro-
duce the following notions of preservation and reflection.

Definition 4.1 [Preservation and Reflection] Let f : Ek −→ E be a partial
function and � ⊆ E × E be a relation.

The function f preserves � if the following condition holds. Let I � J be any
partition of {1, . . . , k} with I �= ∅. If ∀i ∈ I (Gi � G′

i) and ∀j ∈ J (Gj ≡ G′
j)

then

f(G1, . . . , Gk) � f(G′
1, . . . , G

′
k) or (f(G1, . . . , Gk) ↑ and f(G′

1, . . . , G
′
k) ↑)

The function f reflects � if the following condition holds. If f(G1, . . . , Gk) �
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M , then ∃ I, J , I � J = {1, . . . , k} and I �= ∅ such that

∀i ∈ I (Gi � G′
i) and ∀j ∈ J (Gj ≡ G′

j) and M ≡ f(G′
1, . . . , G

′
k)

The condition I �= ∅ in the above definition has the aim of considering also

non reflexive relations, e.g. the relation
h
→.

Example 4.2 Let � be the weak bisimulation relation, i.e., E�F if and only
if E ≈B F . It holds that the parallel composition operator preserves weak
bisimulation [27]. On the other hand, the nondetermistic choice operator does
not preserve weak bisimulation. In fact, 0 ≈B τ.0, but a.0 + 0 �≈B a.0 + τ.0.

Let � be the reachability relation, i.e., {(E, F ) | E ∈ E and F ∈ Reach(E)}.
The parallel operator reflects �. In fact, if G1|G2 reaches M , i.e., M ∈
Reach(G1|G2) then M ≡ G′

1|G
′
2 with both G′

1 ∈ Rach(G1) and G′
2 ∈ Rach(G2).

Compositionality of an unwinding class can be proved by means of the
following theorem.

Theorem 4.3 (Reflection-Preservation Composition) Let f : Ek −→ E

be a partial function reflecting
h
→ and the reachability relation and preserving

��� and ∼l. Then W(∼l, ���) is compositional with respect to f .

Proof. It is not restrictive to assume k = 2.

Let E, F ∈ W(∼l, ���). We have to prove that f(E, F ) ∈ W(∼l, ���).
If f(E, F ) reaches M , then, since f reflects the reachability relation 8 , there
exist G, K (one of them possibly equal to E or F , respectively) such that E

reaches G, F reaches K, and M ≡ f(G, K). If M
h
→ M ′, then, since f reflects

h
→, three cases are possible:

• G
h
→ G′ and M ′ ≡ f(G′, K);

• K
h
→ K ′ and M ′ ≡ f(G, K ′);

• G
h
→ G′, K

h
→ K ′, and M ′ ≡ f(G′, K ′).

In the first case G ��� G′′ and G′′ ∼l G′. Hence, since f preserves ��� and
∼l we have M ��� f(G′′, K) and f(G′′, K) ∼l f(G′, K). The second and the
third cases are similar. Hence, f(E, F ) ∈ W(∼l, ���). �
�

As we will see in the next subsection, the hypotheses of the above theo-
rem are satisfied when we deal with operators whose semantics is recursively
defined on subprocesses (e.g., the parallel operator |). Other operators have a

8 Note that the reachability relation is reflexive.
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semantics which is a “union” of the semantics of subprocesses (e.g., the nonde-
terministic choice operator). To deal with such kind of operators we introduce
the notions of propagation and projection.

Definition 4.4 [Propagation and Projection] Let f : Ek −→ E be a partial
function and � ⊆ E × E be a relation.

The function f propagates � if the following condition holds. If ∃i such that
(Gi � G′

i), then f(G1, . . . , Gk) � G′
i or f(G1, . . . , Gk) ↑.

The function f projects � if the following condition holds. If f(G1, . . . , Gk)�
M , then ∃i such that Gi � M .

Example 4.5 Let � be the relation
a
→ and f be the nondetermistic choice

operator +. It holds that + propagates
a
→. In fact, if G1

a
→ G′

1 then G1+G2
a
→

G′
1. Moreover, + projects

a
→, since if G1 + G2

a
→ M then either G1

a
→ M or

G2
a
→ M .

We say that a process E positively reaches a process E ′ if there exists a
process E ′′ and an action a such that E

a
→ E ′′ and E ′′ reaches E ′.

Theorem 4.6 (Projection-Propagation Composition) Let f : Ek −→ E

be a partial function projecting
h
→ and the positive reachability relation and

propagating ���. Then W(∼l, ���) is compositional with respect to f .

Proof. It is not restrictive to assume k = 2.

Let E, F ∈ W(∼l, ���). We have to prove that f(E, F ) ∈ W(∼l, ���). If
f(E, F ) reaches M , then, two cases are possible:

• M ≡ f(E, F );

• f(E, F ) positively reaches M .

In the first case we have to prove that if f(E, F )
h
→ M ′, then f(E, F ) ��� M ′′

and M ′′ ∼l M ′. If f(E, F )
h
→ M ′, since f projects

h
→, it is not restrictive to

assume that E
h
→ M ′. Since E ∈ W(∼l, ���), by definition, E ��� M ′′ and

M ′′ ∼l M ′. From the fact that f propagates ��� we get that f(E, F ) ��� M ′′,
i.e., the thesis.

In the second case, since f projects the positive reachability relation, we
can safely assume that E reaches M . Since E ∈ W(∼l, ���) and E reaches
M , we immediately get the thesis. �
�

4.1 Compositionality with respect to the Algebra Operators

The following result is an immediate consequence of Theorem 4.3, since all

the operators it deals with reflect
h
→ and the reachability relation.
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Corollary 4.7 (Restriction, Renaming, Parallel, Definition) Consider

an unwinding class of processes W(∼l, ���).

• Let v ⊆ L. If the function restv : W(∼l, ���) −→ E defined as restv(E) =
E \ v preserves ��� and ∼l, then W(∼l, ���) is compositional with respect

to the v-restriction;

• Let g be a renaming. If the function reng : W(∼l, ���) −→ E defined as

reng(E) = E[g] preserves ��� and ∼l, then W(∼l, ���) is compositional

with respect to the g-renaming;

• If the function par : W(∼l, ���)2 −→ E defined as par(E, F ) = E|F pre-

serves ��� and ∼l, then W(∼l, ���) is compositional with respect to the

parallel composition |;

• If the function def : W(∼l, ���) −→ E defined as def(E) = Z, with Z
def
= E,

preserves ��� and ∼l, then W(∼l, ���) is compositional with respect to the

constant definition
def
= .

The following result is a consequence of Theorem 4.6, since the nondeter-

ministic choice operator projects
h
→ and the positive reachability relation.

Corollary 4.8 (Non Deterministic Choice) Let W(∼l, ���) be an unwind-

ing class of processes. If the function sum : W(∼l, ���)2 −→ E defined as

sum(E, F ) = E + F propagates ���, then W(∼l, ���) is compositional with

with respect to the nondeterministic choice operator +.

Theorem 4.9 (Low Prefix) Let W(∼l, ���) be an unwinding class of pro-

cess. If l ∈ L is a low level action, then W(∼l, ���) is compositional with

respect to the low prefix operator which maps E into l.E.

Proof. We have to prove that if E ∈ W(∼l, ���) and l ∈ L, then l.E ∈ W(∼l

, ���). If l.E reaches E ′, then two cases are possible:

• E ′ ≡ l.E;

• E ′ ∈ Reach(E).

In the first case E ′ cannot perform any high level action, hence we have nothing
to prove. In the second case by the hypothesis that E ∈ W(∼l, ���) we
immediately get the thesis. �
�

The replication operator needs an ad-hoc theorem since it does not re-

flects
h
→ and the reachability relation. In fact, if !E reaches E ′ this does not

correspond to the fact that E reaches E ′′ and E ′ ≡!E ′′. In particular, if !E
reaches E ′ we can prove that E ′ is of the form E1| . . . |En|!E where all the
Ei’s are reached by E. The following theorem allows us to exploit this form
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of ‘reflection’ of the reachability relation to obtain sufficient conditions for the
compositionality with respect to the replication operator.

Theorem 4.10 (Replication) Let W(∼l, ���) be an unwinding class of pro-

cesses. If it holds that

(1) ��� is included in the reachability relation, i.e., if E ��� F then E reaches

F ,

(2) for each F ∈ W(∼l, ���) and k ≥ 0 the function fF
k : W(∼l, ���)k −→ E

defined as fF
k (E1, . . . , Ek) = E1| . . . |Ek|!F preserves ∼l,

(3) for each k ≥ 0 the function gk : Ek −→ E such that gk(E1, . . . , Ek) =
E1| . . . |Ek preserves ���,

(4) if F ��� F ′, then !F ��� F ′|!F ,

then W(∼l, ���) is compositional with respect to the replication operator !.

Proof. First we prove the following claim.

Claim 1. If !F reaches F ′, then there exist n ≥ 0 and F1, . . . , Fn such that F

reaches Fi, for i = 1, . . . , n and F ′ ≡ F1|F2| . . . |Fn|!F.

Since !F reaches F ′, there exists t ∈ Act∗ such that !F
t
→ F ′. We proceed

by induction on the length ln of t.

If ln = 0, then F ′ ≡!F , hence we have the thesis with n = 0.

Let us assume that we have proved the thesis for all the ln ≤ m. Let

ln = m+1. This means that there exists F ′′ such that !F
t′

→ F ′′, t′ has length
m, and F ′′ a

→ F ′. By inductive hypothesis there exist n ≥ 0 and F1, . . . , Fn

such that F reaches Fi, for i = 1, . . . , n and F ′′ ≡ F1|F2| . . . |Fn|!F. If the
action a is performed by one of the Fi’s, say F1, we have the thesis, since F

reaches F1 and F1
a
→ F ′

1 and F ′ ≡ F ′
1|F2| . . . |Fn|!F. Similarly we obtain the

thesis if a = τ is a synchronization between two of the Fi’s. If the action a

is performed by !F applying the first rule of Replication, then F
a
→ Fn+1 and

F ′ ≡ F1|F2| . . . |Fn|Fn+1|!F. Similarly we obtain the thesis in the remaining
two cases, i.e. if a is performed by !F applying the second rule of Replication
or if a is a synchronization between one of the Fi’s and !F .

Now we have to prove that if F ∈ W(∼l, ���), then !F ∈ W(∼l, ���), i.e.,

if !F reaches F ′ and F ′ h
→ G, then F ′

��� G′ with G′ ∼l G.

If !F reaches F ′, by Claim 1, we have that F ′ is of the form F1| . . . |Fn|!F .

If n = 0, then F ′ ≡!F . If !F
h
→ G, then F

h
→ G′′ and G ≡ G′′|!F . Since

F ∈ W(∼l, ���), we have that F ��� K and K ∼l G′′. By hypothesis (4),
!F ��� K|!F . Moreover, by hypothesis (1), we have that K ∈ W(∼l, ���),
hence since, by hypothesis (2), fF

1 preserves ∼l, we get K|!F ∼l G′′|!F .

If n > 0, then F ′ ≡ F1| . . . |Fn|!F . If F ′ h
→ G, then two cases are possible:
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• there exists i such that Fi
h
→ F ′

i and G ≡ F1| . . . |F
′
i | . . . |Fn|!F ;

• F
h
→ F ′′ and G ≡ F1| . . . |Fn|F

′′|!F .

In the first case, since F ∈ W(∼l, ���) reaches Fi we have that Fi ��� K

with K ∼l F ′
i . Since, by hypotheses (3) and (2), gn+1 preserves ��� and fF

n

preserves ∼l we get that F ′
��� G′ ≡ F1| . . . |K| . . . |Fn|!F and G′ ∼l G.

In the second case, since F ∈ W(∼l, ���), F ��� K with K ∼l F ′′. Hence,
by hypothesis (4), we get that !F ��� K|!F . Since, by hypothesis (3), gn+1

preserves ��� we have that F ′
��� G′ ≡ F1| . . . |Fn|K|!F . By hypothesis (1)

we obtain K ∈ W(∼l, ���), hence we can exploit the fact that fF
n+1 preserves

∼l to get G′ ∼l G. �
�

We are now ready to apply our general results to the security properties
P BNDC, SBNDC, CP BNDC, and PP BNDC.

Corollary 4.11 P BNDC, SBNDC, CP BNDC, PP BNDC are compositional

with respect to the following operators:

• the l-prefix operator, for each l ∈ L;

• the v-restriction operator, for each v ⊆ L;

• the g-renaming operator, for each renaming g;

• the parallel composition |;

• the constant definition
def
= ;

• the replication operator !.

CP BNDC, PP BNDC are compositional with respect to the nondeterministic

choice operator +.

Proof. As far as the first 5 operators are concerned, the compositionality can
be proved by observing that the hypothesis of Theorem 4.9 and Corollary 4.7
hold.

To prove the compositionality with respect to the replication operator we
need to prove that the hypothesis of Theorem 4.10 hold.

(1) The relations (
τ
→)∗, (

τ
→)0, (

τ
→)+ are included in the reachability.

(2) We prove that the fF
k ’s preserve ∼l. In the case of P BNDC the fact

that each fF
k preserves ≈l

B can be proved by proving that

R = {(E1| . . . |Ek|!F, E ′
1| . . . |E

′
k|!F ) | Ei, E

′
i, F ∈ P BNDC and Ei ≈

l
B E ′

i}

is a weak bisimulation on low actions (see Lemma 5 of [10]). In the case of
SBNDC and CP BNDC the thesis follows from the case of P BNDC, since
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they are both included in P BNDC and they use ≈l
B, as P BNDC does. In

the case of PP BNDC the proof can be obtained similarly by proving that

R = {(E1| . . . |Ek|!F, E ′
1| . . . |E

′
k|!F ) | Ei, E

′
i, F ∈ PP BNDC and Ei ≈

l
P E ′

i}

is a progressing bisimulation on low actions.

(3) The fact that each gk preserves (
τ
→)∗, (

τ
→)0, (

τ
→)+ is a consequence of

the semantics of the parallel operator.

(4) Also the last hypothesis, i.e., F ��� F ′ implies !F ��� F ′|!F , can
be easily proved for our security properties (modulo the use of structural
congruence in the case of SBNDC and P BNDC ).

To prove that CP BNDC and PP BNDC are compositional with respect
to the nondeterministic choice operator we can apply Corollary 4.8.

�
�

Example 4.12 Consider the parallel composition of the high and low memory
cells Mh x and M l x defined in Example 3.4, i.e.,

Mh|l x
def
= Mh x|M l x.

Since both Mh 0 and M l 0 are P BNDC, by Corollary 4.11, Mh|l 0 is P BNDC

too. Similarly an unbounded number of high memory cells defined as

M !h x
def
=!Mh x.

is P BNDC.

Consider now the non-deterministic composition of Mh x and M l x. In
particular, consider the memory cell Mh+l x that behaves as either Mh x or
M l x, i.e.,

Mh+l x
def
= Mh x + M l x.

We know that Mh x and M l x are P BNDC, however their non-deterministic
composition, i.e., Mh+l x, is not. Indeed, consider the execution of a high level
write action wh 0. This moves the whole Mh+l 0 system to Mh 0 (notice that
M l 0 does not accept the high level input wh 0). The problem is that a low
level user can observe this move by trying to write some value into the memory
cell. As a matter of fact, since Mh 0 does not accept low level inputs, the low
level user can deduce that some high level action has been performed. This
indirect information flow can be exploited to build a so called covert-channel

(see, e.g., [14] for more detail). Formally, we can prove that Mh+l 0 is neither
P BNDC, SBNDC, CP BNDC nor PP BNDC by observing that the move

Mh+l 0
wh 0
→ Mh 0 cannot be simulated by Mh+l 0.
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Consider now the the memory cell Nh+l x obtained as non-deterministic
composition of the cells Nh x and N l x of Example 3.7, i.e.,

Nh+l x
def
= Nh x + N l x.

Since we have already showed that Nh x and N l x are both CP BNDC and
PP BNDC, by compositionality results we obtain that Nh+l x is both CP BNDC

and PP BNDC. Notice that the problem of simulating the move Nh+l 0
wh 0
→

Nh 0 is now solved by performing the τ of the added τ . Nh 0 branch in the
definition of Nh 0. In particular we have that Nh+l 0

τ
→ Nh 0.

4.2 Compositionality with respect to Refinement

In [8] we introduced a new notion of refinement for SPA processes. Intuitively,
an abstract specification (given here as a SPA system) defines the set of pos-
sible (allowed) behaviors of a system. Refining a specification corresponds to
choosing among these allowed behaviors, the ones that will be actually imple-
mented. The idea is that a refined specification should never show behaviors
that were not foreseen in the initial specification. To formalize this idea, we
require that (i) each state of the abstract specification is refined to, at most,
one state of the more concrete (i.e., refined) specification; (ii) the behavior
of the refined states is simulated by the abstract states, i.e., it should always
be possible to simulate an action performed by a refined state by the corre-
sponding abstract state, and the two reached states should be still one the
refinement of the other.

Refinement is formalized as a partial function from processes.

Definition 4.13 (Refinement) A binary relation R ⊆ E ×E over processes
is a refinement if

• R−1 is a simulation and
• R is a partial function from E to E .

We say that E is a refinement of F , denoted by E � F , if there exists a
refinement R such that R(F ) = E.

The following theorem has been proved in [8] but it is easy to see that it is
also a consequence of Theorem 4.3. Just note that any refinement R reflects
h
→ and the reachability relation since, by definition, R−1 is a simulation.

Theorem 4.14 Let W(∼l, ���) be an unwinding class of processes and R be

a refinement. If R preserves ��� and ∼l, then W(∼l, ���) is compositional

with respect to R.
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Fig. 6. The LTS of the memory cell P h x.

Example 4.15 Consider the processes Mh x and M l x introduced in Exam-
ple 3.4. We have seen that they are both P BNDC. It is now interesting to
study how this property is preserved by further refining the processes. To
this aim we apply Theorem 4.14. Notice that neither Mh 0 nor M l 0 perform
any τ transitions, thus the only condition that we should care about is that
the refinement preserves ≈l

B. As a consequence, removing high level actions
does not affect the security of the two systems. For example, if we allow the
high level user to only reset the cell value to 0 (by removing the wh 1 . Mh 1
branch), the resulting process is still P BNDC.

On the other hand, modifications of low behavior should be performed
coherently in all equivalent states. For example, the refinement

P h 0
def
= rh 0 . P h 0 + wh 0 . P h 0 + wh 1 . P h 1

P h 1
def
= rh 1 . P h 1 + wh 0 . P h 0 + wh 1 . P h 1 + wl 0 . P h 0

in which the low level user can reset to 0 the high level cell, only when the
cell contains value 1 (notice that in P h 0 no low level write operations are
allowed) is not preserving ≈l

B. The LTS of P h 0 is depicted in Figure 6.

It is easy to see that P h 0 �∈ P BNDC . The fact that P h 0 is not P BNDC

reveals a slightly subtle information flow due to the fact that a low level user
may track the content of the high level cell by trying to reset it: every time
the reset succeeds the low level user can conclude that the cell contains value
1. A correct refinement achieving the same low level reset behavior described
above, should include the branch wl 0 . P h 0 also in P h 0.

4.3 Proof Systems for Unwinding classes

Unwinding conditions are also useful for giving efficient proof techniques. In-
deed, we used them to define proof systems which allow us to statically prove

that a process is secure, i.e., by just inspecting its syntax [7,10]. These sys-
tems offer a means to build processes which are secure by construction, in an
incremental way. They extend the one given in [24] for finite processes, i.e.,
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processes that may only perform finite sequences of actions. In particular, we
are able to deal also with recursive processes which may perform unbounded
sequences of actions. Here we provide a general scheme for the construction
of correct proof rules for unwinding classes of processes which generalize the
proof rules proposed in [7,10].

Theorem 4.16 Let W(∼l, ���) be an unwinding class of processes. Let Sys

be a proof system whose rules are of the following form

E1, . . . , Ek ∈ W(∼l, ���)

f(E1, . . . , Ek) ∈ W(∼l, ���)

where W(∼l, ���) is compositional with respect to f , or the rule

E ∈ EL

E ∈ W(∼l, ���)

Then Sys is correct, i.e., if there exists a derivation of E ∈ W(∼l, ���) in

Sys, then E ∈ W(∼l, ���).

By Theorem 4.16 and Corollary 4.11 we get for instance the following rule

E1, E2 ∈ P BNDC

E1|E2 ∈ P BNDC

However, by considering the proof system obtained exploiting only to the
operators in Corollary 4.11 we can only prove that the processes in EL are
P BNDC , SBNDC ,CP BNDC ,PP BNDC . In fact, we have no way to in-
troduce high level actions. In the case of P BNDC we have that P BNDC is
compositional with respect to the functions of the form f : Ep+q −→ E defined
as

f(F1, . . . , Fp, G1, . . . , Gq) =
∑

1≤i≤p

li.Fi +
∑

1≤j≤q

(hj .Gj + τ.Gj)

where li ∈ L for all i = 1, . . . , p and hj ∈ H for all j = 1, . . . , q (see also
Theorem 5.2). Hence we can add to the proof system the rules of the form

F1, . . . , Fk, G1, . . . , Gh ∈ P BNDC
∑

1≤i≤p li.Fi +
∑

1≤j≤q(hj .Gj + τ.Gj) ∈ P BNDC

which allows use to build secure processes not in EL. These rules can be used
also in the cases of CP BNDC and PP BNDC, while in the case of SBNDC
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we can prove the correctness of the rule

E ∈ SBNDC

E + h.E ∈ SBNDC

5 How to Rectify Insecure Processes

In [6] we propose a general method for rectifying non P BNDC processes. The
idea is to automatically transform a process E into a P BNDC process Eτ and
to identify a large class of processes for which the transformation preserves
the low level observational semantics, i.e., for the low level user E and Eτ are
not distinguishable. This transformation can be used to construct “secure”
processes from a first possibly “insecure” definition. Here we generalize the
transformation presented in [6] to deal with any unwinding class of processes
and sequences s of actions. Given a process E and a sequence of actions
s = s1 . . . sn ∈ Act+, we denote by s.E the process s1. . . . .sn.E.

Definition 5.1 [Es] Let W(∼l, ���) be an unwinding class of processes com-
positional with respect to the v-restriction, for each v ⊆ L∗, the g-renaming,
for each renaming g, the parallel composition operator |, the constant defini-

tion
def
=, the replication operator !. Given a guarded process E and s ∈ Act+

with n > 0 we inductively define Es as follows:

0s = 0 (E \ v)s = Es \ v (E[g])s = Es[g]

(E1|E2)
s = Es

1|E
s
2 Zs def

= F s !Es =!(Es)

(
∑

i li.Fi +
∑

j hj .Gj)
s =

∑
i li.F

s
i +

∑
j(hj.G

s
j + s.Gs

j)

where li ∈ L ∪ {τ}, hj ∈ H , and Z was associated to Z
def
= F .

Theorem 5.2 (Rectifications) Let W(∼l, ���) be an unwinding class of pro-

cesses compositional with respect to the v-restriction, for each v ⊆ L∗, the

g-renaming, for each renaming g, the parallel composition operator |, the con-

stant definition
def
= , the replication operator !. Let E ∈ E be a guarded process.

If s ∈ Act+ is a sequence of actions and such that E
s
→ F implies E���F ,

then

Es ∈ W(∼l, ���).

Proof. By induction on E. If E ≡ 0, then Es ≡ 0 ∈ W(∼l, ���).

If E ≡ E1\v, then by inductive hypothesis on E1, Es
1 ∈ W(∼l, ���), hence,

since W(∼l, ���) is compositional with respect to the v-restriction, we get the
thesis. The cases of renaming, parallel composition, constant definition, and
replication are similar.
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If E ≡
∑

li∈L∪{τ} li.Fi +
∑

hj∈H hj .Gj and Es reaches E ′ two cases are
possible:

• E ′ is Es;

• one of the F s
i , Gs

j’s reaches E ′.

In the first case if Es h
→ E ′′ we have that there exists j such that E ′′ ≡ Gj.

Hence, Es
��� Gj and Gj ∼

l Gj , since ∼l is an equivalence relation.

In the second case the thesis follows by inductive hypothesis on the F s
i , Gs

j’s.�
�

Corollary 5.3 Let E ∈ E be a guarded process.

Eτ ∈ P BNDC ,CP BNDC ,PP BNDC .

Example 5.4 The memory cell M x presented in Example 3.2 was not secure.
We transformed it into two memory cells, a high level one and a low level one.
Since the low level user cannot read from the high memory cell and the high
level user cannot write on the low memory cell we obtain that the two memory
cell are secure. Imagine now that we want to model the low level memory cell
in such a way that each value can be read at most once. At the beginning the
cell Ql e is empty, when a low level user writes a value x the cell is moved in
the state Ql x in which it remains until either a high or a low level user read
the value. After a reading the cell is reset in the state Ql e.

Ql e
def
= wl x . Ql x

Ql x
def
= rl x . Ql e + rh x . Ql e

In particular, with this implementation each value is read exactly once. How-
ever, Ql e is not P BNDC. In fact, if any user reads the value the low level
user cannot write a new value, i.e., the system is blocked. Applying to Ql e

our rectification we get

Ql eτ def
= wl x . Ql xτ

Ql xτ def
= rl x . Ql eτ + rh x . Ql eτ + τ.Ql eτ

In this case the rectification corresponds to the modelling of a timeout: if the
value is not read within a certain amount of time, the system reset the cell.
Now each value is read at most once.

The LTS’s of Ql eτ is depicted in Figure 7.

The above theorem does not requires the compositionality with respect
to the non-deterministic choice operator. As a consequence the correction
can be applied only to guarded processes. In the case we deal with a fully
compositional unwinding class we can extend the correction to non guarded
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Fig. 7. The LTS of the memory cell Ql eτ .

processes.

Definition 5.5 [Es] Let W(∼l, ���) be an unwinding class of processes com-
positional with respect to the v-restriction, for each v ⊆ L∗, the g-renaming,
for each renaming g, the parallel composition operator |, the constant defini-

tion
def
=, the replication operator ! and the nondeterministic choice operator

+. Given a process E and s ∈ Act+ we inductively define Es as follows:

0s = 0 (l.E)s = l.Es (h.E)s = h.Es + s.Es

(E \ v)s = Es \ v (E[g])s = Es[g] (E1|E2)s = (E1)s|(E2)s

Zs
def
= Fs !Es =!(Es) (E1 + E2)s = (E1)s + (E2)s

where l ∈ L ∪ {τ}, h ∈ H , and Z was associated to Z
def
= F .

Theorem 5.6 (Rectifications) Let W(∼l, ���) be an unwinding class of pro-

cesses compositional with respect to the v-restriction, for each v ⊆ L∗, the

g-renaming, for each renaming g, the parallel composition operator |, the con-

stant definition
def
= , the replication operator !, and the nondeterministic choice

operator +. Let E ∈ E be a process. If s ∈ Act+ is a sequence of actions and

such that E
s
→ F implies E���F , then

Es ∈ W(∼l, ���).

Proof. The result can be proved by induction on E exploiting the fact that
all the unwinding classes are compositional with respect to the low prefix
operator. �
�

Corollary 5.7 Let E ∈ E be a process.

Eτ ∈ CP BNDC ,PP BNDC .
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6 Conclusions

In this paper we consider information flow security properties of SPA pro-
cesses expressed in terms of unwinding conditions. The aim of the present
work is to bridge the gap between unwinding conditions and composition-
ality results. This is done by exploiting a generalized unwinding condition
W(∼l, ���), parametric with respect to a low level behavioral equivalence ∼l

and a transition relation ���. To prove the compositionality of a class of
secure processes, expressed as an instance of W(∼l, ���), with respect to an
operator f we need to establish connections between the semantics of f and
the relations ∼l and ���. By instantiating f as one of the algebra operators we
rediscover already proved compositionality results (e.g., the compositionality
of P BNDC with respect to the parallel operator). Moreover, by instantiat-
ing f as a refinement operator, which solves the non-deterministic choices,
we obtain results concerning the preservation of the security properties un-
der refinement. Unwinding conditions can be also exploited for defining proof
systems which provide efficient techniques for the verification and the develop-
ment of secure processes. Proof systems allow us to verify whether a process
is secure just by inspecting its syntax, and thus avoiding the state-explosion
problem. Moreover, they also allow us to build processes which are secure
by construction in an incremental way. Finally compositionality of unwinding
conditions can be easily exploited to rectify insecure processes.
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