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Discretionary Access Control (DAC) systems provide powerful resource management mechanisms
based on the selective distribution of capabilities to selected classes of principals. We study a
type-based theory of DAC models for a process calculus that extends Cardelli, Ghelli and Gordon’s
pi-calculus with groups (Cardelli et al., 2005). In our theory, groups play the rdle of principals, the
unit of abstraction for our access control policies, and types allow the specification of fine-grained
access control policies to govern the transmission of names, to bound the (iterated) re-transmission
of capabilities, to predicate their use on the inability to pass them to third parties. The type system
relies on subtyping to achieve a selective distribution of capabilities, based on the groups that
control the communication channels. We show that the typing and subtyping relationships of the
calculus are decidable. We also prove a type safety result, showing that in well-typed processes (i)
all names flow according to the access control policy specified by their types, and (ii) are received at
the intended sites with the intended capabilities. We illustrate the expressive power and the
flexibility of the typing system on several examples.

1. Introduction

Type systems have been applied widely in process calculi to provide static guarantees for a
variety of safety and security properties, including access control (Hennessy and Riely, 2002a;
Chothia et al., 2003), non-interference (Kobayashi, 2005; Pottier, 2002; Honda et al., 2000), and
secrecy (Abadi and Gordon, 1997; Cardelli et al., 2005).

The focus of the present paper is on Discretionary Access Control models (Lampson, 1974;
Samarati and di Vimercati, 2001), i.e., models that support powerful resource management poli-
cies based on fine-grained mechanisms to control the use and the distribution of capabilities. To
motivate our approach, we start with a long-known example on types for the pi-calculus (Pierce
and Sangiorgi, 1996):

S = Is(x).print (x) C=5(j1)35(j2)-.-

S represents a printer spooler, serving requests from a channel s, while C specifies a client sending
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jobs ji, ja2,... to the spooler. A property we may wish to show of a system in which § and C run
in parallel is that all the jobs sent by C are eventually received and printed by S. However, while
such guarantees can be made for the system S | C in isolation, they may hardly be enforced
in more general situations: in fact, a misbehaved client such as C' = s(x).s(y)... may legally
participate in the protocol to steal C’s jobs, as in S | C | C'. The type system developed in (Pierce
and Sangiorgi, 1996) prevents this undesired behaviour by relying on capability types to control
the use of channels in well-typed processes. Applied to our example, that typing system would
rule out the misbehaved client by ensuring that clients only receive write capabilities on the
channel s, and by reserving the read capability on s just to the spooler:

c(y:(T)")C) | (vs: (T)™)e(s).S

The types (T)" are the types of channels with payload of type T and capabilities for reading,
writing, or both, depending on whether V is r, w, or rw, respectively. By delivering the channel s
at the type (7)™ on the channel ¢ shared with its clients, the spooler enforces a policy whereby
(well-typed) clients may not intercept any job sent on channel s.

While effective in controlling the transfer of access rights between the two partners of a syn-
chronization (S and C in the example), the system of capability types of (Pierce and Sangiorgi,
1996) provides limited control on the way that resources and their associated access rights are
propagated to third parties. For instance, a client may wish to prevent its jobs from being read by
processes other than the spooler S, and hence to disallow situations like the following, where the
spooler forwards the jobs it receives to process SPY:

Is(x).log (x).print(x) | 5(j1).5(j2) | log(y).SPY

The capability-based access control from (Pierce and Sangiorgi, 1996) is of little help here, unless
one resorts to a more complex coding of the system, or else imposes overly restrictive conditions
(e.g. prevent the spooler from writing on all public channels). A similar problem arises in the
following variation of the protocol, in which the client requests a notification that his jobs have
been printed:

S = (vprint) (!s(x).print(x) | \print(x).(P | ack(x)))  C=35(j1).ack(x).5{j>).ack(y)

As in the previous case, a standard capability-based type system will fail to detect violations of
the intended protocol by malicious (or erroneous) spoolers that discard jobs by, say, running the
process s(x).ack(x).

To counter these problems, we propose a novel typing system that complements the access
control mechanisms based on capability types with stronger support for controlling the flow of
resources among the components of a system. Our approach draws on putting more structure
in the syntax of types so as to allow the specification of richer access control policies. In the
new typing system, the types take the form G[T || A], where G is a group (or principal) name,
T a capability type a la (Pierce and Sangiorgi, 1996) and A a delivery policy. If v is a value of
type G[T || A], then G represents the authority in control of v, T describes the structure of v, and
A specifies the legal flows of v along the channels of the system. To illustrate, in our running
example, the type

JOB = Client| data || Spooler : data — Printer : data — Client : data ]
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specifies a class of jobs controlled by clients, whose data (e.g., file descriptors) may only be
delivered to the spooler, then passed on to the printer, and only then re-transmitted back to clients
for notification. Similarly, the type

JOB | Spooler = Client[ data || Printer : data — Client : data |

identifies jobs that have “flown one hop” (to the spooler) along their intended delivery path,
reaching the spooler.

Based on the delivery policy specified by type JOB, our static typing system will make the
following guarantees for any composition of well-typed processes: (i) no notification is given
to clients for jobs that have not previously been sent to a printer, and (ii) no job is received
by the printer unless it has first been delivered to the spooler. In particular, assuming j : JOB
and s : Spooler[(JOB | Spooler)¥ || A], our type system allows the transmission of j over s,
and guarantees that j will flow as specified in JOB | Spooler, once received on s. Thus, these
typing assumptions make the spooler !s(x).print(x) well-typed, as desired. On the other hand,
they are also effective in ruling out the malicious spooler s(x).ack(x) as ill-typed because it fails
to comply with the policy associated with channel s.

By combining our delivery policies with the traditional access control based on subtyping a la
(Pierce and Sangiorgi, 1996), our type system makes it possible to selectively advertise values at
different types depending on the groups to which they are delivered. To illustrate, we may refine
our printer example by stating s : SPOOL where

SPOOL = Spooler[ (JOB | Spooler)™ || Client: (JOB | Spooler)”]

demands that when s is delivered to the client, it be received at a type that only provides write
access so that no well-typed client may intercept jobs directed to the spooler. Now, assuming
c: Client] (SPOOL | Client)™ || A], we achieve the desired security guarantees of the spooling
system by structuring it as shown below:

c(y: SPOOL | Client).C | (vs:SPOOL)¢(s).S

Here SPOOL | Client = Spooler[ (JOB | Spooler)"] is the type assigned to s : SPOOL once s
has reached the client (this type has an empty delivery policy, because values of type SPOOL
should not be further re-transmitted after having been delivered to a client).

We formalize our approach with a typed extension of the pi-calculus with groups from (Cardelli
et al., 2005). The new calculus is structured in two layers. At the lower level, we find a process
calculus that inherits the syntax of the pi-calculus with groups and extends its typing and sub-
typing systems with a richer class of resource and capability types to capture fine-tuned access
control policies such as those discussed earlier. The static typing system ensures the compile-
time detection of violations of such policies: in particular, a type preservation theorem allows us
to derive a safety result stating that all well-typed processes comply with the discretionary access
control policies governing the use of resources. We show that subtyping is decidable, and that so
is the type checking problem.

On top of the process calculus, we then introduce our notion of principals by interpreting the
groups from the underlying processes as principal names, and construe the latter as the unit of
abstraction for access control. We illustrate the flexibility of the type system by showing how
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it supports DAC security models based on decentralized policies where the owner of an object
can delegate to others the right to specify authorizations, possibly with the ability of further
delegating it.

1.1. Related work

While we are not aware of any approach specifically targeted at access control mechanisms like
the ones we have outlined, our work is clearly related to a large body of literature on type-
based security in process calculi. Several type system encompass various forms of access control
policies in distributed systems. Among them, (Chothia et al., 2003) proposes a form of distributed
access control based on typed cryptographic operations; the work on the D7 calculus (Riely and
Hennessy, 1998), has produced fairly sophisticated type systems (Hennessy and Riely, 2002b;
Hennessy et al., 2005) to control the access to the resources advertised at the different locations
of a distributed system. None of these systems, however, addresses the kind of discretionary
policies we consider here. More precisely, in D7, resources are created at a specific, unique, type
and then delivered to different parties at different (super)types on different channels. Unlike in
our system, however, the ‘delivery policy’ of a value is not described (nor prescribed) by its type.
As a consequence, the only guarantee offered by the type system is that names delivered at type
T will be received, and re-transmitted freely, at super-types of 7. As we will show, our types
may be employed to specify, and enforce, much more expressive policies. Other related work
on access control in distributed systems has been carried in the context of the language KLAIM
(Nicola et al., 2000) and its extensions to uKLLAIM (Gorla and Pugliese, 2003) with type systems
that enable the dynamic exchange of access rights targeted at access control mechanisms like the
ones presented in the present paper, also based on a notion of region which in some respects is
akin to our idea of group (Nicola et al., 2006).

Type systems have also been proposed to control implicit information flows determined by
the behaviour of system components (see (Kobayashi, 2005; Pottier, 2002; Honda et al., 2000;
Sewell and Vitek, 2003) among others). These type systems trace the causality relations between
computational steps in order to detect covert channels. We follow a different approach to express
and verify the delivery of (and the access to) the system resources.

Our approach is also related to the large body of existing work on security automata. In fact,
the delivery policies we express in our type system could equivalently be described as finite-
state automata whose states are structural types and edges are labelled with groups. On the other
hand, security automata have traditionally been employed to provide for run-time system moni-
toring (Schneider, 2000) rather than as a basis for the development of static, type-based, security
analysis.

Session types (Honda et al., 1998) have originally been proposed with motivations similar to
ours to express and gain control over the different steps of communication protocols. Recently,
they have been used extensively to structure the interaction among the components of a dis-
tributed system, cf. (Carbone et al., 2007; Honda et al., 2008). At the core of session types, lie
mechanisms to regulate the sequence of events occurring in an interaction session. Specifically,
a session type prescribes the sequence of states for a channel during a session, where each state
is encoded as the type of values that may legally be exchanged over the channel at that stage.
Instead, our resource types, encode the states of the values exchanged. As such, besides being
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technically different, session types and resource types target dual objectives: session types help
structure the interaction between parties, while resource types help trace and control the flow of
information among those parties.

1.2. Plan of the paper

Section 2 illustrates the syntax and the operational semantics of the process calculus. Section 3
introduces the notion of principals and illustrates its use with several examples. Section 4 de-
scribes the typing system. Section 5 details the proof of type safety and re-establishes the secrecy
result of the pi-calculus with groups of (Cardelli et al., 2005). Section 6 proves that typing and
subtyping are decidable. Section 7 concludes the presentation with final remarks.

A preliminary version of the present paper appeared as (Bugliesi et al., 2004).

2. A pi-calculus with groups and delivery types

We start by introducing the process calculus that constitutes the core of our formalization. The
calculus is derived from the process calculus with groups defined in (Cardelli et al., 2005), which
we henceforth refer to as tG. The syntax is defined by the following productions:

PO =0 | c(x1 :‘cl,...,xh:‘ch).P | E(al,...,ah>.P | (Vn:‘c)P | (VG)P ‘ P|Q | P

We presuppose countable sets of names m,n,...,s,t, basic values bv, and variables x,y,..,z. We
reserve a, b, c to range over all sets, with the proviso that basic values may not occur as channel
names in the input/output prefixes of a process: this condition is enforced by the typing system, in
Section 4. We also presuppose a countable set of group names G1,Ga, ..., and reserve ‘any’ as a
distinguished group symbol. As usual, a restriction (vz:T)P binds the name 1, and an input ¢(x; :
T1,...,X;: Ty).P binds the variables xj, . . ., x;: in both cases the scope of the binder is P. Similarly,
a group creation (VG)P binds the group name G in P. The notions of free names, variables and
groups, noted fin(P) and fv(P) and fg(P) respectively, arise as expected. The distinguished group
‘any’ may not occur in a group creation, hence it is always free.

As in (Cardelli et al., 2005), groups provide our process calculus with a mechanism for privacy.
Briefly, one may define a name of group G, and then confine it within the scope of G, as in
(vn: G)P. Although group creation is dynamic, group names cannot be communicated: hence no
name belonging to a secret group G can be leaked outside the scope of G’s original declaration.
Drawing on the work of (Myers and Liskov, 2000), we extend these ideas and structure our types
so that they convey information on how names may legally be propagated among (the channels
of) the groups in a system.

The syntax of types is defined by the following productions:

Resource Types T = G[T || Al (G # any, A closed)
Structural Types T = B|(t1,---,%)" (ve{rw,rw})
Delivery Policies A

=Y G:Ti—=A|X|puXA (i#)=G#G))

Resource types specify the group name, the structural type and the delivery policy of each value.
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The role of the group name is twofold. Like in the calculus G, the presence of G in the typing
n: G[T || A] confines n within the scope of the declaration of G. In addition, when T is a channel
type, the typing ensures that only data that can flow on G may be sent on 7.

The structural type conveys information on the value, i.e., whether it is basic value, in which
case the structural type is a base type B, or a channel: as in other systems, a channel type specifies
the types T; of the payload as well as the capabilities v associated with the channel.

Finally, the delivery policy defines the groups of the channels on which the value may be
exchanged, as well as the type at which the exchange may take place. Thus if A=Y ,; G; : T} —
A;, the legal flows of a value of type G[T || A] are those that reach a channel of group G;, at type
T;, and then continue to flow as specified by A;, for all i € I. The distinguished group symbol any
may be used to create a default entry in A. In particular, if G; = any for some j € I, then A allows
the transmission over channels of any group other than the G;s, provided that the transmissions
occurs at the type (and with the policy) associated with the jth entry in A. An empty policy,
noted by &, signals that the value should not be (re-)transmitted on any channel: if A; = €, we
write G: T — A simply as G : T'. A delivery policy may be recursive, to allow the transmission
of values to an unbounded distance. A recursive policy uX.A binds the recursion variable X with
scope A: throughout the paper, we assume that the delivery policies that occur in a resource type
are closed, i.e., all their recursion variables X are bound by an enclosing binder, and formally
contractive, in the following sense: uX.A is contractive in the variable X if either X does not
occur free in A, or A can be rewritten via unfolding as a choice. The recursion constructor only
applies to policies, not to types: while the extension to recursive types would be possible, and
harmless, recursive policies are all we need for our present purposes.

2.1. Operational semantics

The dynamics of the calculus could be defined in an entirely standard way, in terms of reduction.
On the other hand, in order to state and prove the properties of the type system, it is convenient
to resort to an instrumented semantics where the flow of each name and value is made explicit
along reduction.

To account for that, we use tags to trace the sequence of channels traversed by each name
in a process. Thus, for example, we note with n,,, the name n that flowed first through the
channel m, then through p and finally through g. Here ‘mpq’ is short for the extended notation
m:: p::q:: €, where € denotes the empty sequence and ‘::’ is the right-associative sequence
constructor. We let ¢ range over sequences of names, and use the notation @ - n to indicate the
sequence resulting from appending the name # to the tail of @.

The definition of the instrumented semantics is given in Table 1. Formally, it is defined as a
binary relation over dynamic processes rather than processes. Dynamic processes, ranged over
by A, B, ... are defined just like processes, but are built over tagged names and values, rather than
names and values. The tags may be empty, in which case we write tagged names just as names. In
fact, processes themselves are to be understood as special cases of dynamic processes in which
all names are untagged.

The notion of free names for dynamic processes is easily adapted to account for the presence
of the tags: namely, fir(njg) (x1 : T1,..., X4 : T).A) = fin(A) U{n} U{m | m € @}, and similarly for
the remaining dynamic process constructs. The clauses that define the reduction and structural
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Table 1 The flow-sensitive operational semantics

Dynamic Processes: a,b, ... denote either (non-tagged) variables or tagged names of the form ng).
AB:= 0| a(x1:T1,...,x0:T).A | @(b1,...,by).A | (vn:1)A | (VG)A | A|B | A

Structural congruence

(monoid)) A|B=B|A, A|0=A, (A|B)|C=A|(B]|C)
(repl)) 1A = AlA
(name extr) (vn:t)(A|B) = A|(vn:T)B ifném(A)
(group extr) (vG)(A|B) = A|(VG)B if G ¢fg(A)
(name/ group exch) (VG)(vn:t)A = (vn:7)(VG)A if G ¢ fg()
(name exch) (vap:t)(vma i 2)A = (vmp:t) (v :t)A  (n1 #m)
(group exch) (VG1)(vG2)A =  (vVGy)(VvG))A
Reduction

(red comm) — Wgl(mifg,];- - Mkjg])-A | npy (X%, XeT).B — A | B{"lin/ )

(red res) A — A = (1A — (vmr)A’

(red group) A — A = (VGA — (VG)A'

(red par) A — A = A|B — A'|B

(red struct) A=—=B =— A — B

congruence relations are largely standard. Indeed, structural congruence is defined just as in
TG, though it relies on the definition of free names we just discussed. The core of reduction,
in turn, is the synchronization rule (red comm), which formalizes semantics of value exchange
and additionally updates the tags of the values exchanged so as to trace the flow of each of the
arguments through the synchronization channel.

Since values are used non-linearly in processes, the same value may end-up flowing along
different paths and hence acquire different tags. For instance, two steps of flow-reduction from
the process a(m) | b(m) | a(x).a(y).P yield the dynamic process P{" /,,”#I /;}, in which the
two instances of m can be distinguished by their tags tracing the paths along which m has flown.
Notice, however, that the tags are only functional to analyze the properties of the type system
and to establish our safety results. Instead, they have no effect on the reductions available for
processes. We make this precise by relating our flow-sensitive semantics of Table 1 with the
original reduction semantics of ©G. The latter, which we denote with —, is defined on processes
(rather than on dynamic processes) exactly as we do here, but uses the standard communication
rule

ﬁ<m1, - ,mk>.P | n(xl:‘cl, .. ,xk:’tk).Q — P | Q{mi/xl. },
in place of our (red comm) rule. Given any dynamic process A, let |A| denote the static process
resulting from erasing all the tags from A. Let also —* and —* denote the reflexive and tran-
sitive closure of the reduction relations — and —, respectively. Then we have the following,
easily proved, result.

Proposition 2.1 (Flow vs Standard reductions). Let A be a closed dynamic process. fA —* B
then |A| —* |B|. Conversely, if |A| —* Q then there exists B such that A —* B and |B| = Q.
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3. Principals and discretionary access control policies

Principals are defined on top of the process calculus with groups, by establishing a connection
between the group names in the process calculus and the principals, and by construing principals
as the unit of abstraction for access control. Among many possible alternatives, we choose the
simplest representation of principals, based on a mapping between the group names of the low-
level process calculus and principal names.

3.1. Principals and Systems
A system is a composition of principals, formed with the following productions:
S o= G{P}|S|S|(VG)S| (va:T)S

Principals are denoted by terms of the form G{P}, where G is a group name acting as the principal
identity, and P is the body, a process in the low-level calculus. In a system, principals may run in
parallel and share local (group) names.

The principal form G{-} defines a static scope that helps enforce the discipline on the dec-
laration of resources (i.e. names) established by the following notion of well-formedness. Say
that a name » is controlled by G if n : G[...]: then the principal G{P} is well-formed if P it only
creates new names controlled by G or by any of the local group names that P itself creates with a
group declaration. A system is well-formed iff so are all of the component principals: throughout,
assume that our systems are well-formed.

The dynamics of systems could be derived from the reduction relation over the underlying
processes, by stipulating that S — S’ whenever [S] — R and R = [S'] (one easily verifies that
one such S exists for all R). However, this would convey principals a computational stand that,
instead, we choose to dispense with. Indeed, we interpret principals as purely static entities, that
define the access control policies associated with their resources, as we just discussed, but bear
no computational meaning. This is consistent with the nature of our resource policies which, once
established by a principal, are only intended to discipline the flow of names along the channels
of a system, irrespective of the principals on behalf of which the code exchanging those names
is run. Consequently, principals may be “compiled away” after the well-formedness check, and
their dynamic semantics be defined directly in terms of the computation of their body. Formally,
given a system S, let [S] the process obtained from S by transforming each principal G{P} into
its body P: then S —* R just in case [S] —* R.

3.2. Type Expressions

In the calculus of principals we presuppose an extended syntax for types to ease the specification
of the types themselves and of the associated access control policies. In particular, we write the
choices of a policy as a semi-colon separated list of entries, as in G[T || G} — Ay;...;G, — A,
Further, we introduce the high-level type G[T] corresponding to the low-type G|[T || €] whose
delivery policy is empty. The calculus of principals also includes the new type expression T | T,
with 7 a sequence of group names, to note the type occurring in T at the hop reached via the path
w. Forinstance, if t=G[T || G : T1 — (G2: Ta — Az ; G3: T3 — A3)], thent | G1.G, = G[T2 || Az].

We illustrate the types at work in the specification of access control policies, starting with a
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simple example. Let acct be a basic type describing the data (say, name and password) asso-
ciated with an electronic account that clients may use to sign-up an on-line service. Typically,
the account data must be supplied to the e-service at each login; at the same time, however, the
clients will want to make sure that the service does not leak their data to third parties. This policy
is expressed naturally in our system, by the type Client[acct || Service : acct], whose policies al-
lows the transmission of the account data only to the service. Generalizing the example, assume
now that the client of the on-line service is an organization (say a university department) that
has obtained a collective account to be shared by all its members. In that case, the policy for the
account data should be more flexible, so as to allow the data to circulate freely within the organi-
zation. That policy is expressed by the type Dept[acct || uX.(Dept : acct — X; Service : acct)]:
here, the policy allows the free re-transmission of the account data within department channels
(mailboxes) while still requiring the service to refrain from passing it on to third parties.

The (re-)transmission of values may also be regulated on the basis of the capabilities that are
passed along with the names (channels) transmitted. For instance, a collaborative wiki environ-
ments on the web typically splits users in two classes, authors and users, with different access
rights on the system (read/write and read-only respectively). If we represent the wiki pages as
channels, of type (info)™, then the following type establishes the desired access control policy:

Author[(info)™ || uX.(uY.(User : (info)" — ¥) ; Author : (info)™ — X)]

The authors may freely exchange the wiki pages with full access rights; on the other hand, when
passed on to users, the wiki pages have read-only access, as expected. The users may themselves
advertise the pages to other users, but again with read-only access right.

The presence of recursive policies make our types a strict extension of the types found in ©G,
which are defined by the following productions 7 ::= GI[Ti,...,T,] (for n = 0 the production
generates the base case G[]). These types may be encoded into our resource types as follows:

[GITi.... T]] = GUIT oo [LD™ X any: ([ ], [T])™ — X1

In other words, all TG types are interpreted as channel types provided with the most liberal
delivery policy, one that allows the delivery over all channels: the only constraint is that the
receiving channels have access to the group of the value they carry with them, exactly as in
(Cardelli et al., 2005).

3.3. An on-line editorial system

We further illustrate the calculus of principals, and the expressiveness of our types, with a more
extended example, in which we formalize a simple system to handle on-line submissions and
reviews for a journal.

To help structure the specification, we introduce a series of macros, specified in Table 2, for
type expressions and principal definitions, and then we form the desired system around those
macros. The system comprises four main principal identities: Journal, Author, Editor, Reviewer,
and three main types of documents exchanged: MANUSCRIPT, REVIEW, DECISION. All such doc-
uments come with policies that control their flow during the submission/review process. In par-
ticular, the manuscripts are created by their authors and flow on a path that includes the journal
first, then the editor and finally the reviewers. The reports written by the reviewers are sent back
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to the editor, then forwarded first to the journal and then on to the authors. The editor uses the
reviews to make an accept/reject decision, which is sent both to the journal, to forward it to the
author, and to the reviewers.

Table 2 Macros for the types and and principals of the on-line editorial system

Types

Documents Exchanged
MANUSCRIPT =  Author[string || Journal : string — Editor : string — Reviewer : string]
REVIEW =  Reviewer[string || Editor : string — Journal : string — Author : string]
DECISION = Editor[string || Journal : string — Author : string ; Reviewer : string]

Main channels employed in the exchanges

NOTIFYAUTH =  Author[(DECISION | Journal.Author, REVIEW | Editor.Journal.Author)™
|| Journal : (DECISION | Journal.Author, REVIEW | Editor.Journal.Author)"]

CONFIRM = Author[(SUBMIT | Author)™ || Journal : (SUBMIT | Author)"]
NOTIFYJOUR = Journal[(DECISION | Journal, REVIEW | Editor.Journal)™
|| Editor : (DECISION | Journal, REVIEW | Editor.Journal)"]
SUBMIT = Journal[(MANUSCRIPT | Journal, NOTIFYAUTH | Journal)™
|| Author : (MANUSCRIPT | Journal, NOTIFYAUTH | Journal)¥]
REGISTER = Journal[(string, CONFIRM | Journal)™]
Additional channels
EVALUATE =  Editor[(REVIEW | Editor)™ || Reviewer : (REVIEW | Editor)"]
HANDLE =  Editor[(MANUSCRIPT | Journal.Editor, NOTIFYJOUR | Editor)™]
ASGN =  Reviewer|[(MANUSCRIPT | Journal.Editor.Reviewer, EVALUATE | Reviewer)™|
Principals
AUTHOR = Author{(vconfirm:CONFIRM) register(info,confirm).confirm(submit).
(vna : NOTIFYAUTH)submit(draft,na).na(decision, review)...}
JOURNAL = Journal{ ! register(info, confirm).(vsubmit : SUBMIT) confirm(submit).
submit(draft,na).(vnj : NOTIFYJOUR) handle(draft, nj).nj(dec, rep).na{dec,rep) }
EDITOR =  Editor{ ! handle(m,n).(ve : EVALUATE)asgna(m,e) | asgnb{m,e) |
e(reva).e(revb). < make a decisiond : DECISION > .i(d,reva :: revb)}
REVIEWERA = Reviewer{ lasgna(m,e). < read and producereview : REVIEW > .e(review) }
REVIEWERB =  Reviewer{ lasgnb(m,e). < read and producereview : REVIEW > .&(review) }

An instance of the entire system may be obtained as the parallel composition of the principals
obtained by (recursively) expanding the principal and type macros in the term below:

AUTHOR || JOURNAL || EDITOR || REVIEWERA || REVIEWERB

The author principal first registers to the journal and then submits his/her papers; the journal
principal represents the on-line system interfacing with authors and editors; the editor principal
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interacts with the journal; finally, the reviewers read the manuscripts and report back to the editor.
To ease the notation, we omit the type annotations on the input variables, as they are directly
inferred by the type of the input channels.

The channel types describe (and constrain) the policies governing the dataflow in the submis-
sion and review protocols. The authors access the system via the register channel; the registration
is finalized when the system reports back with an ack on the confirm channel: notice that each
author retains full access on this channel that is instead delivered with write-only access to the
journal. Registered authors have confidentiality guarantees that their manuscripts will not be
distributed to readers other than the editorial system staff (editors and reviewers), and that notifi-
cations about their papers will not reach any principals other than themselves outside the editorial
system. The first guarantee derives from the structure of the MANUSCRIPT type. The second is a
consequence of (i) the policy defined by the type DECISION, which requires that notifications
be only sent to the Journal and Reviewers, and (ii) of the structure of the journal principal that
forwards the decision only to the legitimate author. Moreover, the type REVIEW guarantees that
reviewers may not consult each other by exchanging reviews.

Clearly, other specifications are possible for the system. For instance, the journal may wish
to shield the internal processing of a submission from external observations. In that case, the
specification should be structured as follows

AUTHOR || (VEditor)(VReviewer)(JOURNAL || EDITOR || REVIEWERA | REVIEWERB)

The system now splits the component principals into two separate scopes. Inside the scope of the
group declaration, all principals are known, while outside the scope, Author has only visibility
of Journal®. Of course, this requires some changes in the way that the flow policies are designed
inside the types and the principals of the system. For instance, authors should be prepared to
accept weaker guarantees for their manuscripts, as expressed by the following type:

MANUSCRIPT = Author[string || Journal : string — (uX.any : string — X))]

This policy is still compatible with the intended flow of the manuscript, but it only mentions the
Journal principal, leaving it in full control on how the manuscripts are circulated.

Having split the system into two scopes, the code of principals and the policies associated
with their resources must also be restructured to break the flow of such resources across the two
scopes when needed. Specifically, the journal may not simply forward decisions and reviews
as it receives them from the editor and reviewers; instead, it will have to notify the authors
directly, producing its own decision based on the data it receives from the principals inside the
restricted scope. The types establishing the policies for reviews and decisions must be redefined
accordingly, to stop the flow of their data at the journal principal:

REVIEW = Reviewer(string || Editor : string — Journal : string]

DECISION = Editor[string || Journal : string ; Reviewer : string]

Then, new types must be introduced to establish the flow of the journal decision and of the reports
that the journal sends back to the author

 We are implicitly assuming a standard macro expansion mechanism, which may cause variable capture, so that occur-
rences of the group names Editor and Reviewer get captured by the group restriction in the expansion of of the type
and principal macros.
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JDECISION= Journal[string || Author : string] ~ JREVIEW= Journal[string || Author : string]

4. The Type System

The type system is based on the syntax of types from the calculus of processes. As we shall see,
the typing of principals is derived easily from the typing rules for processes by rewriting the type
expressions T | T used in the calculus of principals into their (the types’) low-level counterpart.
In that direction, we formalize the interpretation of the type expressions T | 7. First define the
notation A(G) = T — A’ to identify the entry in A relative to the group G (if any):

€(G) = X(G) = undefined
(ZiGi:Ti = A)(G) = if(3j.G=Gj)thenT; = A,
else if (k. Gx = any) then Ty — Ay else undefined
(1X.A)(G) = A{uX.A/X}HG)
Then we view a policy as a partial function, and we define Dom(A) = {G : A(G) is defined}.

Finally we define the evaluation of the type expression T | T by interpreting | as the partial
operator given below:

(1>

Tle T
G[T||A]l (Gr) £ ifA(G)=T — Athen G[T || A] | T else undefined

4.1. Type and environment formation

We assume type equality up to (i) renaming of the bound variables in a policy, (ii) permutation of
entries inside policies (e.g. G[T || G : T1 — A1; Gy : T = A =G[T || G : Th — Ap; G : Ty —
A1]), and (iii) unfolding of recursive policies (i.e., G[T || uX.A] = G[T || A{uX.A}/X]). To ease
the notation, we often write A{X} for a policy where X occurs free, and A{A’} for the result of
substituting X with A" in A.

Type formation is defined in Table 3. The rules for structural types are standard. As for resource
types, the rules enforce two constraints, namely: a type G[T || A] should only mention group
names known to the type environment I', and furthermore all the structural types occurring in A
should be super-types of type 7. The first constraint helps guarantee a secrecy property a la G,
the second, in turn, is crucial for soundness and is enforced by the type formation rules with the
help of the auxiliary judgments I" -7 A, that check the delivery constraints in A against type 7.

The rules for environments are essentially as in (Cardelli et al., 2005). A well-formed environ-
ment contains group names, typing assumptions for variables and names, and policy variables.
All names in an environment are untagged, and all group names in the type of a variable/name
must be declared in the environment.

4.2. Subtyping

The subtyping relation is defined by the rules in Table 4. They derive judgments of the form
Y1 <7, where X is a set of ordering assumptions A < A’ on policies. When X is empty, we write



A Type System for Discretionary Access Control 13

Table 3 Good types and environments

Environments
(EMPTY) (ENV n) (ENV x)
I'to I'tt n¢ Dom(T) I'to fg(t) CDom(I') x¢ Dom(T)
o Tin:itko Tx:tko
(ENV G) (ENV X)
I'o G¢Dom(I) I'o X ¢ Dom(T)
IGko LXko

Structural and Resource Types

(BASE) (CHANNEL) (T-OWNER)
Tko Tkt i=1,..,n I'tT ThkrA GeDom(T)
r-B 'k (tr,...,T)Y CEGT | Al

Delivery Policies

(A-VAR) (A-REC)
Xel Tho X Fr A{X}
T X ' uX A{X}
(A-EMPTY) (A-STEP)
T'ko GieDom() FT<T, TkrA THT, Viel
Ikre Thr Yie1Gi: T — A

v <tand 7’ < tinterchangeably. We overload the < symbol to denote the subtype relation, the
order on policies as well as the partial order on capabilities, defined as usual to be the reflexive
closure of the relation defined by rw <r, rw < w. Subtyping over resource types is defined by the
(=-TYPE/POLICY) rule, which makes resource-subtyping covariant in the component structural
types and in the ordering relationship over policies.

The ordering on policies constitutes the core of the subtype system. It is reminiscent of the
subtype relation on record types, and indeed, the rationale is the same: in any context where
we expect a value that has a certain set of enabled flows, it is safe to receive a value which has
additional legal flows. Rule (SUB-A-1) captures this idea for policies without the default entry
any. For policies containing the default entry the details are subtler. Rule (SUB-A-2) states that
a higher policy may include an entry for a group G; not occurring in a lower policy, but only
when the lower policy contains the default entry with a compatible policy. On the other hand, if a
policy contains a default entry, then all lower policies must contain a default entry as well. Rule
(SUB-A-3) handles this case: it generalizes rule (SUB-A-1) and further requires the policies for
the entries G; in the lower policy that do not occur in the higher policy to match the default entry
of the higher policy. Thus, for instance (any : T™) < (G; : 7" + Gz : ™) by rule (SUB-A-2), as
both the entries in the higher policy are safely supported by the default entry in the lower policy.
On the other hand (G; : t" + any :t™) £ any : ™" as the lower policy includes an entry G; with



M. Bugliesi, D. Colazzo, S. Crafa, and D. Macedonio 14

Table 4 The subtype relation

Structural subtypes

(T-REFLEX)

YT <T

(T-READ) (T-WRITE)

v<r Lkt <t - ZRT, <71, v<w Ikt <t - ZFT, <7,
Sh(t )Y < () SE(t ) < ()Y

Resource Subtypes
(t-TYPE/POLICY)

(T-REFLEX)
TETLT XTHFA<A

Ehrst LFG[T || A] < G[T" || A

Recursive Sub-Policies

(A-REFLEX) (A-ASSUME)

LEA<A LA <A T EASA

(A-LEFT UNFOLD) (A-RIGHT UNFOLD)

E X A{X} < Ao A{pX A {X}} < Ay LA SpX Ao{X} A < Ap{uX A {X}}
X A{X} <A TEA <uX.A{X}

(SUB-A-1)

LETL LT THEA<A; Gi#any i€luJ

I Y G- A <Y GT - A
i€luJ i€l

(SUB-A-2)
Dom(A') C Dom(A) LHFA<A any ¢ Dom(A)YU{G;}ies
Dom(A)ﬂ{G,-},E[:Q) (ZFTL] <T; LEA; <A VIEI)

Lk (Atany: Ty —Ay) < (N+YG: T — A)
iel
(SUB-A-3)
Dom(A) C Dom(A) LFET;<T) LRA <A, EFAtany:T;— A <A

Dom(A)N{Gi}ier=0 (ErT<T; ILFA<A, Viel)

Th(A+any: Ty — A+ Y G :Ti—A) < (A +any: T) — A))
iel

a higher type than that expected by the higher policy (this breaks the premises of (SUB-A-3), the
only applicable rule in this case).

The remaining rules in table 4 are largely standard. The rules for recursive policies are pre-
sented in a co-inductive style and, consequently (Gapeyev et al., 2002), the presentation does not
include a general transitivity rule for types and policies (but see Section 6.3).
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Collectively, the ordering on types and policies yields a rather flexible system: notice, to
this regard, that the subtype relation enables the delivery of values at types that may vary non-
monotonically along their delivery chains. This, in turn makes it possible to encode interesting
access policies such as those found in the so-called Liberal DAC models (Samarati and di Vimer-
cati, 2001; Sandhu and Munawer, 1998). These are based on a decentralized authorization struc-
ture by which the owner of an object delegates other users the right to specify authorizations,
possibly with the ability of further delegating it. In particular, in the so called originator con-
trolled policies (McCollum et al., 1990), the owner retains control over its delegates and the way
these grant permissions. An example of such policies is given by the type below, where Owner
specifies how a given resource should be distributed to two principals, Alice and Carl:

Owner[(T)™ || Alice : (T)" — Carl: (T)™ — Alice: (T)"]

A channel with this type must first be delivered, in read mode, to Alice, who is delegated to re-
transmit it to Carl with the additional write capability; only then is Alice allowed to receive the
write capability from Carl. This delivery policy is imposed by the owner to ensure that Alice will
not write on the new channel until it has been received also by Carl.

A similar example can be recovered from the literature on cryptographic protocols. Consider
the case where two parties, Alice and Bob, wish to establish a private exchange. To accomplish
that, Alice creates a fresh name, say c4p, sends it to a trusted Server and delegates it to forward
the name to Bob so that the exchange may take place. Here, the Server should only act as a
forwarder, and not interfere with the exchanges between Alice and Bob. This can be achieved by
the typing

cap : Alice[(data)™ || Server : (data)” — Bob: (data)™]

in which the Server receives the channel in read-only mode to protect the integrity of the message
forwarded to Bob.

One may wonder how policies such as the ones we just described may be implemented in
practice, as they require principals to forward capabilities that they do not possess. Indeed, in a
trusted environment, we may rely on the typing system to protect against any misuse of the ca-
pabilities, by typing all principals. In an adversarial setting, instead, a capability may be realized
as a secret protected by encryption so the intended recipient can access it, while the forwarders
can not (cf. (Bugliesi and Giunti, 2007)).

4.3. Typing of processes

The typing rules for processes, in Table 5, complete the presentation of the type system. As usual
the system is meant to provide static guarantees of soundness, hence the rules are intended for
(static) processes. On the other hand, our flow-sensitive semantics yields dynamic processes,
and then, to state and prove subject reduction we must devise typing rules for processes as well
as dynamic processes. Since the latter include the former (via the mapping that erases the flow
annotations) we give just one set of rules, for dynamic processes.

We have three typing rules for names: (PROJECT) and (SUBSUMPTION) and (DELIVERY).
Collectively, they allow each name 7 : T (indeed, each instance ng of n) to be typed at (any super-
type of) the type T known to the environment, as well as at any of the types mentioned in the
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Table 5 Typing of dynamic processes.

(PROJECT) (SUBSUMPTION)
Ia:tko I'a:7 Fi<1
Ta:tha:t T'ta:t
(DELIVERY)

FFH[(P]IG[T HA] Fl—mZGm[Tm HAm] A(Gm):T| —>A|

TEnjgm G[T1 || A1]

(INPUT)
FFaIG[(’t]?...,’tk)r HA] I x Z"C].,...,ka‘CkFA 0<k

l"l—a(xl Z’C],...,xki’tk).A

(OuTPUT)
rl—aZG[(’C],A../Ck)WHA] I'HA (F)—b,-:?i :C\ilG:’Ci Vie[O..k])

CHalby,... b A

(NEW G) (NEW n) (PAR) (DEAD) (REPL)
IGFA Con:thHA A T'+B ko I'FA
Tk (VG)A Tk (va:1)A THA|B CFo THIA

delivery policy associated with T. As we remarked earlier on, all names occur untagged in the
environment of the typing judgements. Thus, in the (PROJECT) rule, when a is a variable, all
occurrences of a denote the same symbol. Instead, when projecting a name, the rule should be

read as follows:
Iin:tko

Ion:thneg:t

A name with a composite tag may then be typed by repeated applications of the (DELIVERY)
rule. This is the way the type system allows a name to be typed at all its delivery types, a property
which is crucial in the proof of subject reduction. To see why, consider rule (OUTPUT), the core
of the delivery discipline. Let m be emitted on a channel, say n : G[(t)"], and assume that m is
known to the environment at the type T = F[T || A]. The condition T | G = T in rule (OUTPUT)
verifies that G is indeed one of the next ‘hops’ in A, and that the type at which m should be
delivered to G is 7, the type of values carried by n. Given that the types of the names known to
the environment must be well-formed, the type formation rules ensure that the original structural
type of m is a subtype of the structural component of 7, thus also a subtype of the type at which
n expects to receive its values: this guarantees that m may safely be received at n. Further re-
transmissions of m will undergo the same checks by the (OUTPUT) rule, but now with the types
advertised at the subsequent hops in A: in order to prove subject reduction we therefore need to
be able to type m at all such types.

We show the effect of value propagation in the typing system with a typed version of the
print spooler example discussed in the introduction (the same effect can be verified on the more
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complex example of the on-line editorial system of Section 3). Let
JOB = Client[data || Spooler : data — Printer : data — Client : data]

and consider the following composite process:

(v j:JOB)5(j).ack(x:JOB | Client)....
| 1s(x:JOB | Spooler).print(x)
| !print(x: JOB | Printer).(... | ack(x))

Here, the client creates a new job j, sends it to the printer and waits for notification. If we
assume the typings s : Spooler[(JOB | Spooler)™], print : Printer[(JOB | Printer)™], and ack :
Client[(JOB | Client)™], it is a routine check to verify that all types involved are well-formed
and that the process type-checks. Notice in particular, how the type of j must change in order to
match the types that annotate the input variables of the channels along which j is delivered.

If names were used linearly in the calculus, the effect of rule (DELIVERY) could be achieved
more directly by changing the typing of m in I, in ways similar to what is done in, e.g. session
types (Honda et al., 1998). In our system, instead, multiple occurrences of the same name may
co-exist in a process, and have different types: we employ the tags to keep track of all such types.

We remark, however, that rule (DELIVERY) is not needed for the typing of static processes, as
the rule only applies to names with a non-empty tag and these arise only dynamically as a result
of reduction. In fact, the typing system for static processes can be recovered from the system we
just presented by dropping rule (DELIVERY) and interpreting all names and values as untagged
(hence all processes as static processes). We note g the typing relation for static processes, and
write ['-g P to note a derivable judgement in this system. For the reason we just discussed we
have:

Lemma 4.1. I'g P if and only if " P for all static processes P.

4.4. Typing of principals and systems

As anticipated, the typing rules for the calculus of principals derive directly from the rules for
static processes we have illustrated. They are reported below.

(PRINCIPAL) (Cowmp) (NEWG) (NEW)
G{P} well-formed Ttg TP 'S, TES IGFS Ln:"™tFS
'+ G{P} r'ES| S 't (vG)S 't (vn:1)S

We note with "1™ the resource type obtained by evaluating each type expression T’ | T occur-
ring within T as defined earlier in this section. We also note with "P™ the process obtained by
replacing each type T with "t in P. Notice in particular that, | being a partial operator, so is the
transformation "-1. We tacitly assyme that all type expressions are well-defined in a well-typed
system.

A principal is well-typed if so is its body, and in addition, the body respects the well-formedness
constraint imposing that P only creates new names controlled by G or by any of the local group
names that P itself creates with a group declaration. In a composite system, each principal has
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visibility (via I') of all the free group names occurring in all the other principals of the composi-
tion. The restriction operator is typed just as in the underlying process calculus.

5. Type safety

We continue the presentation of the type system by elucidating its main properties. To state such
properties, we introduce one additional (partial) operator on type environments. Given a type
environment I" and a sequence of names ¢ we let I'[¢] denote the corresponding sequence of
groups obtained from the types that I" associates with the names in ¢. Inductively:

>

e €
Tn:e] =2 if (T(n)=G[T || Al and T'[@] # L) then G :: T[¢] else L

The intuition here is that ¢ is the sequence of channels traversed by a name along its flow, and
I'[¢] is the corresponding sequence of groups. Thus, given a tagged name ng, I'[¢] expresses the
flow of n in terms of the groups of the channels n flows through: that information can be used to
assess the safety of these flows against the delivery policy that I" associates with n.

In the rest of this section we state and prove the safety properties of the type system based
on these intuitions. Theorem 5.1 shows that in all well-typed dynamic processes, any access to a
channel is permitted by the type of the channel, and the arguments are passed over the channel
at subtypes of the expected types. Theorem 5.2 shows that in all well-typed dynamic processes
names flow according to the delivery policies expressed by their types. Finally, Theorem 5.3
shows that such properties are preserved by reduction. Collectively, these result provide static
guarantees that in any computation spawn from a well-typed, system (hence static process), all
resources are accessed and delivered according to the policies defined by their types (cf. Corol-
lary 5.1).

Another approach that often adopted in the statement and proof of type safety (see, for in-
stance, (Hennessy and Riely, 2002a)) relies on the definition of an explicit notion of error and
on a proof that well-typed terms do not have error transitions. We chose differently, and stated
our safety properties directly in terms of types. The two approaches are equivalent, we find ours
technically more elegant and concise.

5.1. Preliminary lemmas

Lemma 5.1. Assume ' nyq) : Gi[T1 || Aj]. Then I'(n) = G[T || A] with G; =G, T < Tj, and
7 Ay

Proof. By induction on ¢. The proof requires the following result which follows by induction
of the derivation of A < A':

ifTHr Aand A < A/, then T 7 A/ N

We proceed with our inductive proof on .

case ¢ = €. The hypothesis is ' n: G1[T; || A1], that must have come by (SUBSUMPTION) from
I'(n) = G[T || A] < G1[T1 || A1], hence G; = G and T < T1, thus I" 7 A; by (1).
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case ¢ = ¢-m. The hypothesis must have come by a number of (SUBSUMPTION) from I' - rj :
GI[T]/ H A/l] with Gl[Tll || A/]] < Gl[Tl || Al], and (DELIVERY) from I' - Ng) * Gl[T/ || A/},
Chm:F[Tr || Ar], and F: T) — A} € A orany : T{ — A} € A'. From T’ njg) : G[T" || A'],
by induction we have I'(n) = G[T || A] with Gy =G, T < T’ and T' 7 A'. The last judgment,
together with F: T/ — A} € A’ (orany : T/ — A} € A'), gives T < T} and I" -7 A|. Now, from
Gi[T{ || A}] < Gi[Ty || Ai] we have T/ < T and A} < Ay, hence T < T/, and we conclude
r l_T A] by (1)

Notice that the statement of the lemma does not explicitly relate A and A;. However, we have
that A is the initial delivery policy for the name n, whereas A, is the policy for ny), that is the
residual policy for n after the first delivery steps described by ¢.

As a corollary of the previous lemma we have:

Lemma 5.2. Letbe I'F njg : Gi[(T1,...,T)"" | A1] and T npy 2 Ga[(p1, -+, pn)"? || Az]. Then
h=kandonehasT'Fn:G[T || Al withG=G; =G, T < (T1,...,%)" and T < (py1,...,pn) "2

We need two further (standard) lemmas in the proof of subject reduction.

Lemma 5.3.

— Subject Congruence: If I'A and A =B, then ' - B.
— Substitution: If T,x : p = A and T njg) : p, then T = A{"0l/, }.

Proof. Subject Congruence has a standard proof: we prove the two statements (i) I' - A and
A=Bimply'F B, and (ii) ' - A and B = Q imply T" - B, by simultaneous induction on the
derivations of A = B and B = A.

As to Substitution, we must prove the following two statements:

I IfTx:pka:tand Tk nyg :p, thenTFa{"/,} : 1.
2 KCx:pFAandTFnpg :p,then T=A{"e/, }.

Point 1 follows by induction on the derivation of I',x : p - a : T and a case analysis on the last
rule applied. The proof uses the following standard strengthening property:

Ix:pka:tandx#athenT'Fa: 7. 2)

(PROJECT) If @ = x then p = T. The thesis is I' - njg) : p which is true from the hypothesis.
Otherwise, if a # x, then the thesis is I' - @ : T which comes from the hypothesis by (2).

(SUBSUMPTION) The hypothesis comes from I',x : p Fa: T and T < 1. Then by induction we
have I'Fa{"l¥l/, } : v and we conclude ' a{"l*//, } : T by (SUBSUMPTION).

(DELIVERY) In this case a # x, then the thesis is I' - a : T, which comes from (2).

Point 2 follows by induction on the derivation of I',x : p - A and a case analysis on the last rule
applied. We only show here the interesting cases.

(INPUT) Then A =a(y; : T1,..., Yk : T).A; and the hypothesis comes from ', x: p,y; : Ty, ..., :
WA and Tyx:pka: G[(T1,...,%)" || A]. By induction we have I',y; : Ty,...,yx : T F
A {"el/ Y and T Fa{"0/,} : G[(T1,...,T%)" || A, thus T+ A{"l¥l/, } by the rule (INPUT).

(OuTtpuUT) Then A =a(by,...,b).A; and the premises are I',x: p - a : G[(T1,..., )" || A, T, x:
pHALT,x:pkb;:GiT; || Al and G: T/ — Al € Ajorany : T/ — Al € A; with G;[T} || A]] <.



M. Bugliesi, D. Colazzo, S. Crafa, and D. Macedonio 20

By induction we have I' - a{"9/, } : G[(t1,...,w)" || Al, T+ A {"l9//, }, T b;{"lol/ } :
Gi[T; || Ai]. And we conclude I' = A{ "I/, } by applying the rule (OUTPUT).

(NEW m) Then A = (vm : T)A; and the hypothesis comes from [',x: p,m:T-Ajand T,x:pF 1.
By induction we have I',m : T+ A; {"¥/, } and we conclude by (NEW m).

U

5.2. Main Theorems

In the proofs below, in particular in the proof of Theorem 5.2, we make explicit appeal to a
transitivity property of the subtype relation. As we noticed, our presentation of subtyping does
not include a general rule of transitivity: on the other hand, as we show in Section 6, the form
of transitivity we rely upon in the proofs of this section does indeed hold for the typing system.
Also, we refer to the following, standard, notion of evaluation (or dynamic), single-hole context:

Cu=— | (vu:7)C | (VG)C | C|A

and let C[A] note the capture-free substitution of the closed dynamic process A for the hole ‘—/
in C.

Theorem 5.1 (Access Control). Let A = C[7jg(a1,...,ax).B] be a closed well-typed dynamic
process. Assume that I" - 7jg{ai,...,ax).B for a suitable I'. Then " = ng : G[(T1,...,Tk)"]
and for all i =1,...,k, one has I'F q; : 6;, 6;]G is defined, and 6;|G < 7;. Similarly, if A =
Clnjg)(x1:p1,. - -, x:p1).B] with T' = nygy (x1:p1, - .., xp2p1).B, we have I' - njg : G[(p1, - .-, p1)']-

Proof. By an inspection of the typing rules. L]

Theorem 5.2 (Flow Control). Let I - A with A closed. Assume, further, that I - A depends on
the judgment I' - njg) : T with @ # € (i.e. I' - nj) : T occurs in the derivation that proves I A).
Then n € Dom(I") and I'[@] # L. In addition, I'(n) = p with p such that p|I'[¢] is defined and

pllp] <.

Proof. By induction on the length of ¢.
case @ =m. Then the hypothesis I" - n,, : T comes by several (SUBSUMPTION) rules from
[k nyy, 27 and v < 1, and an application of (DELIVERY) from I'Fn: G[T; || Af], T+
m: Gu[Ty || Ay] and G, : T" — A € Aj or any : T" — A’ € Ay with T = G[T’ || A]. The
judgment T'F n : G[T} || Aj] must have come by (SUBSUMPTION) and (PROJECT) from
I'(n) = G[T || A] = p and G[T || A] < G[Ti || A1], which implies A < A;. Note that the thesis
we want to prove is p | G,, < 7. Let us distinguish two cases:

— Gp:T'— AN €Ay and v = G[T’ || A']. From A < A we have two sub-cases:
- Gu:T"— A" €Aand G[T" || A”] <. In this case p | G,, = G[T” || A”], then from
G[T" || A"] <t and T’ < 1, we conclude by transitivity.
- Gy ¢ Dom(A) and any : T" — A" € A with G[T" || A”] < 7. In this case p | G, =
G[T" || A"], then from G[T” || A”] < 7' and v < 1, we conclude by transitivity.
— any: T" - A € Aj and v = G[T" || A']. with G, ¢ Dom(A;). From A < A; we have
any: 7" — A" € A with G[T" || A”] < t'. We have two sub-cases:
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- Gu:T"—A"€AThenp | G, =G[T" || A”], and from A < A; (rule (SUB-A-3)) we
have G[T” || A”] < G[T' — A’] = 7. Then we conclude by transitivity since T’ < T.
- Gy ¢ Dom(A). In this case p | G, = G[T" || A”], then from G[T" || A"] <7’ and T’ <,
we conclude by transitivity.
case @ = @::m. In this case the hypothesis I"F njq) : T comes by a number of (SUBSUMPTION)
from " - ng) : 7" and v < 7, and an application of (DELIVERY) from I - nig : G[T1 || A1l
TEm:Gy[Ty || An] and G, : T' — A € Ajorany : T' — A’ € Ay with v = G[T’ || A']. From
[ nig : G[T1 || Ay], by induction, we have I'(n) = G[T || A] = p and p | T[] < G[T} || Ay].
Then p | I'[@] = G[T™* || A*] and A* < A;. Let us distinguish two cases:
— Gp:T'—= AN €Ay and v = G[T” || A']. From A* < A; we have two sub-cases:
- Gu:T"— A" € A" and G[T" || A”] <. In this case p | ['[@::m] = G[T" || A”], then
from G[T" || A"] <t and T’ < 7, we conclude by transitivity.
- Gu ¢ Dom(A*)andany : T" — A” € A* with G[T" || A”] <. In this case p | ['[@::m] =
G[T" || A"], then from G[T” || A”] < 7' and v < 1, we conclude by transitivity.
— any: 7' = AN € Ay and v = G[T' || A']. with G,, ¢ Dom(A;). From A* < A; we have
any : T" — A" € A* with G[T" || A”] < 1'. We have two sub-cases:
- Gy :T"— A" € A* Then p | T'[@::m] = G[T" || A”], and from A* < A; (rule (SUB-
A-3)) we have G[T" || A”] < G[T' — A'] =7'. Then we conclude by transitivity since
v <.
- Gy ¢ Dom(A'). In this case p | ['[@::m] = G[T” || A”], then from G[T” || A”] <1’ and
7' <1, we conclude by transitivity.

]
Theorem 5.3 (Subject Reduction). If 'A and A —* B, then ' B.

Proof. By induction on the derivation of A — B and a case analysis on the last rule applied.

— A=Tg{mijg,]s- s Mkfgy))-AL | Ny (X1 2 T15 -, X% Tr) A2, From I' = A we have

Tk g G'[(t, -, 7)™ [ A] (
THA; (
kai[(l)i] G,[Tl || Ai] i=1,..,k (
A(G) =T/ = A GIT} || Al =7 (4
an[w]:G[(Tl,...,’Ck)r || A] (
F7X1:T1,...7xk:Tk|—A2 (
The equalities in condition (4) correspond to the equivalent conditions G;[7; | A;] | G’ =7/
required in the typing of the output prefix of the process in question. From (1) and (5), by
Lemma 52 we have 'Fn:G[T [|A], G =G, T < (7,...,7)" and T < (71,...,7)". The
last two judgments imply T} <1, i = 1,..,k. Now, from (3), I'-n: G[T || A] and (4), by
(DELIVERY) we have I - m;(q,.., : T;; from this judgement and 7} < 1;, by (SUBSUMPTION),

we derive I't-m;[q,..,) : Ti, i = 1,.., k. The last judgments, together with (6), by the Substitution
Lemma give I' = Ax{ "o/, }, that together with (2) by (PAR), give I' - B as desired.
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— Incase A = (vm:t1)A; — B = (vm:T)B; since A — By. FromT'FA we have I',n: TH A;
and I' - 1. By induction we also have I',n : T+ By, and we conclude I" - B by an application
of (NEW n).

— Incase A= (VG)A; — B = (vG)B since A — B;. From '+ A we have I', G- A;. By
induction we also have I', G - By, and we conclude I" F B by an application of (NEW G).

— Incase A=A; | Ay — B=B; | Ay since Ay — B;. From I' - A we have I' - A; and
I'F A,. By induction we also have I' - By and we conclude I" - B by an application of (PAR)
fromI'- B and T'F As.

— Incase A=A|,A; — Bj and B; = B. From I' - A, by Subject Congruence, we have I' - A,
then by induction I' - B and again by Subject Congruence I' - B as desired.

U

We conclude the proof of type safety by projecting the results proved in Theorems 5.1 and 5.2
on static processes, and then on systems.

Corollary 5.1 (Safety). Let S be a closed system, and assume I" - S for some I'. Then, for all A
such that § —* A, one has I+ A and both Theorems 5.1 and 5.2 hold of A.

Proof. From I' - S and the format of the typing rule for principals, we know that I" kg [S]. By
Lemma Lemma 4.1, this implies I - [S], and then the proofs follow by Theorem 5.3.

We remark that while the safety theorem is stated for systems (equivalently, for static processes),
Theorems 5.2 and 5.3 could not be meaningfully stated without appealing to the flow tags at-
tached to names. In particular, it is not true that , I'F A implies I - |A| for all dynamic processes
A. To see that, note that I' - A may depend on two tagged names nq,] and n[y,) being given differ-
ent types (not related by subtyping) by the (DELIVERY) rule. On the other hand, if we erase the
tags, we lose the possibility of appealing to the (DELIVERY) rule, and consequently the judgment
Ik |A| fails. For this very reason, Theorem 5.3 does not hold, in general, under the reduction
semantics — of (Cardelli et al., 2005). Interestingly, however, we can recover subject reduction
for — provided that we make adequate assumptions on the structure of the types occurring in I"
and A. We formalize the relationship with the type system of (Cardelli et al., 2005), showing that
our type system is a conservative extension of the type system of ©G.

Given a ©tG type environment I" and a ©G process P, let [I'] and [P] be the type environ-
ment and process that result from applying the encoding of types from Section 3 (on page 9)
systematically to all types occurring in I" and P.

Now call a type simple when it is the encoding of a TG type; similarly, call a type environment
and a (dynamic) process simple when all the types occurring therein are simple. Then we have:

Theorem 5.4 (Relationships with ©G). T'F P is derivable in ©G iff [T'] g [P] is derivable in
our type system.

Proof. (Sketch) The proof follows by observing that if we restrict to simple types, then the
type formation rules as well as the (OUTPUT) rule for processes coincide with the corresponding
rules in wG. Now, if T" and A are simple, it is not difficult to see that I' - A implies I - |A].
Intuitively, the reason is that simple types are insensitive to flows: this is a consequence of the
delivery type being the same at all hops in a simple type. L]
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Table 6 Sub-typing Procedure.

Sub-typing(p,o)
define J={p<o} and H=H =1=1'=J =0;
while HUIUJ #0 do

if J#0 pick 1<T €J and apply one of the following rules:
1. if 1<t et then J=J\{1<1};
/* as TS‘C’ has been already treated */
2. if 1=7 then J=J\{t<7};
/* according to (T-REFLEX) */
3. otherwise let T=GI[T | A] and 7' =G/'[T" | &)
if G#G then return false
else J=J\{t<t}; J/=Ju{t<?}; I=TU{T<T'}; H=HU{A<A'};
/* according to (T-TYPE/POLICY) */
if 1#0 pick T<T' €I and apply one of the following rules:
1. if T<T' el then I=IN{T<T'};
/* as T <T' has been already treated */
2. if T=T then I=I\{T<T'};
/* according to (T-REFLEX) */
3. otherwise, let T=(7...Ty)" and T'=(1}...1,)"
if vV or n#m then return false
else I=I\{T<T'}; I'=ru{T<T};

!

switch V' case r: J=Ju{t; §T;}i:1_,n;
case w:  J=JU{T <T}liciai
case rw: if ‘E,—;é‘lt; for some i then return false;

/* according to the structural rules */

if H#0 pick A<A' €H and apply one of the following rules:
1. if AN eH then H=H\{A<A'};
/* according to (A-ASSUME) */
2. if A=A then H=H\{A<A'};
/* according to (A-REFLEX) */
3. otherwise H=H\{A<A'}, H =H' U{A<A'} and
a. if A=pX.A{X} then H=HU{A {uX A {X}} <A'};
/* according to (A-LEFT-UNFOLD) */
b. if A=Y Gi:Ti— A and A =X A {X}
then H=HU{A <A {uX. A {X}}};
/* according to (A-RIGHT-UNFOLD) */
c. otherwise call PolicyExt(A,A"H,H'I,I')
return true

Based on this result, we immediately obtain subject reduction for simple processes.

Theorem 5.5 (Subject Reduction for simple processes). Assume I g P with I" simple, and P
closed and simple, and let P —* Q. Then I' g Q.

Now the secrecy theorem of (Cardelli et al., 2005) can be re-established in our system with no
additional effort for simple processes.

6. Decidability of typing and subtyping

As we noted earlier, our presentation of the subtype relation does not include a transitivity rule. In
this section we show (i) that this make it possible to prove that the subtype relation is decidable,
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Table 7 Policy-extension Procedure.

PolicyExt(A,AH,I,H',I')
A, if A:ZieIUJG;:T}eA,v and A’:ZieIGizTi’eA; with any & {G;}icrus
then H=HU{A; <Aj}ier and I=TU{T; < T/ }ier;
/* according to (SUB-A-1) */
B. if A=Ajtany:Ty—Ag and A=A +Y G :Ti—A
with any ¢ Dom(A})U{G;}ic; and Dom(A}) C Dom(A;) and {G;}ic; N DomA; =0
then H=HU{A| <A} U{A; <Aj}ier and I=TU{T; < Ti}ier
/* according to (SUB-A-2) */
Cc. if A:A.+any:Td—>Ad+Zi61G,-:T,-—>A,- and A'=A] +any:T) — A}
with Dom(Ar) C Dom(A}) and {G;}ic; M Dom(A}) =0
then H :HU{A] +any: Ty — Ay < AII}U{Ad < AQI}U{A,‘ SA;},':L__,,
and I=1U{T; < T;}U{T; < T}}ier;
/* according to (SUB-A-3) */
D. otherwise return false
/* as any appears just in A’ and not in A */

and (i) that the form of transitivity used in the proof of Theorem 5.2 is still admissible in the
typing system. By the decidability of subtyping, we then derive that typing is decidable as well.

We start by introducing the procedure Sub-typing(p,S) outlined in Table 6, which decides
the subtype relation. The procedure implements a bottom-up search for a derivation rooted at
F p < o: at every step, it first tries to apply the rules (REFLEX) and (A-ASSUME) and in case it
fails, it looks for a possible rule according to the structure of the types or the delivery policies.
In particular, in case of resource types T; < T, and structural types 71 < T, the procedure checks
whether the inequality was already treated, and, in that case, it does not analyze the pair further.
In fact, since recursion occurs in delivery policies, T; < T and 77 < T; can only appear in the
conclusion of the derivation for - t; < 15 and - T < T, respectively.

In detail, the procedure builds a triple of pairs of sets (H,H’), (I,I') and (J,J'). The sets
(H,H') keep track of all the pairs A; < A, generated and processed respectively, the sets (1,1)
keep track of all the pairs 7} < T, and finally the sets (J,J') deal with the pairs T; < T,. Collec-
tively, these sets make it possible to control the application of the rules numbered 3 in Table 6 —
these are the only rules which extend the sets H,/ and J — and in particular to ensure that such
rules process every pair appearing in H U/ UJ at most once during the computation. If none of
the rules can be applied and H U I UJ # 0 then the procedure fails, otherwise it succeeds.

6.1. Termination of the subtyping algorithm

To show termination, we have to count the pairs that appear in H UI U J during the computation
and to prove that there are finitely many of them. Basically, we need to show that a type, and a
recursive policy in particular, has a finite number of sub-expressions. As noted in (Gapeyeyv et al.,
2002), proving this, seemingly obvious, property requires a quite some of work. The difficulty is
that there are two possible ways of defining the set of ‘closed sub-expressions’ of a type. One,
the fop-down sub-expression C,4, corresponds directly to the sub-expressions generated by the
procedure Sub-typing, and by the rules in Table 4. The other, defined bottom-up sub-expression
Cpus supports a straightforward proof that the set of closed sub-expressions of every closed type
is finite. The two relations are defined on the expressions e ::= 1T | T | A by the following rules:
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Common rules:

eCT eC A

TCT TCT ACA eCG[T| A eCG[T || A

el T eC T eC A eC A
(i=1...n)
eC(11...7)" eCG:T—A eCG:T—A eCA+A
Specific rules:
e Cua A{uX.A{X}} e{X} Cou AX}
e Ty uX A{X} e{uX A{X}} Cpy X A{X}

The proof of termination proceeds by showing that C,; is a subset of Cp,,, as done in (Brandt and
Henglein, 1998). We start with the proof of some basic properties. First the transitivity of C,;.

Lemma 6.1. If ) T, 2 and e; T,y €3, then e 54y e3.

Proof. By induction on the derivation of e; T4 e3. ]
Moreover, the number of bottom-up sub-expressions is finite.
Lemma 6.2. The set {¢' : ¢’ Cp, e} is finite for each e.

Proof. Straightforward structural induction on e, using the following observations, that are
consequences of the definition of Cy,.
— ife=X,then {€ : ¢/ Cp, e} ={X};
— ife=uX.A1{X}, then {& : &' Cp, e} ={e}U{e'{e}: '{X} Cp, A1{X}};
— e=G[T || Al with T = (1q,...,7,)", then {¢' : &' Cp, e} = {e} U{e : €' Tpy Ti}ic1. nU{e :
¢ Cou A(G') Y 'epom(a)- U
As done in (Gapeyev et al., 2002), to prove that the bottom-up sub-expressions of a type in-

clude its top-down sub-expressions, we need the following lemma, which relates bottom-up sub-
expressions and substitution, and whose proof follows the lines of (Gapeyev et al., 2002).

Lemma 6.3. For every expression e{X}, if ¢ Cj, e{A} then either ¢’ Cp, A or ¢’ = &’{A} for
some ¢’ {X} with ¢"{X} Cp, e{X}.

Proof. Structural induction on e, see (Gapeyev et al., 2002). L]
We can now relate the two notions of sub-expressions.
Lemma 6.4. Ife C,y ¢ thene Ty, €.

Proof. Proceed by induction on the derivation of ¢’ C, e, and show that the rules for C,; are
sound for Cj,. The only interesting case is the rule

¢ Cu MuX A{X})
e Crg X A{X}
Assume that e Cp, A{uX.A{X}} then Lemma 6.3 says that either (i) e T, uX.A{X} or (ii)
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e=¢"{uX A{X}} with ¢’{X} Cp, A{X}. The case (i) gives the conclusion of the rule. In case
(ii) conclude e Ty, uX.A{X} by applying the rule
¢"{X} Cou A{X}
" {uX A{X}} Cpy uX.A{X}

Lemma 6.5. The set {e: e T,y 1} is finite for each t.

Proof. Apply Lemma 6.2 and Lemma 6.4. L]
We are ready to prove the termination of the sub-typing procedure.
Theorem 6.1 (Termination). The subtyping procedure stops on every input.

Proof. The procedure may loop only if one of the rules marked by 3 applies infinitely many
times. Since the procedure first checks H’, I’ and J' , rules numbered 3 may be invoked at most
once on every pair that appears in H U/ UJ. The only way to extend the set H UI UJ is by one of
the rules 3. All the pairs generated by these rules are top-down sub-expressions of the current pair.
As HUIUJ is initialized to the input pair {p < G}, the transitivity of T, (cf. Lemma 6.1) says
that all the elements which may possibly appear in HUIUJ arein {e <¢':eCycand e’ Ty p},
which is a finite set by Lemma 6.5. Then rules 3 may be applied a finite number of times. Hence
the procedure always stops either with success or failure. L]

6.2. Soundness and completeness of the subtyping algorithm

We proceed with our analysis by showing the algorithm correct. The soundness part of the proof
is straightforward.

Theorem 6.2 (Soundness). If the call Sub-typing(p,o) succeeds, then there exists a derivation
for Fp<o.

Proof. The procedure Sub-typing(p, o) builds a derivation for - p < 6 according to the rules
in Table 4: every pair HUIUJ, H' that appears in any iteration can be interpreted as the set of
sub-typing judgments {H' e < ¢':e < ¢’ € HUIUJ}; the procedure returns true when it
reaches the axioms of the calculus. L]

The proof of completeness is more elaborate. It draws on, and extends, a corresponding proof
for the system of I/O-types in (Pierce and Sangiorgi, 1996). As in that case, an inductive proof
on derivations does not work, given the co-inductive nature of the presentation of the subtype
relation (cf. the format of the rules for recursive subtyping and the presence of the (A-ASSUME)
rule). To prove our claim, we therefore introduce a simulation relation over closed types and
show that (i) it contains the subtype relation, and (i) is decided by the Sub-typing algorithm.
The two results are proved in Theorems 6.3 and 6.4, respectively. Together with Theorem 6.2,
this proves that subtyping is decidable.

The definition of the simulation relation extends the corresponding definition found in (Pierce and
Sangiorgi, 1996) by viewing our resource types as automata, or processes, performing transitions
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corresponding to the structure of the delivery policies they represent. The transitions on delivery
policies are detailed below.

A= (N{X},T)
A+ (G:T 5 N)+A -5 (A T) XA (A {uX A}, T')

Two remarks are in order. Firstly, due to the definition of A, this transition system is deterministic,
namely the set reachg(A) £ {(A',T) : A =S, (A',T")} is either a singleton {(A’,T")} or the
empty set. Secondly, it is easy to verify that the labelled transition system respects type equality,
as stated by the following lemma.

Lemma 6.6. For every group name G, we have reachg(uX.A{X}) = reachc(A{uX .A{X}}).

In defining the simulation relation, we find it convenient to introduce additional notation.
act(A) £ {G : reachg(A) # 0}

Item 1 of the definition below relates only types with the same group and compatible policies.
Item 2 says that type simulation extends the tree sub-sort relation of (Pierce and Sangiorgi, 1996),
which deals only with structural and recursive types. Items 3 is inspired by the definition of
simulation on labelled transitions systems.

Definition 6.1 (Type Simulation). Let R; a binary relation on types, R a binary relation on
structural types and R3 a binary relation on Delivery policies. The triple R = (R;,R»,R3) is a
type simulation when:

1 forevery (G[T || A],G' [T’ | A']) € Ry we have G =G/, (T,T') € R; and (A,A’) € R3;

2 forevery ((T1,...,Tm)", (T),...,T,)" ) € Ry we have n =m, v <V’ and forevery i = 1,...,m:
(i) if v/ = w, then (t;,T}) € Ry; (ii) if V/ =, then (t},7;) € Ry; (iii) if V' = rw, then T; = 1].

3 forevery (A,A') € R; we have:

(@) if A -5 (A[,T) then A’ -5 (A}, T") with (A;,A]) € R3 and (T,T’) € R,, otherwise
A2 (A}, T') with (A1, A)) € Ry and (T, T") € Ry;

) if A 2 (A1, T) then for every (A}, T") € Ugeacr(a)\act(a) eachc (A') it holds (A1, A}) €
R; and (T,T') €R,.

We say that the type p simulates the type o, symbolically ¢ < p, if there exists a simulation
R = (R1,R2,R3) such that (6,p) € R;. Likewise, we say that the policy A’ simulates the policy
A, symbolically A < A, if there exists a simulation K = (Ry,R;,R3) such that (A,A) € R3.

Lemma 6.7. The relation < on types and delivery policies is reflexive and transitive.

Proof. For reflexivity, consider the identity relations Id; = {(7,T) : T is a resource type },
Idy = {(T,T): T is a structural type } and Ida = {(A,A) : Ais a delivery policy }. Then Id =
(Idg,Id7,Ida) is a simulation. For transitivity show that if (R}, R5,R%) and (R,R},RY) are simu-
lations then the triple of relations (R, R2,R3), defined as (¢/,e”) € R; iff there exists e such that
(¢',e) € R} and (e,e”) € R/ fori=1,2,3, is a simulation as well. Ol
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Type simulation is well defined as it respects type equality. In fact, it is straightforward to see
that it is preserved by renaming of bound variables and permutation of delivery constraints in-
side delivery policies. Moreover the following lemma shows that also the unfolding of recursive
policies preserves type simulation.
Lemma 6.8. For every structural type T, group G, delivery policy A and type 7 it holds:
1 uX A{X} S Aifandonly if A{uX.G[T || A{X}]} S A,
2 AN SA{uX.G[T | A{X}]} if and only if A" < uX .A{X}.

Proof. For the forward direction of item 1, assume (uX.A{X},A") € R3, where (R1,R2,R3)

is a simulation, and observe that by extending R3 U {(A{uX.G[T || A{X}]},A")} we obtain a
simulation thanks to Lemma 6.6. The backward direction and item 2 are analogous. ]

The next theorem shows that the subtyping relation over resource types is included in <, in the
following sense.

Theorem 6.3 (Sub-typing and Simulation). If - p < o is derivable, then ¢ < p.

Proof. Let Il be a derivation for F ¢ < p and define

R 2 {(7,1):XF1<7isajudgmentin IT}
R & {(T,T):L+T <T'isajudgmentinIT}
R & {(A,A):LFA<A isajudgmentin IT}

We prove that R = (R, R, RI) UId is a type simulation. Pick (¢’,¢) € R and check that
the requirements of Definition 6.1 are met. We reason by cases on the last rule applied in the
sub-derivation of IT which is rooted at X - e < ¢'.

(REFLEX) Then e = ¢/, hence Definition 6.1 is satisfied as Id C R .

(t-TYPE/POLICY), (T-READ), (T-WRITE) and (7T-READ/WRITE) Then Definition 6.1 is sat-
isfied thanks to the premises of the rules.

(SUB-A-i) Again, Definition 6.1 is satisfied thanks to the premises of the rules.

(A-ASSUME) The last judgmentis A < A’ and A < A’ C X. Note that the root of the derivation
IT exhibits an empty sub-policy environment, hence the application of (A-ASSUME) must
appear as a leaf of a sub-derivation rooted at ¥’ - A < A’, with A < A’ ¢ ') that ends with
one or two applications of the (UNFOLD) rules, depending on the structure of A and A’.
Moreover, those rules must be applied just after an instance of a (SUB-A) rule. Now, the
premises of (SUB-A) rules, along with Lemma 6.6, say that Definition 6.1 is satisfied also in
this case.

(A-LEFTUNFOLD) Consider the rule applied in IT just above this one: it must be either an in-
stance of one among (A-REFLEX), (A-ASSUME), (SUB-A) or an instance of the rule (A-
RIGTHUNFOLD) that follows the application of (A-REFLEX) or (A-ASSUME) or (SUB-A).
In any case apply again one of the previous cases and Lemma 6.6.

(A-RIGTHUNFOLD) Analogous to the previous case. L]

Another important property is that the subtyping procedure succeeds on inputs that are in the
simulation relation, as shown in the following theorem.
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Theorem 6.4 (Simulation Success). If 6 < p, then Sub-typing(p,o) succeeds.

Proof. Assume ¢ < p and run the procedure Sub-typing(p,s). Theorem 6.1 says that the
procedure stops. Moreover 6 < p implies that e < ¢’ for every pair ¢’ < e included in HUJ U
Hence the checks at the points 3 always fail. Thus the procedure stops with true. L]

Now, by merging the results of Theorems 6.3, 6.4 and 6.2, we obtain the following equivalences.
Theorem 6.5 (Subtyping, Simulation and Procedure). For every types p and G, the following
statements are equivalent:

1 The judgment F p < & is derivable.

2 p simulates 6, namely ¢ < p.

3 The call Sub-typing(p,0) returns true.
Corollary 6.1 (Decidability). The subtyping relation is decidable.

Proof. Theorem 6.1 says that the call Sub-typing(p,o) stops independently of input, and
Theorem 6.5 says that Sub-typing(p,o) returns true if and only if F-p <. ]

6.3. Transitivity of Subtyping

As a corollary of the decidability proof, we also obtain a proof that the subtype relation is transi-
tive. In particular, we show that the axiomatization of subtyping admits a weak, but still useful in
our proofs, form of transitivity that only applies to subtype judgments with empty environment.

Corollary 6.2 (Transitivity). The rule
T1<T2 <1
T <13

is sound in the sub-typing system.

Proof. Theorem 6.5 says that, when the environment is empty, < is equivalent to <, and

~?

Lemma 6.7 says that < is transitive. L]

The result does not generalize to arbitrary judgments. To illustrate, letting X = A < Ay, Ay < Ag,
we can derive X - A} < Ay and £ F Ay < Az by (A-ASSUME). On the other hand, we clearly
cannot derive X - A < A3 directly, unless we have additional information on the structure of the
policies involved. This is in fact an instance of a general problem for coinductive systems that are
known to not interact well with transitivity rules (Gapeyev et al., 2002). Nevertheless, the rule of
transitivity of Corollary 6.2 is still useful for our proofs, as the use of subtype judgments in the
typing system is only on judgments with empty environment.

6.4. Algorithmic Typing

A further consequence of the decidability proof for subtyping, is that type checking itself is
decidable. The proof follows the standard pattern, namely we give an algorithmic (and decidable)
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version of the typing system, that dispenses with the (SUBSUMPTION) rule, and show that the
algorithmic system is sound and complete.

Given that we are interested in static typing, it is enough to define the algorithmic version
for the static typing system Fg. That is good news, because in the static system we can safely
disregard the tagged names, and hence the algorithmic system is easily derived from the static
typing system, by dropping the (SUBSUMPTION) rule and by replacing the rules (INPUT) and
(OUTPUT) with the two rules below.

(INPUT-A)
Tka:Gl(ty,..,T)Y |A] Toxp:ty,...,x T FP v<r, 0<k

Tka(xy:Ty,...,x:T).P

(OUTPUT-A)
rl—aZG[(T],...,‘Ck)VHA],VSW 'epP F"h,‘t%,‘ %,'J,GST,‘ ViE[O..k}

Thalby,...,b).P

Let -4 denote the typing relation in the algorithmic typing system.
Theorem 6.6. The typing relation 4 is decidable.

Proof. If we measure the size of a typing judgement (of the three kinds I'4 P, I'F4 a : 7,
I'4 - ¢) in terms of the sizes of the component types and processes, it is easily seen that for each
typing rule in the algorithmic system, all the typing judgements in the premises have strictly
smaller sizes than the judgement in the conclusion. Also, observe that the typing rules are syntax-
directed, and that the absence of the subsumption rule ensures thatI't-4 a: Tiff a: T € I'. Hence.
for each rule of the algorithmic system all the types that occur in the typing and subtyping
premises are determined by the types occurring in the conclusion (either in the environment
or in the subject of the judgement). From this, the theorem follows directly by the proof that
subtyping is decidable. ]

Based the previous theorem, to show that static typing is decidable it is enough to show that
algorithmic typing is sound and complete. The soundness part of the proof follows directly by
induction: we just have to observe that (i) (INPUT-A) is a special case of (INPUT), and that (i)
whenever an algorithmic derivation uses (OUTPUT-A), a corresponding non-algorithmic deriva-
tion exists that uses (OUTPUT) and (SUBSUMPTION): the use of subsumption may be required
to promote the types b; 50 as to ensure that the policy A; satisfies the constraints T; | G = ;.

Theorem 6.7 (Algorithmic typing is sound). I'4 P implies I' g P.

For the opposite direction (completeness), the proof is more elaborate, but still standard. We
need two lemmas: the first is a weakening lemma about type derivations; the second relates the
typing of names in the static and algorithmic systems. Let the height of a derivation be defined
as follows: the height of a derivation rooted at a subtyping judgement or at a typing judgement
of the form I' ¢ or ' a : © is zero. The height of a derivation ending up with a rule whose
conclusion is the judgement I" - P is 1 + the maximal height of the derivations rooted at the
premises of the rule.
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Lemma 6.9. Let I',x : T g J be a derivable judgement, where J is any of a : T, or P. Then,
for all v’ such that - 17" < 1 and I' kg 7/, the judgement T',x : T g J is derivable as well, with a
derivation of the same height.

Proof. The hypothesis I' g T’ is needed for the environment formation rules, in particular, for
(ENV x), as T might introduce group names not in I'. The proof is by induction on the derivation
of the judgement I', x : T -5 J, and follows directly by the induction hypothesis. Notice, in partic-
ular, that the uses of subsumption that may be required to complete the derivation of T',x : T’ Fg J
do not increase the height of the derivation (because of our definition of height). L]

Lemma 6.10. If I't-g a: 7, then 4 a: 7 with7 <7.

Proof. By induction on the derivation of the judgement in the hypothesis. There are only two
cases, in fact: when the derivation ends up with rule (PROJECT) and (SUBSUMPTION). In the
first case T = T, whereas the second case follows directly by the induction hypothesis. For the
(PROJECT) case, observe that I' g ¢ iff I' -4 ¢ as the type and environment formation rules in
the two systems are the same. L]

Theorem 6.8 (Algorithmic typing is complete). I"-g P implies I' 4 P.

Proof. By induction on the height of the derivation of I" -5 P, and a case analysis of the last
rule in the derivation. The cases (NEW G), (NEW n), (PAR), and (REPL) follow directly by the
induction hypothesis, while (DEAD) follows by the observation that I" g ¢ implies I' -4 ©.

In case (INPUT), the judgement I" g P must be of the form I' g a(x; : Ty,...,x, : T,).P,
derived from I' g a: G[(t1,...,T,)" || A] and T',x; @ Ty,...,x, : T, Fs P: let i be the height
of the derivation rooted at this last judgement. By Lemma 6.10 we know that I' 4 @ : T with
T < G[(11,...,T,)" || A]. This, in turn, implies that T = G[(t},...,T,)" || A'] with v <rand 7} < 1;.
By Lemma 6.9, it follows that I',x; : T},...,x, : T, b-g P is derivable with a derivation of height ,
Then, by the induction hypothesis I',x; : T},...,x, : T, Fa P and the desired judgement is derived
by an application of (INPUT-A).

In case (OUTPUT), the judgement must be of the form I' g a(by,...,b;).P, derived from the
judgements (i) Tkg P, (ii) TFg a: G[(t1,...,%)" || A] and (iii) T kg b; : Gi[T; || Aj], under the
additional constraints that A;(G) = T; — A; and G;[T; || A;] = t; for all i € [0..k].

From (i), by the induction hypothesis we know that I' -4 P. From (ii), by Lemma 6.10 it
follows that ' 4 a: G[(’c?, ... ,’cf)" | A% with v <w, - A <Aand t; < ‘tf-‘. Similarly, from
(iii), again by Lemma 6.10 it follows that I 4 b; : G;[TA || AY], with TA < T; and + A‘? <A,
Letting A4(G) = T4 — A7, to conclude we need to show that G;[T" || A/] < tA. This, in turn
follows from G;[T; || A;] = t; and T; < ! because A? < A; implies T’? <T,;and K? <A O

7. Conclusion

We have developed a type theory for the specification and the static analysis of access control
policies in the pi-calculus. Our approach extends and complements previous work on the subject
by introducing a new class of types so defined as to control the dynamic flow of values among
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system components. We have shown the flexibility of our systems with several examples, and
proved that it provides strong safety guarantees for all well-typed processes.

Our present results are proved for systems that only include well-typed components. However,
we believe it is possible to capture a stronger results, such as those known as robust safety that
guarantee safety in the presence of an untyped opponent. Indeed, we do not see any fundamental
impediment in adapting existing approaches to the problem (cf. e.g, (Gordon and Jeffrey, 2004;
Fournet et al., 2007), and (Cardelli et al., 2005) for that matter). As the secrecy result in (Cardelli
et al., 2005), robust safety in our system would be a consequence of the typing rules for the
opponent, and the scoping rules underlying groups.

Other desirable extensions for the system include the ability to express the revocation of capa-
bilities, to change the ownership on resources, and to accommodate some form of structure (e.g.
partial order) in the domain of principals. For instance, in our example of the on-line editorial
system, one could envisage a notion of substitutivity, so that a single rdle, say Staff, could be
used to represent both Journal and Editor in all situations in which this may be useful.
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