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1. INTRODUCTION

Static analyzers for logic languages are often goal-driven (a.k.a. query-directed).
This means that the analysis computes an approximation of the semantics of a
program for a fixed query with a given initial description. On the other hand, a
goal-independent analyzer computes information on a program P for all the possible
initial queries for P , and then this whole abstract semantics allows to derive the
information of the analysis for a particular query. It is well known that, in general,
goal-independent analyses, like those obtainable with bottom-up analyzers [Barbuti
et al. 1993; Codish et al. 1994; Marriot et al. 1994], may be less precise than goal-
directed ones (cf. [Marriott and Søndergaard 1993, Section 4]). When these two
approaches agree, we are in a particularly lucky situation, which can reasonably be
called optimal.

The problem. A well known property of concrete operational semantics for logic
programs specifies that any refutation for the instance Qθ of a query Q in a program
P yields the same answer substitution as the one that can be obtained by compos-
ing θ with the answer substitution computed for Q in P . This technical property,
also known as lifting lemma, is fundamental for proving the completeness of SLD-
resolution [Apt 1990]. Asking that this property holds for abstract computations
too, corresponds to ask whether the analysis of a query can be made independent
from its instantiation degree. The general problem of making the analysis indepen-
dent from the choice of the instantiation of the initial query has been considered by
many authors (see e.g. [Codish and Lagoon 2000; Debray 1994; Jacobs and Langen
1992; King and Lu 2002; Langen 1991; Giacobazzi and Scozzari 1998; Marriott
and Søndergaard 1993; Schachte 2003]. Langen [1991] first gave a specific solution
to this problem by introducing the idea of so-called condensing procedures, which
capture the essence of the problem: Basically, the approximation of the semantics
of each clause in a program is pre-computed (this is called condensed procedure)
in such a way that any specific call to a predicate p can be approximated without
re-computing a fixpoint, but simply by unifying that call against the condensed
procedure for p. However, the process of condensation may loose precision w.r.t.
the corresponding goal-directed analysis. Jacobs and Langen [1992, Theorem 3]
showed that certain algebraic properties of abstract unification guarantee that this
loss of precision does not occur. Abstract domains ensuring condensation without
loss of precision are therefore called condensing. The problem of systematically de-
signing condensing abstract domains is still open. Clearly, this is a relevant problem
since static analyzers based on condensing abstract domains are both efficient and
precise. Moreover, few condensing abstract domains are known, all of them being
downward closed domains (i.e., closed by substitution instantiation). Giacobazzi
and Scozzari [1998] showed that for any downward closed abstract domain A, A is
condensing if and only if A is closed by the so-called Heyting completion. This result
is not fully satisfactory because it cannot be generalized to arbitrary non-downward
closed domains. It is therefore desirable to have a formal theoretical setting where
possibly non-downward closed condensing abstract domains can be systematically
designed, e.g. for important non-downward closed program properties like variable
aliasing and freeness [Jacobs and Langen 1992; Langen 1991].
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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The main result. In general, condensing is a property of an abstract semantics S
with respect to an operation ⊗, stating that for any pair of abstract objects a and
b, the semantics S(a⊗ b) can be retrieved as a⊗S(b). This generalizes and exactly
captures the above notion of condensation when ⊗ is the abstract operation of uni-
fication. In particular, this also encompasses the case of the concrete semantics,
where condensing for a semantics of computed answer substitutions boils down to
the lifting lemma for SLD-resolution. We consider a concrete goal-driven collect-
ing semantics S for logic programs which for any program P , query Q and initial
call set Θ provides the set SP,Q(Θ) of computed answer substitutions in P for Q
with initial calls in Θ. Of course, the concrete operations involved in the semantic
definition of S are the usual ones: union of sets of substitutions, unification and pro-
jection on relevant variables. Moreover, it turns out that the collecting semantics
S involves a linear implication (see below for the definition) of sets of substitu-
tions: We show that this is a natural choice that becomes necessary when lifting
the standard semantics for computed answer substitutions to its collecting version
managing sets of substitutions. Hence, as usual, for any domain A abstracting the
powerset ℘(Sub) of substitutions the concrete collecting semantics induces an ab-
stract semantics SA on the domain A obtained by replacing the concrete operations
involved in the definition of S by their corresponding best correct approximations
on A. In this way, condensing becomes an abstract domain property: an abstract
domain A is condensing when for any program P , query Q and abstract objects
a, b ∈ A, SA(a⊗A b) = a⊗A SA(b), where ⊗A is the best correct approximation of
the unification ⊗ in the abstract domain A.

Our main result shows that it is always possible to make an abstract domain A
condensing by minimally refining the domain A, i.e. by adding the least amount
of concrete semantic information that makes the resulting domain condensing. We
show that this is an instance of a more general problem of making a generic abstract
domain A complete, in a weakened form, with respect to some concrete semantic
operator f . Let us recall that if αA and γA are the abstraction and concretization
maps for the abstract domain A and fbcaA = αA ◦ f ◦ γA is the best correct ap-
proximation of f in A, A is complete when αA ◦ f = fbcaA ◦ αA. We showed in
[Giacobazzi et al. 2000] that any generic abstract domain A can be made complete
with respect to any continuous semantic operator f : this means that A can always
be constructively extended to the most abstract domain which includes A and is
complete for f — the resulting domain is called the complete shell of A for f . In
this paper, we follow this approach to systematically derive condensing abstract
domains.

Here, it turns out that a weak form of completeness characterizes the condensing
property. In fact, we show that an abstract domain A approximating the powerset
℘(Sub) of concrete substitutions is condensing when there is no loss of precision in
observing in A the result of the concrete unification ⊗ when just one of its argu-
ments is approximated in A. More in detail, we prove that A is condensing if and
only if for any Θ,Φ ⊆ Sub, αA(γA(α(Θ)) ⊗ γA(αA(Φ))) = αA(Θ ⊗ γA(αA(Φ))) =
αA(γA(αA(Θ))⊗Φ). This is precisely a weakened form of completeness, thus called
weak-completeness, for the binary operation ⊗ of concrete unification lifted to sets
of substitutions. It must be noted that this result holds for abstract domains which
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satisfy a property of compatibility with the variable projection operation, or, al-
ternatively, which are complete for the projection (therefore this can be achieved
by using the results in [Giacobazzi et al. 2000]). Given any abstract domain A,
we characterize the most abstract domain X which is both condensing and more
concrete than A, which is therefore called the weak-complete shell of A for ⊗. The
crucial point of our result lies in the fact that the concrete domain ℘(Sub)⊆ en-
dowed with the unification operation ⊗ lifted to sets of substitutions gives rise to
a quantale, i.e. a model of propositional linear logic (see [Rosenthal 1990; Yetter
1990]). In this context, it turns out that the objects of a weak-complete refined
abstract domain can be elegantly represented as linear implications, with a clean
logical interpretation. More in detail, a quantale 〈C≤, ·〉 consists of a complete
lattice C≤ together with a binary operation · : C × C → C which is additive (i.e.,
preserves arbitrary lub’s) on both arguments. As a main feature, quantales sup-
port a notion of linear implication between domain’s objects: Given a, b ∈ C, there
exists a unique greatest object a( b ∈ C which, when combined by · with a, gives
a result which is approximated by b. In other terms, the following modus ponens
law a · x ≤ b ⇐⇒ x ≤ a ( b holds. In 〈℘(Sub)⊆,⊗〉, Θ ( Φ represents the set
of all the substitutions θ such that Θ⊗{θ} ⊆ Φ. Therefore, when refining abstract
domains in order to get weak-completeness in a setting where concrete interpre-
tations are quantales of idempotent substitutions, abstract objects are logically
characterized as linear implications in this quantale. This generalizes an analogous
result given by Giacobazzi and Scozzari [1998], which characterizes condensing and
downward closed domains as solutions of domain equations involving intuitionistic
implications.

As a relevant example, we apply our methodology for systematically designing a
condensing abstract domain which refines a basic domain representing both variable
freeness and independence information.

2. BASIC NOTIONS

2.1 Notation

If S and T are sets, then ℘(S) denotes the powerset of S, S ⊆
fin
T denotes that

S is a finite subset of T , S → T denotes the set of all functions from S to T , and
for a function f : S → T and X ⊆ S, f(X) def= {f(x) | x ∈ X}. By g ◦ f we denote
the composition of the functions f and g, i.e., g ◦ f def= λx.g(f(x)). The notation
P≤ denotes a poset P with ordering relation ≤, while 〈C,≤,∨,∧,>,⊥〉 denotes a
complete lattice C, with ordering ≤, lub ∨, glb ∧, greatest element (top) >, and
least element (bottom) ⊥. Somewhere, ≤P will be used to denote the underlying
ordering of a poset P , and ∨C , ∧C , >C and ⊥C will denote operations and elements
of a complete lattice C. Let P be a poset and S ⊆ P . Then, max(S) def= {x ∈
S | ∀y ∈ S. x ≤P y ⇒ x = y} denotes the set of maximal elements of S in P ;
also, the downward closure of S is defined by ↓ S def= {x ∈ P | ∃y ∈ S. x ≤P y}.
We use the symbol v to denote pointwise ordering between functions: If S is any
set, P a poset, and f, g : S → P then f v g if for all x ∈ S, f(x) ≤P g(x).
Let C and D be complete lattices. Then, C m−→D, C c−→D and C a−→D denote,
respectively, the set of all monotone, (Scott-)continuous and additive functions from
C to D. Recall that f ∈ C c−→D if f preserves lub’s of (non-empty) chains and

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



· 5

f : C a−→D is (completely) additive if f preserves lub’s of arbitrary subsets of C
(empty set included). Co-additivity is dually defined. We denote by lfp(f) and
gfp(f), respectively, the least and greatest fixpoint, when they exist, of an operator
f on a poset.

2.2 Logic programming

Let V be an infinite set of variables and Term be the set of terms with variables
in V. vars(s) denotes the set of variables occurring in any syntactic object s. A
syntactic object s is ground if vars(s) = ∅. We deal here with substitutions defined
according to [Jacobs and Langen 1992]. A substitution σ is a mapping from a finite
subset of V, its domain dom(σ), to Term. Note that we do not require substitutions
to be idempotent, namely such that dom(σ) ∩ rng(σ) = ∅, where rng(σ) denotes
the set of variables in the range of a substitution σ. Given a substitution σ, we will
use the notation vars(σ(x)) even for variables x not in the domain of σ, namely
x /∈ dom(σ), by defining vars(σ(x)) to be an emptyset. Moreover, for a set of
substitutions Θ we define dom(Θ) = ∪θ∈Θdom(θ).

This approach to substitutions differs from the standard one where substitutions
are mappings from V to terms which are almost everywhere the identity, since any
substitution is explicitly endowed with its domain. In the following, we write a
substitution as the set of its bindings, for all the variables in the domain. For
instance, {x/w, y/w} and {x/x, y/w} are substitutions with domain {x, y}. As
usual, substitutions are applied to any syntactic object. We define a preorder on
substitutions given by σ � θ iff dom(θ) ⊆ dom(σ) and there exists a substitution
δ such that ∀v ∈ dom(θ).σ(v) = δ(θ(v)). We denote by ∼ the equivalence relation
induced by this preorder � and we denote by Sub the set of equivalence classes of
substitutions w.r.t. to ∼. In this way, � becomes a partial order for Sub. Thus, the
equivalence class of a substitution denotes the sets of its “consistent renamings”.
For instance, [{x/w, y/w}]∼ = [{x/u, y/u}]∼, [{x/x, y/w}]∼ = [{x/u, y/v}]∼ and
[{x/w}]∼ = [{x/v}]∼, while [{x/w, y/w}]∼ 6= [{x/u, y/v}]∼. This simplifies the
approach to substitutions, since this makes a variable in the range of a substitution
a placeholder.

We denote by ε the empty substitution (with empty domain), by εV , with V ⊆
fin

V, the empty substitution with dom(εV ) = V (that is, εV = {v/wv | v ∈ V } where
all the wv are distinct variables not in V ). The composition of substitutions is
denoted by σ ◦ θ = λx.σ(θ(x)), where dom(σ ◦ θ) = dom(σ) ∪ dom(θ). By sσ
and σ(s) we denote the application of σ to any syntactic object s, where we mean
that the results of applying a substitution to a syntactic object are considered as
equivalence classes w.r.t. ∼.

We denote by mgu(σ, θ) the standard most general unifier of two substitutions
σ and θ. The most general unifier of [σ]∼ and [θ]∼, when it exists, is denoted
by mgu([σ]∼, [θ]∼) = [mgu(σ′, θ′)]∼ where σ′ ∈ [σ]∼, θ′ ∈ [θ]∼ are such that
vars(rng(σ′))∩ vars(rng(θ′)) = ∅. This is a good definition, since it is independent
from the choice of the representatives in the equivalence classes. Also, note that,
as shown by Palamidessi [1990], if we add a bottom element to Sub, it becomes a
complete lattice and mgu becomes the meet operation of this complete lattice. In
the following, for the sake of brevity, substitutions will denote their corresponding
equivalence classes w.r.t. ∼.

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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For any set of variables V ⊆ V and substitution θ ∈ Sub, we denote by θ|V the
restriction of the substitution θ to the variables in V , that is θ|V = {v/θ(v) | v ∈ V ∩
dom(θ)} with dom(θ|V ) = dom(θ)∩ V . Note that this is a good definition, namely
it respects the equivalence ∼. Thus, in this approach variable projection simply
corresponds to restriction: The projection πV (Θ) for a set of substitutions Θ ⊆ Sub
on a (possibly infinite) set of variables V is defined as πV (Θ) def= {θ|V | θ ∈ Θ}. For
instance, π{x,y,z}({{x/z, u/f(z), y/w}}) = {{x/z, y/w}}.

2.3 The lattice of abstract interpretations

In standard Cousot and Cousot’s abstract interpretation theory, abstract domains
can be equivalently specified either by Galois connections (GCs), i.e., adjunctions,
or by (upper) closure operators (uco’s) [Cousot and Cousot 1979]. In the first
case, concrete and abstract domains C and A are related by a pair of adjoint
functions of a GC (α,C,A, γ), where α and γ are the monotone abstraction and
concretization maps such that for all a ∈ A and c ∈ C, α(c) ≤A a ⇔ c ≤C γ(a).
It is usually assumed that (α,C,A, γ) is a Galois insertion (GI), i.e., α is onto or,
equivalently, γ is 1-1. In the second case, instead, an abstract domain is specified
as a closure operator on the concrete domain C, i.e., a monotone, idempotent and
extensive operator on C. These two approaches are completely equivalent, modulo
isomorphic representations of domain’s objects. The closure operator approach has
the advantage of being independent from the representation of domain’s objects: An
abstract domain is a function on the concrete domain of computation. This feature
makes it appropriate for reasoning on abstract domains independently from their
representation. Given a complete lattice C, it is well known that the set uco(C) of
all uco’s on C, endowed with the pointwise ordering v, gives rise to the complete
lattice 〈uco(C),v,t,u, λx.>C , id〉. Let us recall that each ρ ∈ uco(C) is uniquely
determined by the set of its fixpoints, which is its image, i.e. ρ(C) = {x ∈ C | ρ(x) =
x}, since ρ = λx.∧{y ∈ C | y ∈ ρ(C), x ≤ y}. Moreover, a subset X ⊆ C is the set
of fixpoints of a uco on C iff X is meet-closed, i.e. X = M(X) def= {∧Y | Y ⊆ X}
(note that >C = ∧∅ ∈M(X)). For any X ⊆ C,M(X) is called the Moore-closure
of X, and X is a meet generator set forM(X). Also, ρ v η iff η(C) ⊆ ρ(C); in this
case, ρ is a so-called refinement of η, and if ρ v η then ρ◦η = η◦ρ = η. Often, we will
identify closures with their sets of fixpoints. This does not give rise to ambiguity,
since one can distinguish their use as functions or sets according to the context. In
view of the equivalence above, throughout the paper, 〈uco(C),v〉 will play the role
of the lattice of abstract interpretations of C [Cousot and Cousot 1977; 1979], i.e.
the complete lattice of all the abstract domains of the concrete domain C. When
an abstract domain A is specified by a GI (α,C,A, γ), ρA

def= γ ◦ α ∈ uco(C) is the
corresponding uco on C. Conversely, when A = ρ(C) then (ρ,C, ρ(C), λx.x) is the
corresponding GI. The ordering on uco(C) corresponds to the standard order used
to compare abstract domains with regard to their precision: A1 is more precise
than A2 (i.e., A1 is more concrete than A2 or A2 is more abstract than A1) iff
A1 v A2 in uco(C). Lub and glb on uco(C) have therefore the following reading
as operators on domains. Let {Ai}i∈I ⊆ uco(C): (i) ti∈IAi is the most concrete
among the domains which are abstractions of all the Ai’s; (ii) ui∈IAi is the most
abstract among the domains which are more concrete than every Ai – this domain
is also known as reduced product of all the Ai’s.
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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2.4 Soundness and completeness in abstract interpretation

Let f : C m−→C be a concrete semantic function1 occurring in some semantics def-
inition and let f ] : A m−→A be a corresponding abstract function, where A = ρ(C)
for some closure operator ρ ∈ uco(C). Then, 〈A, f ]〉 is a sound abstract in-
terpretation — or f ] is a correct approximation of f relatively to A — when
ρ ◦ f v f ] ◦ ρ, or equivalently when ρ ◦ f ◦ ρ v f ] ◦ ρ [Cousot and Cousot 1977].
fbcaρ def= ρ ◦ f : A→ A is called the best correct approximation (bca for short) of f
in A. Completeness in abstract interpretation corresponds to require that, in addi-
tion to soundness, no loss of precision is introduced by the approximated function
f ] ◦ ρ on a concrete object c with respect to approximating by ρ the concrete com-
putation f(c), namely, no loss of precision is accumulated in abstract computations
by approximating concrete input objects [Cousot and Cousot 1977; 1979]: 〈A, f ]〉 is
complete when ρ ◦ f = f ] ◦ ρ. Giacobazzi et al. [2000] observed that completeness
uniquely depends upon the abstraction map, i.e. upon the abstract domain: This
means that if f ] is complete then the bca fbcaA : A→ A of f in A is complete
as well, and, in this case, f ] indeed coincides with fbcaA . Thus, for any abstract
domain A, one can define a complete abstract semantic operation f ] : A→ A over
A if and only if ρ◦f : A→ A is complete. Hence, an abstract domain ρ ∈ uco(C) is
defined to be complete for f iff ρ◦f = ρ◦f ◦ρ holds. This simple observation makes
completeness an abstract domain property, namely an intrinsic characteristic of the
abstract domain. It is also worth recalling that, by a well-known result [Cousot and
Cousot 1979, Theorem 7.1.0.4], complete abstract domains are “fixpoint complete”
as well, i.e., if ρ is complete for f then ρ(lfp(f)) = lfp(ρ ◦ f), while the converse, in
general, does not hold.

Giacobazzi et al. [2000] gave a constructive characterization of complete abstract
domains, under the assumption of dealing with Scott-continuous concrete functions.
This result allows to systematically derive complete abstract domains from non-
complete ones by minimal refinements. The idea for refining an abstract domain
A is to build the greatest (i.e., most abstract) domain in uco(C) which includes A
and is complete for a set F of (continuous) functions, i.e., for each function in F .
Given a set of continuous functions F ⊆ C c−→C, Giacobazzi et al. [2000] define
the map RF : uco(C)→ uco(C) as follows:

RF (ρ) def= M(
⋃

f∈F,a∈ρ

max({x ∈ C | f(x) ≤ a})).

Theorem 2.1. [Giacobazzi et al. 2000] A domain ρ ∈ uco(C) is complete for F
iff ρ v RF (ρ).

As a consequence, the most abstract domain which includes ρ and which is complete
for F is gfp(λη.ρuRF (η)). This domain is called the complete shell of ρ for F . This
result provides a constructive characterization of the complete shell of an abstract
domain A as the most abstract domain including A and which is closed by maximal
inverse image of any function in F . The complete shell of an abstract domain
A with respect to a set of continuous functions F can therefore be equationally

1For simplicity, we consider unary functions with the same domain and co-domain, since the

extension to the general case is conceptually straightforward.
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characterized as the greatest (viz. most abstract) solution of the following domain
equation:

X = A uRF (X).

2.5 Quantales and linear logic

Quantales originated in the algebraic foundations of the so-called quantum logic,
and later they have been used as algebraic models of Girard’s linear logic [Rosenthal
1990; Yetter 1990]. Informally, quantales can be thought of as a generalization of
Boolean algebras, where the modus ponens law a ∧ (a ⇒ b) ≤ b holds relatively
to a binary operation ⊗ of “conjunction” possibly different from the meet of the
underlying algebraic structure. The basic idea in a quantale is to guarantee that,
for any two objects a and b, there exists a greatest (i.e., most abstract in abstract
interpretation terms) object c such that a⊗ c ≤ b. In the following, we restrict our
attention to commutative quantales, i.e., quantales where the binary operation ⊗
is commutative. More formally, a (commutative) quantale is an algebra 〈C≤,⊗〉
such that:

—〈C,≤,∨,∧,>,⊥〉 is a complete lattice;
—⊗ : C × C → C is a commutative and associative operation, i.e., a ⊗ b = b ⊗ a

and (a⊗ b)⊗ c = a⊗ (b⊗ c), for any a, b, c ∈ C;
—a⊗ (

∨
i∈I bi) =

∨
i∈I(a⊗ bi), for any a ∈ C and {bi}i∈I ⊆ C.

In other words, a quantale is a complete lattice endowed with a commutative
and associative “product” ⊗ which distributes over arbitrary lub’s. Common ex-
amples of quantales are complete Boolean algebras, which become quantales by
considering as ⊗ their meet operation. In particular, for any set S, the alge-
bra 〈℘(S)⊆,

⋂
〉 is a quantale. Also, given a commutative and associative oper-

ation · : A × A → A, a further basic example of quantale is 〈℘(S)⊆,⊗〉, where
X ⊗ Y def=

⋃
{x · y | x ∈ X, y ∈ Y } is the lifting of the operation · to sets. The fun-

damental property of quantales is that, for any a ∈ C, the function λx.a⊗ x has a
right adjoint, denoted by λx.a( x. This is equivalent to say that one can define a
binary operation(: C×C → C such that, for all a, b, c ∈ C, the following property
holds:

a⊗ b ≤ c ⇐⇒ b ≤ a( c.

This is a straight consequence of the fact that, for all a ∈ C, λx.a⊗ x is additive,
and therefore, it has a unique right adjoint λx.a( x giving rise to a GC. As usual
for GCs, the right adjoint (: C × C → C is defined as follows:

a( c
def=
∨
{b ∈ C | a⊗ b ≤ c}.

A quantale 〈C≤,⊗〉 is called unital if there exists an object 1 ∈ C, called unit, such
that 1 ⊗ a = a = a ⊗ 1, for all a ∈ C. 〈℘(S)⊆,

⋂
〉 is a trivial example of unital,

commutative quantale, where S is the unit.
From a logical point of view, it is well known that quantales turn out to be

models of (commutative) linear logic [Rosenthal 1990; Yetter 1990], where the linear
implication is interpreted as the operation (. The next proposition summarizes
the basic properties of linear implication (see [Rosenthal 1990]).
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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Proposition 2.2. Let 〈C≤,⊗〉 be a unital, commutative quantale with unit 1,
{xi}i∈I ⊆ C and a, b, c ∈ C.

(i) a⊗ (a( c) ≤ c (ii) a( (b( c) = (b⊗ a)( c

(iii) a( (
∧
i∈I

xi) =
∧
i∈I

(a( xi) (iv) (
∨
i∈I

xi)( c =
∧
i∈I

(xi( c)

(v) a( (b( c) = b( (a( c) (vi) 1( a = a

(vii) 1( 1 = 1 (viii) a⊗ (a( a) = a

(ix) c ≤ (c( a)( a (x) ((c( a)( a)( a = c( a

(xi) if b ≤ c then a⊗ b ≤ a⊗ c (xii) if a ≤ b then b( c ≤ a( c

In particular, from the above properties, it is easy to check that for all a ∈ C,
λx.(x( a)( a ∈ uco(C).

3. COMPLETENESS IN LOGICAL FORM

In this section we provide a linear logic-based characterization of complete ab-
stract interpretations of quantales. Let 〈C≤,⊗〉 be a unital, commutative quantale
playing the role of concrete interpretation, that is, C is the concrete domain and
⊗ : C × C → C is the concrete semantic operation. Let ρ ∈ uco(C) be an abstract
domain. Recall that ρ is complete for ⊗ when for all concrete objects x, y ∈ C,
ρ(ρ(x)⊗ ρ(y)) = ρ(x⊗ y). This can be more compactly expressed by the equation
ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗. Given any η ∈ uco(C), we define the following set of unary
additive functions Fη ⊆ C a−→C:

Fη
def= {λx. x⊗ y | y ∈ η}.

In particular, Fid will be also denoted by FC . It turns out that completeness of ρ
for ⊗ is equivalent to completeness of ρ for FC .

Lemma 3.1. Let 〈C≤,⊗〉 be a commutative quantale and ρ ∈ uco(C). The fol-
lowing are equivalent:

(i) ρ is complete for ⊗;

(ii) ρ ◦ ⊗ ◦ 〈ρ, id〉 = ρ ◦ ⊗;

(iii) ρ is complete for FC .

Proof. We first show (i) ⇔ (ii). Assume that ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗. Then, by
monotonicity and extensivity of ρ, we get ρ◦⊗ v ρ◦⊗◦〈ρ, id〉 v ρ◦⊗◦〈ρ, ρ〉 = ρ◦⊗.
On the other hand, assume that ρ ◦ ⊗ ◦ 〈ρ, id〉 = ρ ◦ ⊗. By monotonicity and
extensivity of ρ, ρ ◦⊗ v ρ ◦⊗◦ 〈ρ, ρ〉 = ρ ◦⊗◦ 〈ρ, id〉 ◦ 〈id, ρ〉 = ρ ◦⊗◦ 〈id, ρ〉 = (by
commutativity of ⊗) = ρ ◦ ⊗ ◦ 〈ρ, id〉 = ρ ◦ ⊗.
Thus, ρ is complete for ⊗ iff ∀x, y ∈ C, ρ(ρ(x)⊗y) = ρ(x⊗y), and this is equivalent
to state that ρ is complete for the set of unary functions FC = {λx.x⊗ y | y ∈ C},
which concludes the proof.

Corollary 3.2. Let 〈C≤,⊗〉 be a commutative quantale and ρ ∈ uco(C). The
complete shell of ρ for ⊗ is gfp(λη.ρ uRFC (η)).

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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Proof. By Lemma 3.1, the complete shell of ρ for ⊗ coincides with the complete
shell of ρ for FC . Each function in FC is additive, and therefore continuous. Thus,
by Theorem 2.1, the complete shell of ρ for ⊗ is gfp(λη.ρ uRFC (η)).

Thus, the complete shell of any domain ρ for ⊗ can be constructively obtained
by iterating the operator RFC . Our aim is to show that this operator and, more
generally, the family of operators RFη , for any η ∈ uco(C), can all be characterized
in terms of sets of linear implications. Let us define a binary operator on abstract
domains

∧
( : uco(C)×uco(C)→ uco(C) by lifting linear implication( to domains

as follows: For any A,B ∈ uco(C), A
∧
(B is the most abstract domain containing

all the linear implications from A to B:

A
∧
(B

def=M({a( b ∈ C | a ∈ A, b ∈ B}).

Theorem 3.3. Let 〈C≤,⊗〉 be a unital, commutative quantale. For any ρ, η ∈
uco(C), RFη (ρ) = η

∧
(ρ.

Proof.

RFη (ρ) = [ by definition of RFη ]
M(∪f∈Fη,a∈ρmax({x ∈ C | f(x) ≤ a})) = [ by definition of Fη ]
M(∪y∈η,a∈ρmax({x ∈ C | x⊗ y ≤ a})) = [ by commutativity of ⊗ ]
M(∪y∈η,a∈ρmax({x ∈ C | y ⊗ x ≤ a})) = [ by definition of ( ]
M(∪y∈η,a∈ρmax({x ∈ C | x ≤ y( a})) =

M(∪y∈η,a∈ρ{y( a}) =
η
∧
(ρ.

The following basic properties of
∧
( follow directly from the corresponding prop-

erties of the linear implication in quantales.

Proposition 3.4. For all A ∈ uco(C) and {Bi}i∈I ⊆ uco(C), we have:

(i) A
∧
((

d
i∈I Bi) =

d
i∈I(A

∧
(Bi);

(ii) A
∧
(>uco(C) = >uco(C);

(iii) λX.A
∧
(X is monotone;

(iv) C
∧
(A v A;

(v) C
∧
(A = C

∧
((C

∧
(A).

Proof. Points (i), (ii) and (iii) are straightforward.
(iv): By Prop. 2.2 (vi), for all a ∈ A it holds 1 ( a = a. Since 1 ∈ C, it follows
that a = 1( a ∈ C ∧

(A, and therefore C
∧
(A v A.

(v): By point (iv), C
∧
(A v A, and therefore, by point (iii), C

∧
((C

∧
(A) v C ∧

(A.
For the other inequality, consider an element in {c( a ∈ C | c ∈ C, a ∈ C ∧

(A}.
By definition, such an element can be written as follows: c(

∧
i∈I(di ( ai), for

suitable c, di ∈ C, and ai ∈ A, for all i ∈ I, where I is a suitable set of indexes.
Then,

c(
∧
i∈I(di( ai) =

∧
i∈I(c( (di( ai)) [ by Prop. 2.2 (iii) ]

=
∧
i∈I((di ⊗ c)( ai) [ by Prop. 2.2 (ii) ]
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Since, for all i ∈ I, di ⊗ c ∈ C and ai ∈ A, (di ⊗ c) ( ai ∈ C
∧
(A. Then, by

monotonicity of the Moore-closure, we get C
∧
(A v C ∧

((C
∧
(A).

It is worth noting that, by points (iv) and (v) above, the monotone operator
λX.C

∧
(X : uco(C) → uco(C) is reductive and idempotent, and therefore it is

a lower closure operator on uco(C). Also, it is important to note that in general A
and A

∧
(A are incomparable abstract domains.

Example 3.5. Consider the complete lattice of integer intervals Int defined as
follows [Cousot and Cousot 1977]:

Int = {[a, b] | a, b ∈ Z, a ≤ b} ∪ {(−∞, b] | b ∈ Z} ∪ {[a,+∞) | a ∈ Z} ∪ {Z} ∪ {∅},

ordered by set inclusion. Let Msign = {Z, [−m,−1], [1,m],∅}, with m ≥ 1, be an
abstraction of Int combining sign and “maxint” information. For finite intervals,
let us define [a, b]⊕[a′, b′] = [a+a′, b+b′], while ⊕ is extended to infinite (and empty)
intervals in the most natural way (for example, (−∞, b]⊕ [a′, b′] = (−∞, b+ b′] and
∅ ⊕ [a, b] = ∅). It is easy to check that 〈Int⊆,⊕〉 is a commutative and unital
quantale where 1 = [0, 0] = {0}. It turns out that

Msign
∧
(Msign = {Z, {m+ 1}, {−(m+ 1)}, {0},∅}.

In fact, we have that [1,m] ( [1,m] = {0} = [−m,−1] ( [−m,−1], [1,m] (
[−m,−1] = {−(m + 1)} and [−m,−1] ( [1,m] = {m + 1}. Thus, Msign 6⊆
Msign

∧
(Msign and Msign

∧
(Msign 6⊆ Msign. 2

The following result shows that the complete shell of an abstract domain A for ⊗
is given by all the linear implications from the concrete domain to A. This provides
a first representation result for objects of complete abstractions of quantales.

Theorem 3.6. Let 〈C≤,⊗〉 be a unital, commutative quantale and A ∈ uco(C).
The complete shell of A for ⊗ is C

∧
(A.

Proof. By Corollary 3.2, the complete shell of A for ⊗ is gfp(λX.AuRFC (X)),
and, by Theorem 3.3, this is gfp(λX.A u (C

∧
(X)). Let us show that C

∧
(A =

gfp(λX.Au(C
∧
(X)). First, by Proposition 3.4 (iv) and (v), we have that C

∧
(A =

A u (C
∧
(A) = A u (C

∧
((C

∧
(A)). Moreover, if X is a fixpoint of λX.Au(C

∧
(X)

then X v A and X v C
∧
(X, and therefore by right monotonicity of

∧
( (cf.

Proposition 3.4 (iii)), X v C
∧
(X v C

∧
(A. Thus, C

∧
(A actually is the greatest

fixpoint of λX.A u C ∧
(X.

The relevance of this result stems from the fact that, in the considered case of
concrete quantales, the fixpoint construction of the complete shell of an abstract
domain converges in two steps, and this provides a clean logical characterization for
the objects of the complete shell in terms of linear implications. Furthermore, the
following result yields an explicit logical characterization for the abstraction map
associated with that complete shell.

Theorem 3.7. Let 〈C≤,⊗〉 be a unital, commutative quantale and A ∈ uco(C).
Let ρ ∈ uco(C) be the uco associated with C

∧
(A. Then, for all c ∈ C,

ρ(c) =
∧
a∈A

(c( a)( a.
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Proof. Since A =
d
a∈A {>C , a}, by Proposition 3.4 (i), we have that C

∧
(A =d

a∈A C
∧
({>C , a}. Let us show that the closure operator ρa ∈ uco(C) associated

with C
∧
({>C , a} is ρa = λc.(c( a)( a, i.e., by Theorem 3.6, ρa is the complete

shell of {>C , a} for ⊗. Then, the thesis is a straight consequence, since, by defini-
tion, for any c ∈ C, ρ(c) =

∧
a∈A ρa(c) =

∧
a∈A(c ( a) ( a. We first show that

ρa is complete for ⊗. By Lemma 3.1, it is enough to show that for any x, y ∈ C,
ρa(ρa(x)⊗ y) = ρa(x⊗ y). We prove that ρa(x)⊗ y ≤ ρa(x⊗ y), since this implies
ρa(ρa(x) ⊗ y) ≤ ρa(x ⊗ y) and the other inequality always holds. We have that
y ⊗ (y ( (x ( a)) ≤ x ( a, and therefore y ⊗ (y ( (x ( a)) ⊗ ((x ( a) (
a) ≤ (x ( a) ⊗ ((x ( a) ( a) ≤ a. As a consequence, we have the following
inequalities:

y ⊗ (y( (x( a))⊗ ((x( a)( a) ≤ a
y ⊗ ((x⊗ y)( a)⊗ ((x( a)( a) ≤ a
y ⊗ ((x( a)( a) ≤ ((x⊗ y)( a)( a
y ⊗ ρa(x) ≤ ρa(x⊗ y).

Thus, ρa is complete for⊗. Then, in order to conclude, we prove that ρa is the great-
est domain complete for ⊗ which contains the object a. Suppose, by contradiction,
that there exists η ∈ uco(C) such that η(a) = a, η is complete for ⊗ and ρa @ η.
Therefore, there exists c ∈ C such that η(c) > ρa(c), that is η(c) > (c( a)( a.
Then, η(c)⊗ (c( a) 6≤ a, otherwise we would get η(c) ≤ (c( a)( a, which is a
contradiction. As a consequence, η(η(c)⊗ η(c( a)) 6≤ a. But, by completeness of
η, η(η(c) ⊗ η(c ( a)) = η(c ⊗ (c ( a)) ≤ η(a) = a, and this is the contradiction
which closes the proof.

A weaker form of completeness can be stated for binary operations in quantales.
In this case we require that no loss of precision is accumulated by approximating
one argument only.

Definition 3.8. Let 〈C≤,⊗〉 be a quantale. An abstract domain ρ ∈ uco(C) is
weak-complete for ⊗ when: if either x ∈ ρ or y ∈ ρ then ρ(ρ(x)⊗ ρ(y)) = ρ(x⊗ y).

Weak-completeness is equivalent to require that ρ satisfies the following equalities:

ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗ ◦ 〈ρ, id〉 = ρ ◦ ⊗ ◦ 〈id, ρ〉.

If in addition 〈C≤,⊗〉 is commutative, this last condition is equivalent to the fol-
lowing single equation:

ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗ ◦ 〈ρ, id〉. (1)

It is worth pointing out that this is actually a weakening of standard completeness,
i.e., any ρ complete for ⊗ is weak-complete for ⊗ as well. The converse clearly
does not hold in general. The following result shows that weak-completeness can
be equivalently defined in a n-ary formulation.

Lemma 3.9. Let ρ ∈ uco(C). Then ρ is weak-complete iff for all n > 1 and
c1, .., cn ∈ C, ρ(ρ(c1)⊗ . . .⊗ ρ(cn−1)⊗ ρ(cn)) = ρ(ρ(c1)⊗ . . .⊗ ρ(cn−1)⊗ cn).

Proof. The “if” direction is obvious. On the other hand, the proof is by induc-
tion on n.
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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(n = 2) by definition.
(n > 2) follows by Eq. (1):

ρ(ρ(c1)⊗ ρ(c2)⊗ . . .⊗ ρ(cn−1)⊗ ρ(cn)) = [by Eq. (1)]
ρ(ρ(c1)⊗ ρ(ρ(c2)⊗ . . .⊗ ρ(cn−1)⊗ ρ(cn))) = [by inductive hypothesis]
ρ(ρ(c1)⊗ ρ(ρ(c2)⊗ . . .⊗ ρ(cn−1)⊗ cn)) = [by Eq. (1)]
ρ(ρ(c1)⊗ ρ(c2)⊗ . . .⊗ ρ(cn−1)⊗ cn).

Our interest in weak-complete abstract domains is related to the typical abstract
computation in logic program analysis, where the current abstract store is unified
against the abstraction of a program clause. This implies that if the abstract store
is iteratively computed, e.g. in the semantics of recursive predicates, then weak-
completeness for unification ensures that no loss of precision is accumulated by
approximating the input store. For a given abstract domain A ∈ uco(C), we are
therefore interested in characterizing the most abstract domain ρ ∈ uco(C) which
is more concrete than A and satisfies Equation (1). This domain, when it exists,
is called the weak-complete shell of A for ⊗. Weak-completeness problems can be
solved by exploiting the same technique used for completeness, i.e., by resorting to
a recursive abstract domain equation involving linear implication. The next result
gives a recursive characterization of the solutions of Equation (1).

Theorem 3.10. Let 〈C≤,⊗〉 be a unital, commutative quantale and ρ ∈ uco(C).
The following are equivalent.

(i) ρ is weak-complete;
(ii) ρ is complete for Fρ = {λy.x⊗ y | x ∈ ρ};
(iii) ρ = ρ u (ρ

∧
(ρ).

Proof. ρ ◦ ⊗ ◦ 〈ρ, ρ〉 = ρ ◦ ⊗ ◦ 〈ρ, id〉 holds iff for all x ∈ ρ and y ∈ C it
holds ρ(x ⊗ ρ(y)) = ρ(x ⊗ y), that is to say that ρ is complete for the set of
unary functions Fρ = {λy.x⊗ y | x ∈ ρ}. By Theorem 2.1, ρ is complete for Fρ
iff ρ v RFρ(ρ). By Theorem 3.3, this is equivalent to say that ρ v ρ

∧
(ρ, and

therefore ρ = ρ u (ρ
∧
(ρ).

Corollary 3.11. Let 〈C≤,⊗〉 be a unital, commutative quantale and A ∈
uco(C). The weak-complete shell of A for ⊗ is gfp(λX.A uX u (X

∧
(X)).

Proof. Since the operator λX.X
∧
(X is clearly monotone2, from Theorem 3.10

it directly follows that the most abstract domain which includes A and is weak-
complete for ⊗ is given by gfp(λX.A uX u (X

∧
(X)).

Thus, the weak-complete shell of a domain A ∈ uco(C) is exactly the greatest
solution in uco(C) of the following recursive abstract domain equation:

X = A uX u (X
∧
(X). (2)

As a consequence of Theorem 3.10, we also show that weak-complete closures
preserve the structure of unital commutative quantales.

2It is worth noting that, even if RFρ = λη.ρ
∧
(η is co-additive for any ρ ∈ uco(C), this does not

imply that the operator λη.η
∧
(η is co-additive as well. This is a consequence of the fact that the

set of functions Fρ for which we want to be complete, changes at each iteration.
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Corollary 3.12. If 〈C≤,⊗〉 is a unital commutative quantale with unit 1 and
ρ ∈ uco(C) is weak-complete then 〈ρ(C)≤, ρ ◦ ⊗〉 is a unital commutative quantale
where the unit is ρ(1).

Proof. The abstract operation ρ ◦ ⊗ is clearly commutative by definition, and
associative by weak-completeness. In fact, given x, y, z ∈ ρ(C) it holds that ρ(x⊗
ρ(y⊗z)) = ρ(x⊗(y⊗z)) = ρ((x⊗y)⊗z) = ρ(ρ(x⊗y)⊗z). We know that the lub ∨ρ in
the complete lattice ρ(C)≤ is as follows: for Y ⊆ ρ(C), ∨ρY = ρ(∨Y ). Let x ∈ ρ(C)
and Y ⊆ ρ(C): we have therefore to show that ρ(x⊗(∨ρY )) = ∨ρ{ρ(x⊗y) | y ∈ Y }.
In fact, by weak-completeness of ρ, we have that:

ρ(x⊗ (∨ρY )) = ρ(ρ(x)⊗ ρ(∨Y ))
= ρ(ρ(x)⊗ (∨Y ))
= ρ(∨y∈Y ρ(x)⊗ y)
= ∨ρ{ρ(x⊗ y) | y ∈ Y }.

It remains to check that ρ(1) is the unit. By monotonicity, since 1 ≤ ρ(1), it holds
that a = 1 ⊗ a ≤ ρ(1) ⊗ a. Moreover, since 1 ≤ a ( a, it follows that ρ(1) ≤
ρ(a( a) = a( a, where the last equality follows from the weak-completeness of
ρ.

4. CHARACTERIZING CONDENSING ABSTRACT DOMAINS

The first attempt to give a formal setting to the notion of condensing procedures
introduced by Jacobs and Langen [1992] was made by Marriott and Søndergaard
[1993]. In that work, Marriott and Søndergaard [1993] consider abstract domains
which are downward-closed : X ∈ uco(℘(Sub)⊆) is downward-closed if for any Φ ∈ X
and φ ∈ Φ, any instance of φ belongs to Φ. For a downward-closed domain X,
it turns out that the glb of X, namely set intersection, actually plays the role of
abstract unification. This allows to simplify the definition of condensing procedures,
making condensing a property of the abstract semantics with respect to unification.
Let F : Program → Query → ℘(Sub) → ℘(Sub) be a query-directed semantics,
where FP,Q(Φ) is the semantics of a query Q w.r.t. the program P for a given set
Φ of initial substitutions for Q. A domain X ∈ uco(℘(Sub)) is called condensing
in [Marriott and Søndergaard 1993] for the query-directed semantics F if for any
program P , query Q, and φ, φ′ ∈ X, the following equation holds:

FXP,Q(φ ∧ φ′) = φ ∧ FXP,Q(φ′)

where FXP,Q : X → X is the abstract semantics induced by the abstraction X from
the concrete semantics FP,Q : ℘(Sub) → ℘(Sub). As usual, the induced abstract
semantics FXP,Q is defined simply by replacing each basic operation on ℘(Sub) in-
volved in the definition of FP,Q, namely union of sets of substitutions, unification
and variable projection, with their corresponding best correct approximations on X.
More recently, Giacobazzi and Scozzari [1998] gave a characterization of downward-
closed condensing abstract domains as so-called Heyting-closed abstract domains.
Complete Heyting algebras are particular quantales where the linear implication
coincides precisely with the intuitionistic implication, i.e. the quantale multiplica-
tion is the meet operation. If ℘↓(Sub) denotes the set of downward closed sets of
substitutions then it is well known that 〈℘↓(Sub)⊆,∩〉 is a quantale which is a com-
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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plete Heyting algebra. Thus, the construction in [Giacobazzi and Scozzari 1998] is
not applicable to generic non-downward closed abstractions of ℘(Sub)⊆.

Both [Marriott and Søndergaard 1993] and [Giacobazzi and Scozzari 1998] con-
structions can be generalized to arbitrary abstractions of a complete lattice. The
following definition generalizes the notion of condensing semantics to an arbitrary
semantic operator on any complete lattice.

Definition 4.1. Let f : C → C be a function on a complete lattice C and let
⊗ : C × C → C be a binary commutative and associative operation. We say that
f is condensing for ⊗ if for all a, b ∈ C, f(a⊗ b) = a⊗ f(b).

The following characterization of condensing semantics on unital quantales is im-
portant although easy.

Proposition 4.2. Let 〈C,⊗〉 be a unital commutative quantale with unit 1 and
let f : C −→ C. Then, f is condensing for ⊗ if and only if for any a ∈ C,
f(a) = a⊗ f(1).

Proof. One implication is obvious. Now assume that for any a ∈ C, it holds
that f(a) = a⊗f(1). Let b ∈ C. Then, f(a⊗ b) = (a⊗ b)⊗f(1) = a⊗ (b⊗f(1)) =
a⊗ f(b).

It is then natural to apply this simple idea to logic program semantics defined
on the unital, commutative quantale 〈℘(Sub)⊆,⊗〉, where 〈℘(Sub),⊆〉 is a complete
lattice and ⊗ : ℘(Sub) × ℘(Sub) → ℘(Sub) is the lifting of unification to sets of
substitutions, namely:

X ⊗ Y def= {mgu(θ, δ) | θ ∈ X, δ ∈ Y, θ and δ unify}.

As observed in Section 2.5, 〈℘(Sub)⊆,⊗〉 is a unital, commutative quantale, where
1 = {ε} ∈ ℘(Sub) is the unit. Thus, the above simple result states that for a logic
program semantics f on ℘(Sub), f is condensing for unification ⊗ if and only if the
semantics f(Φ) from a given initial store Φ ∈ ℘(Sub) can be fully reconstructed by
unification from Φ and f(1), namely the semantics from the most general store {ε}.

In the following, we will slightly abuse the notation by applying the operation ⊗
also to single substitutions: in particular, when we will use the notation θ ⊗ δ we
will mean that θ and δ unify.

4.1 Concrete query-directed semantics

We consider a core logic programming language computing substitutions. We as-
sume programs as (finite) sets of procedure declarations, where each procedure is
declared by exactly one clause of the form p(x̄) ← A. This assumption simplifies
technically our approach: With each predicate name p a single clause is allowed in
a program. The non-deterministic choice in the definition of a predicate is encoded
by allowing disjunction (denoted by

∨
) in clause-bodies. The following grammar

defines the syntax of programs P and agents (i.e., clause-bodies) A, where θ ∈ Sub.

Program P ::= ∅ | p(x̄)← A | P.P
Agent A ::= θ | p(x̄) | A⊗A |

∨n
i=1Ai

The standard semantics of our language is defined by the query-directed function
SA : Sub→ ℘(Sub), where A is any agent, presented as a set of recursive equations
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inductively defined on program’s syntax specifying the forward SLD operational
semantics. Let P be a program and σ ∈ Sub (in order to simplify the notation,
here and in the following we omit the subscript P denoting the program):

Sθ(σ) = θ ⊗ σ
SA1⊗A2(σ) = SA1(σ)⊗ SA2(σ)
S∨n

i=1 Ai
(σ) =

⋃n
i=1 SAi(σ)

Sp(x̄)(σ) = πV (SA(σ))
where p(x̄)← A≪V P
and V = x̄ ∪ dom(σ).

(3)

In this definition ≪V selects the renamed clause p(x̄) ← A from P where vari-
ables in vars(A) \ x̄ are renamed apart from V = x̄ ∪ dom(σ). It is clear that
condensation for this semantics S w.r.t. unification ⊗ corresponds to ask that the
well known lifting lemma for SLD resolution holds [Apt 1990, Lemma 3.19]. This
is clearly the case being our semantics an equational presentation of the standard
SLD operational semantics of logic programs.

As usual in abstract interpretation [Cousot and Cousot 1977], the abstract objects
in an abstract domain represent sets of substitutions. This means that the concrete
standard semantics (3) needs to be lifted to sets of substitutions, namely to the so-
called collecting semantics. It turns out that this is not a straightforward extension
of the above standard semantics (3), since we obviously need that the concrete
collecting semantics, as well as the standard one, is condensing for unification. The
forward collecting semantics is defined by the following query-directed function
SA : ℘(Sub) → ℘(Sub) which is inductively defined on the syntax of A for any
Φ ∈ ℘(Sub) as follows (P denotes the program):

Sθ(Φ) = θ ⊗ Φ
SA1⊗A2(Φ) = SA1(Φ)⊗ SA2(Φ( Φ)
S∨n

i=1 Ai
(Φ) =

⋃n
i=1 SAi(Φ)

Sp(x̄)(Φ) = πV (SA(Φ))
where p(x̄)← A≪V P
and V = x̄ ∪ dom(Φ).

(4)

The forward concrete semantics of a logic program P for the query p(x̄) and initial
call set Φ is therefore Sp(x̄)(Φ). The key point in the above collecting semantics
definition is the linear object Φ( Φ in the second equation. This construction is
motivated by the fact that the simple lifting of the second equation of the standard
semantics to the equation SA1⊗A2(Φ) = SA1(Φ)⊗ SA2(Φ) would lead us to a non-
condensing semantics w.r.t. unification. In fact, consider for instance the following
trivial program {p(x̄)← θ1 ⊗ θ2}. In this case, for any Φ ∈ ℘(Sub) we would have:

Sp(x̄)(Φ) = Sθ1(Φ)⊗ Sθ2(Φ)
= (θ1 ⊗ Φ)⊗ (θ2 ⊗ Φ)
= θ1 ⊗ θ2 ⊗ Φ⊗ Φ

Clearly, if Φ contains more than one substitution then θ1 ⊗ θ2 ⊗ Φ ⊗ Φ may well
contain substitutions which are not computed by SLD resolution, namely those
substitutions coming from the combination of unifications in Φ ⊗ Φ. This would
make the collecting semantics noncondensing: Sp(x̄)(Φ) 6= Φ ⊗ Sp(x̄)({ε}) = θ1 ⊗
θ2⊗Φ. A number of semantic definitions might solve this problem, e.g. by defining
SA1⊗A2(Φ) = SA1(Φ) ⊗ SA2({ε}), because Φ ⊗ {ε} = Φ. However, the largest set
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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X ∈ ℘(Sub) such that Φ ⊗ X = Φ is, by definition of linear implication, exactly
Φ ( Φ. The resulting definition (4) is an intensional collecting and condensing
semantics for computed answer substitutions (this is simple to check and we leave
it to the reader) presented in a recursive equational form.

As a simple example, consider P = p(x)← {x/0}∨({x/f(k), y/k}⊗p(y)). Then,

Sp(x)({ε}) = πx(S{x/0}∨({x/f(k),y/k}⊗p(y))({ε}))
= πx({x/0} ∪ S{x/f(k),y/k}⊗p(y)({ε}))
= πx({x/0} ∪ (S{x/f(k),y/k}({ε})⊗ Sp(y)({ε})))
= πx({x/0} ∪ ({x/f(k), y/k} ⊗ Sp(y)({ε}))).

Obviously, the most abstract solution for Sp(x)({ε}) is {{x/f i(0)} ∈ Sub | i ≥ 0}.

4.2 Induced abstract semantics

Following a standard scheme (as e.g. in [Marriott and Søndergaard 1993; Marriot
et al. 1994]), for any abstract domain ρ ∈ uco(℘(Sub)), the above collecting se-
mantics definition S induces a corresponding abstract semantics Sρ on ρ obtained
from S by replacing the concrete operations involved in the definition of S, namely
set-union, unification ⊗, projection π and linear implication (, with their corre-
sponding best correct approximations on ρ.

Thus, for any agent A and abstract set of substitutions Φ ∈ ρ, the induced
abstract semantics SρA : ρ→ ρ is inductively defined as follows:

Sρθ (Φ) = ρ(θ ⊗ Φ)
SρA1⊗A2

(Φ) = ρ(SρA1
(Φ)⊗ SρA2

(ρ(Φ( Φ)))
Sρ∨n

i=1 Ai
(Φ) = ρ(

⋃n
i=1 S

ρ
Ai

(Φ))

Sρp(x̄)(Φ) = ρ(πV (SρA(Φ)))
where p(x̄)← A≪V P
and V = x̄ ∪ dom(Φ).

It is important to remark that, in each equation above, Sρ actually is recursively
defined as composition of the bca’s induced by the abstraction ρ of the basic concrete
operations

⋃
, ⊗, π and (. The abstract query-directed semantics of a query p(x̄)

in a program P with abstract initial call Φ ∈ ρ is therefore given by Sρp(x̄)(Φ).

4.3 Condensing abstract domains

Since the induced abstract semantics Sρ depends on the abstract domain ρ only,
condensation for the abstract semantics Sρ becomes an abstract domain property.

Definition 4.3. An abstract domain ρ ∈ uco(℘(Sub)) is condensing when, for any
program P and predicate p(x̄), the induced abstract semantics Sρp(x̄) is condensing
w.r.t. ⊗bcaρ = ρ ◦ ⊗, i.e., for all Θ,Φ ∈ ρ, Sρp(x̄)(ρ(Θ⊗ Φ)) = ρ(Θ⊗ Sρp(x̄)(Φ)).

The following result is then a straight consequence of Corollary 3.12 and Propo-
sition 4.2.

Proposition 4.4. Let ρ ∈ uco(℘(Sub)) be weak-complete and let 1ρ = ρ({ε}).
Then, ρ is condensing iff for any Ψ ∈ ρ, Sρp(x̄)(Ψ) = ρ(Ψ⊗ Sρp(x̄)(1

ρ)).

This means that the abstract semantics Sρp(x̄)(Ψ) for the predicate p(x̄) with ini-
tial abstract store Ψ can be equivalently obtained by unifying the substitutions in
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Ψ with the semantics Sρp(x̄)(ρ({ε})) of the same predicate p(x̄) in the most general
abstract store ρ({ε}). This corresponds to the typical way an analysis of a query
in an initial state is derived from a goal-independent condensing analysis: the com-
putations which do not satisfy the given initial state are filtered out by unification
(cf. [Barbuti et al. 1993]).

Example 4.5. Two variables x, y ∈ V are independent for a substitution θ when
vars(θ(x)) ∩ vars(θ(y)) = ∅. Let Ixy be the set of substitutions θ such that x and
y are independent for θ:

Ixy
def= {θ ∈ Sub | vars(θ(x)) ∩ vars(θ(y)) = ∅}.

Let us consider a finite set of variables of interest VI ⊆
fin
V, which are the relevant

variables. The basic abstract domain PShVI for detecting pair-sharing, that is pairs
of variables which may share a common variable, is given by the most abstract
domain which contains all the objects Ixy, for any x, y ∈ VI , with x 6= y:

PShVI
def=M({Ixy | x, y ∈ VI , x 6= y}).

Thus, the closure ρ ∈ uco(℘(Sub)) corresponding to the domain PShVI is defined
as follows: For all Θ ∈ ℘(Sub),

ρ(Θ) def=
⋂
{Ixy | x, y ∈ VI , x 6= y,∀θ ∈ Θ. vars(θ(x)) ∩ vars(θ(y)) = ∅}.

Let P be the following trivial program:

p(X,Y )← {X/a} ∨ {Y/a}

where a is any ground term. For VI = {X,Y } we have that PShVI = {>, IXY },
where > stands for Sub. In this simple case, note that the bca ρ ◦ ⊗ on PShVI of
unification is trivially defined as follows: For all A,B ∈ PShVI , ρ(A⊗B) = >: this is
a consequence of the fact that {X/W,Z/W}⊗{Y/W,Z/W} = {X/W,Y/W,Z/W}
which does not belong to IXY while both {X/W,Z/W} and {Y/W,Z/W} do. If
we compute Sρp(X,Y ) with initial query Φ = > we obtain:

Sρp(X,Y )(>) = ρ(πV(Sρ{X/a}∨{Y/a}(>)))
= ρ(πV(ρ(Sρ{X/a}(>) ∪ Sρ{Y/a}(>))))
= ρ(πV(ρ(ρ({X/a} ⊗ >) ∪ ρ({Y/a} ⊗ >))))
= ρ(πV(ρ(IXY ∪ IXY )))
= ρ(πV(ρ(IXY )))
= IXY .

Therefore, since ρ(IXY ⊗>) = >, we have that:

Sρp(X,Y )(ρ(IXY ⊗>)) = Sρp(X,Y )(>) = IXY

ρ(IXY ⊗ Sρp(X,Y )(>)) = ρ(IXY ⊗ IXY ) = >.

As a consequence, the domain ρ is not condensing. Note that the variable projection
does not act, i.e. it acts as the identity, in this example.
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4.4 Condensing domains in logical form

Basically, the abstract semantics of a predicate p in a program P is obtained by iter-
ating the abstract unification of a concrete substitution θ in the body of some clause
in P against the result of the previous computation, which is the current abstract
substitution. Indeed, the fixpoint of this iterated procedure gives the semantics of
the predicate p. When an abstract domain is condensing, i.e. the corresponding
induced abstract semantics is condensing for the abstract unification, the abstract
semantics of a specific query p(x̄)θ can be obtained with no loss of precision by
abstract unification from the abstract semantics of p(x̄), i.e., from the semantics of
the most general query. This means that it is possible to propagate the informa-
tion carried on by the semantics of a most general query back to the semantics of
any query Q, without recomputing the semantics of that query Q, but simply by
a unification operation. This corresponds to ask that a lifting-lemma like property
holds for abstract computations as well as it holds for concrete ones. It should be
clear that completeness for unification is sufficient to ensure condensation, since all
the intermediate abstractions can be removed from the fixpoint computation of the
abstract semantics of each predicate (see also [Schachte 2003]). However, a weaker
form of completeness is enough, by exploiting the observation that one of the two
arguments of unification is always an abstract object. In fact, it turns out that still
no loss of precision is accumulated in the abstract computation when at least one
argument of unification is an abstract object.

In the following we prove that any weak-complete abstract domain A, namely a
solution of the recursive domain equation X = X u (X

∧
(X) (cf. Theorem 3.10),

is condensing and, under additional nonrestrictive hypotheses, condensing abstract
domains are all and only the weak-complete abstract domains. This result shows a
precise connection between completeness in abstract interpretation and the prop-
erty of being condensing and, more importantly, it gives computational relevance
in static program analysis to the notion of weak-completeness. We say that an ab-
stract domain ρ ∈ uco(℘(Sub)) is compatible with π when the abstract projection
distributes over the abstract unification, according to the following definition.

Definition 4.6. An abstract domain ρ ∈ uco(℘(Sub)) is compatible with π if
for all Θ ∈ ℘(Sub) and W ⊆ V, if πW (Θ) = Θ then for all a ∈ ρ it holds that
ρ(πW (ρ(Θ⊗ a))) = ρ(Θ⊗ ρ(πW (a))).

Compatibility with π allows us to get rid of projection when reasoning about con-
densation. Observe that, when ρ is the identity closure, the above definition boils
down to a standard property of projection, namely that for any Θ,Φ ∈ ℘(Sub),
πW (Θ⊗ Φ) = Θ⊗ πW (Φ) whenever πW (Θ) = Θ. Alternatively, one might assume
that ρ is complete for any πW (where W ⊆ V), and therefore this completeness
property can be achieved by exploiting Theorem 2.1 [Giacobazzi et al. 2000].

Theorem 4.7. If ρ ∈ uco(℘(Sub)) is weak-complete and compatible with π then
ρ is condensing.

Proof. For any given program P and agent A, according to Proposition 4.2, it is
sufficient to prove that for any Ψ ∈ ρ, SρA(Ψ) = ρ(Ψ⊗SρA(1ρ)), where 1ρ = ρ({ε}).
This is proved by induction on the structure of A.
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—Base case Sρθ . Since ρ is weak-complete we have that Sρθ (Ψ) = ρ(θ ⊗ Ψ) =
ρ(ρ(Ψ)⊗ (θ ⊗ 1ρ)) = ρ(Ψ⊗ ρ(θ ⊗ 1ρ)) = ρ(Ψ⊗ Sρθ (1ρ)).

—Inductive case SρA1⊗A2
. By weak-completeness, Lemma 3.9 and inductive hy-

pothesis we have that

SρA1⊗A2
(Ψ) =

ρ(SρA1
(Ψ)⊗ SρA2

(ρ(Ψ( Ψ))) = [ by Th. 3.10, Ψ( Ψ ∈ ρ ]
ρ(SρA1

(Ψ)⊗ SρA2
(Ψ( Ψ)) = [ by inductive hypothesis ]

ρ(ρ(Ψ⊗ SρA1
(1ρ))⊗ ρ((Ψ( Ψ)⊗ SρA2

(1ρ))) = [ by weak-completeness ]
ρ(Ψ⊗ SρA1

(1ρ)⊗ ρ((Ψ( Ψ)⊗ SρA2
(1ρ))) = [ since Ψ ∈ ρ ]

ρ(ρ(Ψ)⊗ SρA1
(1ρ)⊗ ρ((Ψ( Ψ)⊗ SρA2

(1ρ))) = [ by weak-completeness ]
ρ(ρ(Ψ)⊗ ρ(SρA1

(1ρ)⊗ ρ((Ψ( Ψ)⊗ SρA2
(1ρ))) = [ since SρA1

(1ρ) ∈ ρ ]
ρ(ρ(Ψ)⊗ ρ(ρ(SρA1

(1ρ))⊗ ρ((Ψ( Ψ)⊗ SρA2
(1ρ))) = [ by weak-completeness ]

ρ(ρ(Ψ)⊗ ρ(ρ(SρA1
(1ρ))⊗ (Ψ( Ψ)⊗ SρA2

(1ρ)) = [ by weak-completeness ]
ρ(ρ(Ψ)⊗ ρ(SρA1

(1ρ))⊗ (Ψ( Ψ)⊗ SρA2
(1ρ)) = [ since Ψ,SρA1

(1ρ) ∈ ρ ]
ρ(Ψ⊗ SρA1

(1ρ)⊗ (Ψ( Ψ)⊗ SρA2
(1ρ)) = [ since Ψ⊗ (Ψ( Ψ) = Ψ ]

ρ(Ψ⊗ SρA1
(1ρ)⊗ SρA2

(1ρ)) = [ since 1ρ( 1ρ = 1ρ ]
ρ(Ψ⊗ SρA1

(1ρ)⊗ SρA2
(1ρ( 1ρ)) = [ since Ψ ∈ ρ ]

ρ(ρ(Ψ)⊗ SρA1
(1ρ)⊗ SρA2

(1ρ( 1ρ)) = [ by weak-completeness ]
ρ(ρ(Ψ)⊗ ρ(SρA1

(1ρ)⊗ SρA2
(1ρ( 1ρ))) = [ by definition ]

ρ(ρ(Ψ)⊗ SρA1⊗A2
(1ρ)) = [ since Ψ ∈ ρ ]

ρ(Ψ⊗ SρA1⊗A2
(1ρ)).

—Inductive case Sρ∨n
i=1 Ai

. Recall that ⊗ is additive and that ρ(
⋃
i∈I ρ(Xi)) =

ρ(
⋃
i∈I Xi). Therefore, by inductive hypothesis and because ρ is weak-complete

we have that
Sρ∨n

i=1 Ai
(Ψ) = ρ(

⋃n
i=1 S

ρ
Ai

(Ψ))
= ρ(

⋃n
i=1 ρ(Ψ⊗ SρAi(1

ρ)))
= ρ(

⋃n
i=1 Ψ⊗ SρAi(1

ρ))
= ρ(Ψ⊗

⋃n
i=1 S

ρ
Ai

(1ρ))
= ρ(Ψ⊗

⋃n
i=1 ρ(SρAi(1

ρ)))
= ρ(Ψ⊗ ρ(

⋃n
i=1 ρ(SρAi(1

ρ))))
= ρ(Ψ⊗ ρ(

⋃n
i=1 S

ρ
Ai

(1ρ)))
= ρ(Ψ⊗ Sρ∨n

i=1 Ai
(1ρ)).

—Inductive case Sρp(x̄). Let p(x̄) ← A ≪V P where V = x̄ ∪ dom(Ψ). Note
that πV (Ψ) = Ψ since dom(Ψ) ⊆ V . Thus, by inductive hypothesis, weak-
completeness and compatibility woth π we have that

Sρp(x̄)(Ψ) = ρ(πV (SρA(Ψ)))
= ρ(πV (ρ(Ψ⊗ SρA(1ρ))))
= ρ(Ψ⊗ ρ(πV (SρA(1ρ))))
= ρ(Ψ⊗ Sρp(x̄)(1

ρ)).

The converse of Theorem 4.7 states that condensing domains are weak-complete
under some additional hypotheses. Let us call an abstract domain ρ ∈ uco(℘(Sub))
finitely generated when for any Φ,Ψ ∈ ρ there exists Θ ⊆

fin
Φ ( Ψ such that

ρ(Θ) = ρ(Φ( Ψ).
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Theorem 4.8. Let ρ ∈ uco(℘(Sub)) be compatible with π and finitely generated.
If ρ is condensing then ρ is weak-complete.

Proof. Let ρ be condensing. In order to prove that ρ is weak-complete, by
Theorem 3.10, we prove that ρ v ρ

∧
(ρ, i.e., that for any Φ,Ψ ∈ ρ, ρ(Φ ( Ψ) =

Φ ( Ψ. Suppose, by contradiction, that there exist some Φ,Ψ ∈ ρ such that
Φ( Ψ ( ρ(Φ( Ψ). We distinguish two cases. Let us first assume that Φ⊗1ρ 6= Φ,
where 1ρ = ρ({ε}). Since {ε} ⊆ 1ρ it follows that Φ ⊗ 1ρ ) Φ. Therefore, if we
consider the trivial program P = {p ← ε} we have that Sρp (Φ) = ρ(πdom(Φ)ρ(ε ⊗
Φ)) = ρ(πdom(Φ)Φ) = ρ(Φ) = Φ. On the other hand, Sρp (1ρ) = ρ(πdom(1ρ)ρ(ε ⊗
1ρ)) = ρ(πdom(1ρ)1

ρ) = ρ(1ρ) = 1ρ, and thus ρ(Φ⊗Sρp (1ρ)) = ρ(Φ⊗1ρ) ⊇ Φ⊗1ρ )
Φ = Sρp (Φ), a contradiction, since ρ is condensing.
Now assume that Φ⊗ 1ρ = Φ. Let us observe that Φ⊗ ρ(Φ( Ψ) 6⊆ Ψ, otherwise
we would have the contradiction ρ(Φ( Ψ) ⊆ Φ( Ψ, and therefore ρ(Φ⊗ ρ(Φ(
Ψ)) 6⊆ Ψ. By hypothesis there exists Θ ⊆

fin
Φ ( Ψ such that ρ(Θ) = ρ(Φ ( Ψ).

Let x̄ = ∪θ∈Θdom(θ) (this is a finite set of variables, since Θ is finite; the order does
not matter) and consider the program P = {p(x̄)←

∨
θ∈Θ θ}. Let V = x̄∪dom(1ρ)

and W = x̄ ∪ dom(Φ). Then, we have that:

ρ(Φ⊗ Sρp(x̄)(1
ρ)) = [ by definition ]

ρ(Φ⊗ ρ(πV Sρ∨
θ∈Θ θ

(1ρ))) = [ by definition ]
ρ(Φ⊗ ρ(πV ρ(

⋃
θ∈Θ S

ρ
θ (1ρ)))) = [ by definition ]

ρ(Φ⊗ ρ(πV ρ(
⋃
θ∈Θ ρ(θ ⊗ 1ρ)))) = [ since ρ is a closure ]

ρ(Φ⊗ ρ(πV ρ(
⋃
θ∈Θ θ ⊗ 1ρ))) =

ρ(Φ⊗ ρ(πV (ρ(Θ⊗ 1ρ)))) ⊇ [ by monotonicity of π ]
ρ(Φ⊗ ρ(πV (Θ⊗ 1ρ)))) ⊇ [ since Θ⊗ 1ρ ⊇ Θ ]

ρ(Φ⊗ ρ(πV Θ)) = [ since πV Θ = Θ ]
ρ(Φ⊗ ρ(Θ)) = [ since ρ(Θ) = ρ(Φ( Ψ) ]

ρ(Φ⊗ ρ(Φ( Ψ)) 6⊆ Ψ.

Moreover we also have that:

Sρp(x̄)(ρ(Φ⊗ 1ρ)) = [ since Φ⊗ 1ρ = Φ ∈ ρ ]
Sρp(x̄)(Φ) = [ by definition ]

ρ(πWSρ∨
θ∈Θ θ

(Φ)) = [ by definition ]
ρ(πW ρ(

⋃
θ∈Θ S

ρ
θ (Φ))) = [ by definition ]

ρ(πW ρ(
⋃
θ∈Θ ρ(θ ⊗ Φ))) = [ by properties of ρ ]

ρ(πW ρ(
⋃
θ∈Θ θ ⊗ Φ)) =

ρ(πW ρ(Θ⊗ Φ)) = [ by compatibility with π ]
ρ(Θ⊗ ρ(πW (Φ))) = [ since W = dom(Φ) ∪ dom(Θ) ]

ρ(Θ⊗ Φ) =
ρ(Φ⊗Θ) ⊆ [ since Θ ⊆ Φ( Ψ ]

ρ(Φ⊗ (Φ( Ψ)) ⊆ [ since Φ⊗ (Φ( Ψ) ⊆ Φ ]
ρ(Ψ) = [ since Ψ ∈ ρ ]

Ψ.

Therefore, we would have that Sρp(x̄)(Φ) 6= ρ(Φ⊗Sρp(x̄)(1
ρ)), that is ρ would not be

condensing, which is a contradiction.
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The above hypothesis of being finitely generated for an abstract domain is not
too restrictive — it is satisfied by most domains used in logic program analysis. For
an abstract domain ρ, this condition states that, for any x, y ∈ ρ, the abstraction in
ρ of any implicational object x( y can be always obtained as abstraction in ρ of
a finite subset of x( y. This allows us, in Theorem 4.8, to construct, for any such
implicational object x ( y, a (finite) program whose abstract semantics is given
by ρ(x ( y). Thus, the key point in order to prove the converse of Theorem 4.7
lies in the fact that any implicational object in ρ

∧
(ρ has to be the semantics of

some well-defined program.
To conclude, the following characterization of condensing domains is therefore

an immediate consequence of Theorems 3.10, 4.7 and 4.8.

Corollary 4.9. Let ρ ∈ uco(℘(Sub)) be compatible with π and finitely gener-
ated. Then, ρ is condensing if and only if ρ = ρ u (ρ

∧
(ρ).

5. FREENESS AND INDEPENDENCE ANALYSIS

We say that a variable x is free in a substitution θ if θ(x) is a variable whenever x ∈
dom(θ). As already said, two variables x and y are independent in a substitution
θ if vars(θ(x)) ∩ vars(θ(y)) = ∅, whenever x, y ∈ dom(θ). Note that these notions
of freeness and independence are well-defined, namely if θ ∼ σ then x is free in θ
iff x is free in σ, and x, y are independent in θ iff x, y are independent in σ. We
are interested in a compound property, namely that a given variable is free and
independent from a fixed set of variables. Given V ⊆ V, we denote by xV the set
of substitutions θ such that the variable x is free in θ and independent from all the
variables in V :

xV
def= {θ ∈ Sub | dom(θ) ⊆ V, x ∈ dom(θ)⇒ θ(x) ∈ V \ (∪v∈dom(θ)r{x}vars(θ(v)))}.

Observe that for any xV , we have that ε ∈ xV . For any finite set of variables V ⊆fin

V, let FV
def=M({xV | x ∈ V }) be the abstract domain for observing this compound

freeness and independence property for the variables in V and let F def= uV⊆
fin
VFV be

the domain for observing the property for any program variable, which is defined as
reduced product of all the FV ’s. For instance, F{x,y} = {>, x{x,y}, y{x,y}, x{x,y} ∩
y{x,y}}, where > stands for Sub. Note that any a ∈ FV can be written as a =
∩v∈W vV , for some (possibly empty) subset W ⊆ V . Let us denote by ρV the
closure operator associated to FV . In the following proof we will exploit the fact
that the best correct approximation of unification on the domain FV is as follows:
Given any W1,W2 ⊆ V , we have that ∩v∈W1vV ⊗ ∩v∈W2vV = ∩v∈W1∩W2vV .

Our goal is to compute the weak-complete shell of the variable-independent do-
main F . We start by computing the weak-complete shell of FV , for any V ⊆fin V.

Lemma 5.1. Let V ⊆fin V. Then, FV u (FV
∧
(FV ) = FV ∪ {∅}.

Proof. We know by Proposition 2.2 that a(
∧
i∈I bi =

∧
i∈I(a( bi). More-

over, observe that a ( > = >. Thus, we only need to compute the implications
from elements of FV to xV for some x ∈ V . We distinguish the following cases.

—> ( xV = {θ ∈ Sub | ∀δ ∈ >. θ ⊗ δ ∈ xV } = {θ ∈ Sub | ↓ θ ⊆ xV } = ∅,
since, for any θ, there always exists an instance of θ such that θ(x) is ground,
and therefore ↓ θ 6⊆ xV .
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—(
⋂
v∈V \{x} vV ) ( xV = {θ ∈ Sub | ∀δ ∈

⋂
v∈V \{x} vV . θ ⊗ δ ∈ xV } = ∅. In

fact, let θ be any substitution and consider δ = {x/t} where t is any ground
instance of θ(x) if x ∈ dom(θ), otherwise t is any ground term. Observe that
δ ∈

⋂
v∈V \{x} vV . Moreover, θ and δ obviously unify but θ⊗δ /∈ xV , and therefore

θ /∈ (
⋂
v∈V \{x} vV )( xV .

—xV ( xV = xV . Since {ε} is the unit and {ε} ⊆ xV , we have that xV (
xV ⊆ xV . To show the other direction, from ρV (xV ⊗ xV ) = xV , it follows that
xV ⊆ xV ( xV simply by definition of linear implication (.

—(
⋂
v∈V vV )( xV = xV . As in the previous case, since {ε} ⊆

⋂
v∈V vV , we have

that
⋂
v∈V vV ( xV ⊆ xV . On the other hand, from ρV ((

⋂
v∈V vV )⊗xV ) = xV ,

it follows that xV ⊆ (
⋂
v∈V vV )( xV .

Now, let W1,W2 ⊆ V such that x /∈ W1 and x ∈ W2. Since
⋂
v∈W1

vV ⊇⋂
v∈Vr{x} vV , by Proposition 2.2 (xii), (

⋂
v∈W1

vV ) ( xV ⊆ (
⋂
v∈Vr{x} vV ) (

xV = (as shown above) = ∅. Moreover, since xV ⊇
⋂
v∈W2

vV ⊇
⋂
v∈V vV , it

follows from Proposition 2.2 (xii) and what has been shown above that xV =
xV ( xV ⊆ (

⋂
v∈W2

vV )( xV ⊆ (
⋂
v∈V vV )( xV = xV . Thus, summing up, we

have that:

—>( xV = ∅,
—(
⋂
v∈W1

vV )( xV = ∅, if x /∈W1,
—(
⋂
v∈W2

vV )( xV = xV , if x ∈W2.

Hence, it turns out that FV u (FV
∧
(FV ) =M(FV ∪ {∅}) = FV ∪ {∅}.

The next result shows that FV u (FV
∧
(FV ) is closed for

∧
(.

Lemma 5.2. Let V ⊆fin V and F∅V
def= FV ∪{∅}. Then, F∅V

∧
(F∅V = F∅V , namely

F∅V is the weak-complete shell of FV .

Proof. By Proposition 2.2 (iii) and Lemma 5.1 we only need to show that for
each A ∈ FV , A( ∅, ∅( A and ∅( ∅ all belong to F∅V . Let us examine these
cases.

—∅( A = ∅( ∅ = >, simply by definition of linear implication (.
—A( ∅ = ∅. We know that ε ∈ A. Therefore, if θ ∈ A( ∅ then we would have

the contradiction θ ⊗ ε = θ ∈ ∅.

Thus, we have that F∅V
∧
(F∅V = F∅V .

Given W ⊆ V we will abuse the notation and write ∅W = {θ ∈ Sub | dom(θ) ⊆
W} and we also write xW when x /∈ W for ∅W . Let us also use the following
notation: F∅ def= uV⊆

fin
V F∅V .

Theorem 5.3. F∅ = ∪V⊆
fin
VF∅V ∪ {∅W | W ⊆

fin
V}. Moreover, F∅ ∧

(F∅ =
F∅, namely F∅ is the weak-complete shell of F .

Proof. First note that, given xA ∈ FA, yB ∈ FB then xA∩B ⊆ xA, simply by
definition of xA. Thus xA ∩ yB ⊇ xA∩B ∩ yA∩B . Moreover, for any θ ∈ xA ∩ yB ,
we have that dom(θ) ⊆ A and dom(θ) ⊆ B, thus dom(θ) ⊆ A ∩ B. Since θ ∈ xA,
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it follows that θ ∈ xA∩B . Thus, xA ∩ yB ⊆ xA∩B ∩ yA∩B , from which we have
that xA ∩ yB = xA∩B ∩ yA∩B . Hence, more in general, ∩i∈IxiAi = ∩i∈Ixi∩j∈IAj and
therefore ∩i∈IxiAi ∈ F∩i∈IAi . This shows that F∅ = ∪V⊆

fin
VF∅V ∪{∅W |W ⊆fin

V}.
We now show that F∅ ∧

(F∅ = F∅. Following the pattern of the previous proofs,
it is enough to consider ∩v∈AvV ∈ FV and yW ∈ FW for some V,W ⊆

fin
V and

A ⊆ V , and to show that ∩v∈AvV ( yW ∈ F∅. We know that ε ∈ ∩v∈AvV , hence
∩v∈AvV ( yW ⊆ yW . Moreover, note that any θ ∈ ∩v∈AvV ( yW must be such
that dom(θ) ⊆ W , otherwise we would have that θ ⊗ ε /∈ yW . We distinguish the
following three cases.
(1) If ∩v∈AvV ⊆ yW then ∩v∈AvV ( yW ⊇ yW ( yW = yW , from which
∩v∈AvV ( yW = yW ∈ FW .
(2) If y /∈ V then it follows that yW ⊗ ∩v∈AvV ⊆ yW , and therefore again we have
that ∩v∈AvV ( yW = yW
(3) Finally assume that both (1) and (2) do not hold, i.e., ∩v∈AvV * yW and y ∈ V .
Since any θ ∈ ∩v∈AvV ( yW is such that dom(θ) ⊆W , then y /∈ A. It follows that
δ = {y/t} ∈ ∩v∈AvV for any ground term t. Thus ∩v∈AvV ( yW = ∅ ∈ F∅.

Corollary 5.4. F is the most abstract domain which is condensing and in-
cludes FV .

Proof. By the above lemmata and Corollary 4.9, it remains to show that F is
finitely generated and compatible with π.

By Theorem 5.3 we need to show that, for any a, b ∈ ρV there exists Θ ⊆
fin

Sub
such that Θ ⊆ a ( b and ρ(Θ) = ρ(a ( b). By Lemma 5.1, we only need to
show that for any A ⊆ V there exists Θ ⊆

fin
Sub such that Θ ⊆

⋂
v∈A vV and

ρ(Θ) =
⋂
v∈A vV . We can choose Θ = {{v/a | v ∈ V \A} ∪ {v/wv | v ∈ A}} where

a is any ground term and all the wv are distinct variables. Moreover, given ∅V we
can choose Θ = {{v/a | v ∈ V }}.

We now show that ρ is compatible with π. As usual, in the following let >
denotes Sub. Let W ⊆ V, a ∈ ρ and Θ ⊆ Sub such that πW (Θ) = Θ. We
assume a /∈ ∅ (otherwise the thesis follows trivially). If |dom(Θ)| = |N|, then by
definition of ρ we have that ρ(Θ) = >. Since ρ is weak-complete, it follows that
ρ(πW (ρ(Θ⊗ a))) = ρ(πW (ρ(ρ(Θ)⊗ a))) = ρ(πW (ρ(>⊗ a))) = > since a 6= ∅. On
the other hand, ρ(Θ ⊗ ρ(πW (a))) = ρ(ρ(Θ) ⊗ ρ(πW (a))) = ρ(> ⊗ ρ(πW (a))) = >
since a 6= ∅.

Now assume that dom(Θ) ⊆
fin
V. By definition of ρ it follows that dom(ρ(Θ)) =

dom(Θ) since Θ ⊆ ∅dom(Θ) ∈ F and dom(∅dom(Θ)) = dom(Θ). Since πW (Θ) =
Θ, it follows that W ⊇ dom(Θ), and therefore πW (ρ(Θ)) = ρ(Θ), from which
ρ(πW (ρ(Θ))) = ρ(Θ).

Since ρ is weak-complete, it is sufficient to show that, for all a, b ∈ ρ and such
that ρ(πW (a)) = a it holds that ρ(πW (ρ(a ⊗ b))) = ρ(a ⊗ ρ(πW (b))). Let W ⊆
V and A,B ⊆ V . First note that ρ(πW (

⋂
v∈A vV )) = ρ(πW∩V (

⋂
v∈A vV )) since

dom(
⋂
v∈A vV ) ⊆ V . Thus, ρ(πW∩V (

⋂
v∈A vV )) =

⋂
v∈A∩W∩V vW∩V by definition

of π. Since A ⊆ V then ρ(πW (
⋂
v∈A vV )) =

⋂
v∈A∩W vW∩V . Moreover, note that

ρ(πW (>)) = > if and only ifW *
fin
V, that is |W | = |N|. In the following we assume

that |W | = |N| (otherwise the thesis is trivially satisfied since π∅(Θ) = {ε}).
We distinguish the following cases:
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—ρ(πW (ρ(>⊗∅))) = ρ(πW (∅)) = ∅ and ρ(>⊗ ρ(πW (∅))) = ρ(>⊗∅) = ∅.
—Assume ρ(πW (>)) = >. If C 6= ∅ then ε ∈ C and ρ(πW (>⊗C)) = ρ(πW (>)) =
> since W 6= ∅ by hypothesis.
Moreover, ρ(>⊗ ρ(πW (C))) = > since ρ(πW (C)) 6= ∅ being C 6= ∅ and W 6= ∅.

—Assume that ρ(πW (∩v∈AvV )) = ∩v∈AvV . Since it holds that ρ(πW (∩v∈AvV )) =
∩v∈A∩W vV ∩W it follows that V ⊆ W . If V = ∅ then ∩v∈AvV = {ε} and
there is nothing to prove. Otherwise, ρ(πW (>)) = >, since W 6= ∅. Therefore
ρ(πW (ρ(∩v∈AvV ⊗>))) = ρ(πW (>)) = >. Moreover, ρ(∩v∈AvV ⊗ ρ(πW (>))) =
ρ(∩v∈AvV ⊗>) = >.

—Assume that ρ(πW (∩v∈AvV )) = ∩v∈AvV . Then, ρ(πW (ρ(∩v∈AvV ⊗∩v∈BvV ))) =
ρ(πW (∩v∈A∩BvV )) = ∩v∈A∩B∩W vV ∩W . Also, ρ(∩v∈AvV ⊗ ρ(πW (∩v∈BvV ))) =
ρ(∩v∈AvV ⊗ ∩v∈B∩W vV ∩W ) = ∩v∈A∩B∩W vV ∩W .

The following simple example shows how the abstract domain F∅ can be used
to detect redundant arguments in a predicate definition.

Example 5.5. Consider the following program:

p(x, u, v)← {x/0} ∨ ({x/f(w), y/w} ⊗ p(y, u, v)).

Let A ≡ {x/0}∨ ({x/f(w), y/w}⊗ p(y, u, v)). Note that both the second and third
arguments of p are redundant. Let ρ be the closure associated to F∅. The abstract
semantics Sρp(x,u,v) for the query ρ({ε}) = {ε} = ∅∅ is given by the following
recursive equation:

Sρp(x,u,v)({ε}) = ρ(π{x,u,v}SρA({ε}))
where A ≡ {x/0} ∨ ({x/f(w), y/w} ⊗ p(y, u, v))

= ρ(π{x,u,v}(ρ(Sρ{x/0}({ε}) ∪ S
ρ
{x/f(w),y/w}⊗p(y,u,v)({ε}))))

= ρ(π{x,u,v}(ρ(ρ({x/0} ⊗ {ε})
∪ρ(Sρ{x/f(w),y/w}({ε})⊗ S

ρ
p(y,u,v)({ε}))))))

= ρ(π{x,u,v}(ρ(∅{x}
∪ρ(ρ({x/f(w), y/w})⊗ Sρp(y,u,v)({ε})))))

= ρ(π{x,u,v}ρ(∅{x} ∪ ρ(∅{x,y} ⊗ Sρp(y,u,v)({ε}))))

The most abstract solution for Sρp(x,u,v)({ε}) of this recursive equation is the ob-
ject ∅{x}, telling that in any computed answer substitution σ for p(x, u, v) in P
it turns out that dom(σ) ⊆ {x}. As an example of condensation, let us now con-
sider the substitution θ = {x/w, u/w} and compute Sρp(x,u,v)(ρ({θ})). Since F∅ is
condensing ρ(ρ({θ})⊗ {ε}) = ρ({θ}) = ∅{x,u}, we have that:

Sρp(x,u,v)(ρ({θ})) = ρ(ρ({θ})⊗ Sρp(x,u,v)({ε})) = ρ(∅{x,u} ⊗∅{x}) = ∅{x,u},

and this shows that the variable v is still free and independent from all the other
variables.

6. CONCLUSION

We have shown a strong link between completeness in quantale-like structures and
condensation of abstract domains for logic program analysis, by providing a char-
acterization of condensing domains as models of a fragment of propositional linear
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logic. The relationship between completeness and reversible logic program analysis
has gained much attention in the last few years. As observed by King and Lu
[2002], the possibility of reusing code in logic programming is often related to the
problem of figuring out how to query a program, and backward analysis allows to
automatically derive the possible modalities in which predicates must be called. As
shown by King and Lu [2002], this property needs condensing abstract domains.
By this observation and from our characterization of condensing abstract domains
in logical form, it seems possible to characterize reversible abstract interpretations
in a pure domain-theoretic form. There are still many open questions along this
line of research. It is for instance a challenge to design condensing abstract domains
for aliasing. The Corollary 4.9 provides necessary and sufficient conditions to sys-
tematically design these domains, but the construction of non-downward closed
condensing abstract domains, although clarified and made systematic, is still quite
difficult due to the complex structure of the quantale of the powerset of substi-
tutions and unification. For instance, it is an important and challenging open
question to characterize the weak-complete shell of Sharing , a well known abstract
domain devoted to the static analysis of variable aliasing [Jacobs and Langen 1992;
Langen 1991]. Our results can be also used to prove that already known domains
are condensing. Scozzari [2002] proved that the domain Pos for groundness anal-
ysis [Armstrong et al. 1998] is the most abstract solution of the abstract domain
equation X = Ground u (X → X), where Ground is the basic domain of plain
groundness by Jones and Søndergaard [1987]. Thus, by Corollary 4.9, this pro-
vides an alternative proof of the known fact that Pos is condensing [Marriott and
Søndergaard 1993].
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